Potassium Control of Plant Functions: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Jordi Sardans.
Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem–phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. 

Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem–phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. 

  • Potassium batery
  • drought
  • stress
Please wait, diff process is still running!

References

  1. Gallardo, J.F.; Martín, A.; Moreno, G. Nutrient efficiency and resorption in Quercus pyrenaica oak coppices under different rainfall regimes of the Sierra de Gata mountains (central western Spain). Ann. For. Sci. 1999, 56, 321–331.
  2. Trémolières, M.; Schnitzler, A.; Sánchez-Pérez, J.M.; Schmitt, D. Changes in foliar nutrient content and resorption in Fraxinus excelsior L., Ulmus minor Mill. and Clematis vitalba L. after prevention of floods. Ann. For. Sci. 1999, 56, 641–650.
  3. Vergutz, L.; Manzoni, S.; Porporato, A.; Novais, R.F.; Jackson, R.B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012, 82, 205–220.
  4. Sardans, J.; Peñuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275.
  5. Tripler, C.E.; Kaushal, S.S.; Linkens, G.E.; Walter, M.T. Patterns in potassium dynamics in forest ecosystems. Ecol. Let. 2006, 9, 451–466.
  6. Tränker, M.; Tavakol, A.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431.
  7. Sustr, M.; Soukup, A.; Tylova, E. Potassium in root growth and development. Plants 2019, 8, 435.
  8. Dreyer, J.; Gomez-Porras, J.L.; Riedelsberger, J. The potassium battery: A mobile energy source for transport processes in plant vascular tissues. New Phytol. 2017, 216, 1049–1053.
  9. Jia, Q.; Zheng, C.; Sun, S.; Amjad, H.; Liang, K.; Lin, W. The role of plant cation/proton antiporter gene family in salt tolerance. Biol. Plant 2018, 62, 617–629.
  10. Srivastava, A.K.; Shankar, A.; CHandran, A.K.N.; Sharma, M.; Jung, K.H.; Suprasanna, P.; Pandey, G.K. Emerging concepts of potassium homeostasis in plants. J. Exp. Bot. 2019, 71, 608–619.
  11. Cuin, T.A.; Dreyer, I.; Michard, E. The role of potassium channels in Arabidopsis thaliana long distance electrical signaling: AKT2 modulates tissue excitability while GORK shapes action potentials. Int. J. Mol. Sci. 2018, 19, 926.
  12. Locascio, A.; Marques, M.C.; Garcia-Martinez, G.; Corratge-Faillie, C.; Andres-Colas, N.; Rubio, L.; Fernandez, J.A.; Very, A.A.; Mulet, J.M.; Yenush, L. BCL2-associated athanogene 4 regulates the KAT1 potassium cannel and controls stomatal movement. Plant Physiol. 2019, 181, 1277–1294.
  13. Ahmad, P.; Abdel Latef, A.A.; Abd-Allah, E.F.; Hashem, A.; Sarwat, M.; Anjum, N.A.; Gucel, S. Calcium and potassium supplementation enhanced growth, osmolity secondary metabolite production, and enzymatic antioxidant machinery in Cadmium-exposed chickpea (Cicer arietinum L). Front. Plant Sci. 2016, 7, 513.
  14. Abass, M.; Tomar, N.S.; Tttal, M.; Argal, S.; Agarwal, R.M. Plant growth under water/salt stress: ROS production; antioxidants and significant of added potassium under such conditions. Physiol. Mol. Biol. Plants 2017, 23, 731–744.
  15. Ahanger, M.A.; Agarwal, R.M.; Tomar, N.S.; Shrivastava, M. Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J. Plant Int. 2015, 10, 211–223.
  16. Chen, G.; Li, C.L.; Gao, Z.Y.; Zhang, Y.; Zhu, L.; Hu, J.; Ren, D.Y.; Xu, G.H.; Qian, Q. Driving the expression of RAA1 with a drought-responsive promoter enhances root growth in rice, its accumulation of potassium and its tolerance to moisture stress. Environ. Exp. Bot. 2018, 147, 147–156.
  17. Leigh, R.R.; Wyn Jones, R.G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in plant cell. New Phytol. 1984, 97, 1–13.
  18. Shabala, S.; Pottosin, I. Potassium and potassium-permeable channels in plant salt tolerance. In Ion Channels and Plant Stress Responses; Demidchik, V., Maathuis, F., Eds.; Springer: Basel, Switzerland, 2010; pp. 87–110.
  19. White, P.; Karley, A. Potassium. In Cell Biology of Metals and Nutrients; Hell, R., Mendel, R.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 199–224.
  20. Dreyer, I.; Uozumi, N. Potassium channels in plant cells. FEBS J. 2011, 278, 4293–4303.
  21. Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390.
  22. Nieves-Cordones, M.; Martínez, V.; Benito, B.; Rubio, F. Comparison between Arabidopsis and rice for main pathways of K+ and Na+ uptake by roots. Front. Plant Sci. 2016, 7, 992.
  23. Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Skrumsager Moller, I.; White, P. Function of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: London, UK, 2012; pp. 135–189.
  24. Ward, J.M.; Schroeder, J.I. Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 1994, 6, 669–683.
  25. Ng, C.K.Y.; Mcainsh, M.R.; Gray, J.E.; Hunt, L.; Leckie, C.P.; Mills, L.; Hetherington, A.M. Calcium-based signaling systems in guard cells. New Phytol. 2001, 151, 109–120.
  26. Wang, Y.M.; Wu, W.H. Potassium transport and signaling in higher plants. Ann. Rev. Plant Biol. 2013, 64, 451–476.
  27. Hepler, P.K. Calcium: A central regulator of plant growth and development. Plant Cell 2005, 17, 2142–2155.
  28. Arteca, R.N. Introduction to Horticultural Science, 2nd ed.; Cengage Learning: Stamford, CT, USA, 2016; p. 611.
  29. Akenga, P.; Salim, A.; Onditi, A.; Yusuf, A.; Waudo, W. Determination of selected micro and macronutrients in sugarcane growing soils at Kakamega north district, Kenya. IOSR J. Appl. Chem. (IOSR-JAC) 2014, 7, 34–41.
  30. Marcus, Y. Ionic Radii in Aqueous Solutions. Chem. Rev. 1988, 88, 1475–1498.
  31. Russo, N.; Toscano, M.; Grand, A. Bond energies and attachments sites of sodium and potassium cations to DNA and RNA nucleic acid bases in gas phase. J. Am. Chem. Soc. 2001, 123, 10272–10279.
  32. Persson, I. Hydrated model ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 2010, 82, 1901–1917.
  33. Gajdanowicz, P.; Michard, E.; Sandmann, M.; Rocha, M.; Guedes Corrêa, L.G.; Ramírez-Aguilar, S.J.; Gómez-Porras, J.L.; González, W.; Thibaud, J.B.; van Dongen, J.T. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc. Natl. Acad. Sci. USA 2011, 108, 864–869.
  34. Langer, K.; Ache, P.; Geiger, D.; Stinzing, A.; Arend, M.; Wind, C.; Regan, S.; Fromm, J.; Hedrich, R. Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J. 2002, 32, 997–1009.
  35. Amtmann, A.; Troufflard, S.; Armengaud, P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant 2008, 133, 682–691.
  36. Rivas-Ubach, A.; Sardans, J.; Pérez-Trujillo, M.V.; Estiarte, M.; Peñuelas, P. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014, 202, 874–885.
  37. Nissen, P. The structural basis of ribosome activity in peptide bond synthesis. Science 2000, 289, 920–930.
  38. Andrés, Z.; Pérex-Hormaeche, J.P.; Leidi, E.O.; Schlücking, K.; Steinhorst, L.; McLachlan, D.H.; Schumacher, K.; Hetherington, A.M.; Kudla, J.V.; Cubero, B.; et al. Control of vacuolar dynamics and regulation of stomatal aperture to tonoplast potassium uptake. Proc. Natl. Acad. Sci. USA 2014, 111, 1806–1814.
  39. Carroll, M.J.; Slaughter, L.H.; Krouse, J.M. Turgor potential and osmotic constituents of Kentucky Bluegrass leaves supplied with four levels of potassium. Agron. J. 1994, 86, 1079.
  40. Jia, Y.B.; Yang, X.E.; Feng, Y.; Jilani, G. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency. J. Zhejiang Uni. Sci. B 2008, 9, 427–434.
  41. Jákli, B.; Tavakol, E.; Tränkner, M.; Senbayram, M.; Dittert, K. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. J. Plant Physiol. 2017, 209, 20–30.
  42. Zahoor, R.M.; Zhao, W.Q.; Dong, H.R.; Snider, J.L.; Abid, M.; Iqbal, B.; Zhou, Z.G. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 2017, 119, 21–32.
  43. Austin, J.; First, E.A. Potassium functionally replaces the second lysine of the KMSKS signature sequence in human tyrosyl-tRNA synthetase. J. Biol. Chem. 2002, 277, 20243–20248.
  44. Leigh, R.A. Potassium homeostasis and membrane transport. J. Plant Nutr. Soil Sci. 2001, 164, 193–198.
  45. Fricke, W.; Leigh, R.A.; Tomos, A.D. Concentrations of inorganic and organic solutes in extracts from individual epidermal, mesophyll and bundle sheath cells of barley leaves. Planta 1994, 192, 310–316.
  46. Gonzales, E.M.; Arrese-Igor, C.; Aparicio-Tejo, P.M.; Royuela, M.; Koyro, H.W. Solute heterogeneity and osmotic adjustment in different leaf structures of semi-leafless pea (Pisum sativum L.) subjected to water stress. Plant Biol. 2002, 4, 558–566.
  47. Shabala, S.; Babourina, O.; Newman, I. Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J. Exp. Bot. 2000, 51, 1243–1253.
  48. Cuin, T.A.; Miller, A.J.; Laurie, S.A.; Leigh, R.A. Potassium activities in cell compartments of salt-grown barley leaves. J. Exp. Bot. 2003, 54, 657–661.
  49. Nio, S.A.; Cawthray, G.R.; Wade, L.J.; Colmer, T.D. Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol. Biochem. 2011, 49, 1126–1137.
  50. Hamamoto, S.; Uozumi, N. Organelle-localized potassium transport systems in plants. J. Plant Physiol. 2014, 171, 743–747.
  51. Lu, Z.F.; Lu, J.W.; Pan, Y.H.; Li, X.K.; Cong, R.H.; Ren, T. Genotypic variation in photosynthetic limitation responses to K deficiency of Brassica napus is associated with potassium utilization efficiency. Funct. Plant Biol. 2016, 42, 880–891.
  52. Shabala, S.; Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014, 151, 257–279.
  53. Rodríguez-Navarro, A.; Rubio, F. High-affinity potassium and sodium transport systems in plants. J. Exp. Bot. 2006, 57, 1149–1160.
  54. Szczerba, M.W.; Britto, D.T.; Kronzucker, H.J. K+ transport in plants: Physiology and molecular biology. J. Plant Physiol. 2009, 166, 447–466.
  55. Rubio, F.; Alemán, F.; Nieves-Cordones, M.; Vicente, M. Studies on Arabidopsisathak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ uptake. Physiol. Plant. 2010, 139, 220–228.
  56. Pottosin, I.; Dobrovinskaya, O. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. J. Plant Physiol. 2014, 171, 732–742.
  57. Martínez-Cordero, M.A.; Martínez, V.; Rubio, F. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol. Biol. 2004, 56, 413–421.
  58. Cai, K.F.; Gao, H.Z.; Wu, X.J.; Zhang, S.; Han, Z.G.; Chen, X.H.; Zhang, G.P.; Zeng, F.R. The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley. Int. J. Mol. Sci. 2019, 20, 4111.
  59. Rubio, F.; Santa-Maria, G.E.; Rodríguez-Navarro, A.A. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol. Plant. 2000, 109, 34–43.
  60. Nieves-Cordones, M.; Martinez-Cordero, M.A.; Martinez, V.; Rubio, F. An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci. 2007, 172, 273–280.
  61. Kavka, M.; Polle, A. Phosphate uptake kinetics and tissue-specific transporter expression profiles in poplar (Populus x canescens) at different phosphorus availabilities. BMC Plant Biol. 2016, 16, 206.
  62. Kim, E.J.; Kwak, J.M.; Uozumi, N.; Schroeder, J.I. AtKUP1: An Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 1998, 10, 51–62.
  63. Hamamoto, S.; Horie, T.; Hauser, F.; Deinlein, U.; Schoroeder, J.I.; Uozumi, N. HKT transportes mediate salt stress resistance in plants: From structure and function to the field. Cur. Opin. Biotech. 2015, 32, 113–120.
  64. Britto, D.T.; Kronzucker, H.J. Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: New views on old paradigms. Plant Cell Environ. 2005, 28, 183–188.
  65. Isayenkov, S.V.; Dabravolski, S.A.; Pan, T.M.; Shabala, S. Phylogenetic diversity and physiological roles of plant monovalent cation/H+ antiporters. Front. Plant Sci. 2020, 11, 573564.
  66. Guerth, M.; Mäser, P. Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett. 2007, 581, 5355–5360.
  67. Maathius, F.J.M.; Filatov, V.; Herzyk, P.; Krijger, G.C.; Axelsen, K.B.; Chen, S.; Green, B.J.; Li, Y.; Madagan, K.L.; Sánchez-Fernández, R.; et al. Transcriptomic analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. 2003, 35, 675–692.
  68. Padmanaban, S.; Czerny, D.D.; Levin, K.A.; Leydon, A.R.; Su, R.T.; Maugel, T.K.; Zou, Y.; Chanroj, S.; Cheung, A.Y.; Johnson, M.A.; et al. Transporters involved in pH and K+ homeostasis affect pollen wall formation, male fertility, and embrio development. J. Exp. Bot. 2017, 68, 3165–3178.
  69. Qu, Y.; Guan, R.M.; Bose, J.; Henderson, S.W.; Wege, S.; Qiu, L.J.; Gilliham, M. GmSALT3 confers shoot Na+ and Cl- exclusion in soybean via two distinct processes. bioRxiv 2020, 2020, 896456.
  70. Rubio, F.; Nieves-Cordones, M.; Horie, T.; Shabala, S. Doing business as usual comes with a cost: Evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytol. 2020, 225, 1097–1104.
  71. Aranda-Sicilia, M.N.; Cagnac, O.; CHanroj, S.; Sze, H.; Rodríguez-Rosales, M.P.; Venema, K. Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K+/H+ antiporter with a chloroplast transit peptide. Biochem. Biophys. Acta 2012, 1818, 2362–2371.
  72. Zhu, X.; Pan, T.; Zhang, X.; Fan, L.; Quintero, F.J.; Zhao, H.; Su, X.; Li, X.; Vilalta, I.; Mendoza, I.; et al. K+ efflux antiporters 4, 5, and 6 mediate pH and K+ homeostasis in endomembrane compartments. Plant Physiol. 2018, 178, 1657–1678.
  73. Wang, T.; Tang, R.J.; Yang, X.; Zheng, X.; Shao, Q.; Tang, Q.L.; Fu, A.; Luan, S. Golgi-localized cation/proton exchangers regulate ionic homeostasis and skotomorphogenesis in Arabidopsis. Plant Cell Environ. 2019, 42, 673–687.
  74. Amtmann, A.; Blatt, M.R. Regulation of macronutrient transport. New Phytol. 2008, 181, 35–52.
  75. Sharma, T.; Dreyer, I.; Riedelsberger, J. The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Front. Plant Sci. 2003, 4, 224.
  76. Ragel, P.; Raddatz, N.R.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ nutrition in plants. Front. Plant Sci. 2019, 10, 281.
  77. Shrivastava, I.; Guy, H. Inward Rectifier K+ channels. In Bacterial Ion Channels and Their Eukaryotic Homologs; Kubalski, A., Martinac, B., Eds.; ASM Press: Washington, DC, USA, 2005; pp. 123–132.
  78. Zhao, X.-h.; Qiu, H.; Wen, J.; Wang, X.; Du, Q.; Wang, J.; Wang, Q. Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. J. Integr. Agric. 2016, 15, 785–794.
  79. Garcia, K.; Ané, J.M. Polymorphic responses of Medicago truncatula accessions to potassium deprivation. Plant Signal. Behav. 2017, 12, e1307494.
  80. Feng, H.; Tang, Q.; Cai, J.; Xu, B.; Xu, G.; Yu, L. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta 2019, 250, 549–561.
  81. Wang, Y.; Wang, Y.; Li, B.; Xiong, C.; Eneji, A.E.; Zhang, M.; Li, F.; Tian, X.; Li, Z. The cotton high-affinity K+ transporter, GhHAK5a, is essential for shoot regulation of K+ uptake in root under potassium deficiency. Plant Cell Physiol. 2019, 60, 888–899.
  82. Kellermeier, F.; Armengaud, P.; Seditas, T.J.; Danku, J.; Salt, D.E.; Amtmann, A. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 2014, 26, 1480–1496.
  83. Li, J.; Wu, W.H.; Wang, Y. Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress. J. Int. Plant Biol. 2017, 59, 895–909.
  84. Nieves-Cordones, M.; Miller, A.J.; Aleman, F.; Martinez, V.; Rubio, F. A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol. Biol. 2008, 68, 521–532.
  85. Wang, Y.; Wu, W.H. Plant sensing and signaling in response to K+-deficiency. Mol. Plant 2010, 3, 280–287.
  86. Shin, R.; Berg, R.H.; Schachtman, D.P. Reactive oxygenspecies and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 2005, 46, 1350–1357.
  87. Pitzschke, A.; Forzani, C.; Hirt, H. Reactive oxygen speciessignaling in plants. Antioxid. Redox Signal. 2006, 8, 1757–1764.
  88. Demidchik, K.; Shabala, S.; Isayenkov, S.; Cuin, T.A.; Pottosin, I. Calcium transport across plant membranes: Mechanisms and function. New Phytol 2018, in press.
  89. Pei, Z.M.; Murata, Y.; Benning, G.; Thomine, S.; Klusener, B.; Allen, G.J.; Grill, E.; Schroeder, J.I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 2000, 406, 731–734.
  90. Yang, T.; Poovaiah, B.W. Hydrogen peroxide homeostasis:activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. USA 2002, 99, 4097–4102.
  91. Shin, R.; Schachtman, D.P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 2004, 101, 8827–8832.
  92. Zhao, J.; Cheng, N.H.; Motes, C.M.; Blancaflor, E.B.; Moore, M.; Gonzales, N.; Padmanaban, S.; Sze, H.; Ward, J.M.; Hirschi, K.D. AtCHX13 is a plasma membrane K+ transporter. Plant Physiol. 2008, 148, 796–807.
  93. Li, Y.; Peng, L.R.; Xie, C.Y.; Shi, X.Q.; Dong, C.X.; Shen, Q.R.; Xu, Y.C. Genome-wide identification, characterization, and expression analyses of the HAK/KUP/KT potassium transporter gene family reveals their involvement in K+ deficient and abiotic stress responses in pear rootstock seedlings. Plant Growth Regul. 2018, 85, 187–198.
  94. Lee, S.C.; Lan, W.Z.; Kim, B.G.; Li, L.; Cheong, Y.H.; Pandey, G.K.; Lu, G.; Buchanan, B.B.; Lua, S. A protein phosphorylation/dephospholiration network regulates a plant potassium channel. Proc. Natl. Acad. Sci. USA 2007, 104, 15959–15964.
  95. Stephan, A.; Schroeder, J.I. Plant salt stress status is transmitted systemically via propagating calcium waves. Proc. Natl. Acad. Sci. USA 2014, 111, 6126–6127.
  96. Lagarde, D.; Basset, M.; Lepetit, M.; Conejero, G.; Gaymard, H.; Astruc, S.; Grignon, C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 1996, 9, 195–203.
  97. Fuchs, I.; Stolzle, S.; Ivashuikina, N.; Hedrich, R. Ricr K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 2005, 221, 212–221.
  98. Philippar, K.; Fuchs, I.; Luthen, H.; Hoth, S.; Bauer, C.S.; Haga, K.; Thiel, G.; Ljug, K.; Sandberg, G.; Böttger, M.; et al. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Natl. Acad. Sci. USA 1999, 96, 12186–12191.
  99. Zimmermann, S.; Talke, I.; Ehrhardt, T.; Nast, G.; Müller-Röber, B. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. Plant Physiol. 1998, 116, 879–890.
  100. Buschmann, P.H.; Vaidyanathan, R.M.; Gassmann, W.; Schroeder, J.I. enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channels currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol. 2000, 122, 1387–1397.
  101. Lebaudy, A.; Véry, A.A.; Sentenac, H. K+ channel activity in plants: Genes, regulation and functions. FEBS Lett. 2007, 25, 2357–2366.
  102. Hachez, C.; Veljanovski, V.; Reinhardt, H.; Guillaumot, D.; Vanhee, C.; Chaumont, F.; Batoko, H. The Arabidopsis stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell 2014, 26, 4974–4990.
  103. Maurel, C.; Boursiac, Y.; Luu, D.T.; Santoni, V.; Shahzad, Z.; Verdoucq, L. Aquaporins in plants. Physiol. Rev. 2015, 95, 1321–1358.
  104. Maurel, C.; Verdoucq, L.; Luu, D.T.; Santoni, V. Plant aquaporins: Membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 2008, 59, 595–624.
  105. Yue, X.; Zhao, X.Y.; Fei, Y.; Zhang, X. Correlation of aquaporins and transmembrane solute transporters revealed by genome-wide analysis developing maize leaf. Comp. Funct. Genom. 2012, 2012, 546930.
  106. Liu, H.Y.; Sun, W.N.; Su, W.A.; Tang, Z.C. Co-regulation of water channels and potassium channels in rice. Physiol. Plant. 2006, 128, 58–69.
  107. Armengaud, P.; Breitling, R.; Amtmann, A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 2004, 136, 2556–2576.
  108. Wang, M.; Ding, L.; Gao, L.; Li, Y.; Shen, Q.; Guo, S. The interactions of aquaporins and mineral nutrients in higher plants. Int. J. Mol. Sci. 2016, 17, 1229.
  109. Cuéllar, T.; Pascaud, F.; Verdeil, J.L.; Torregrosa, L.; Adam-Blondon, A.F.; Thibaud, J.B.; Sentenac, H.; Gaillard, I.A. Grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J. 2010, 61, 58–69.
  110. Favreau, B.; Denis, M.; Ployet, R.; Mounet, F.; Peireira de Silva, H.; Franceschini, L.; Laclau, J.P.; Labate, C.; Carrer, H. Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS ONE 2019, 14, e0218528.
  111. Oddo, E.; Inzerillo, S.; La Bella, F.; Grisafi, F.; Salleo, S.; Nardini, A.; Goldstein, G. Short-term effectsof potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol. 2011, 31, 131–138.
  112. Liesche, J.; Windt, C.; Bohr, T.; Schulz, A.; Jensen, K.H. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance. Tree Physiol. 2015, 35, 376–386.
  113. Deeken, R.; Geiger, D.; Fromm, J.; Karoleva, O.; Ache, P.; Langenfeld-Heyser, R.; Sauer, N.; May, S.T.; Hedrich, R. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 2002, 216, 334–344.
  114. Dreyer, I.; Blatt, M.R. What makes a gate? The ins and outs of Kv-live K+ channels in plants. Trends Plant Sci. 2009, 14, 383–390.
  115. Jeschke, D.W.; Atkins, C.A.; Pate, J.S. Ion circulation via phloem and xylem between root and shoot of nodulated white lupin. J. Plant Physiol. 1985, 117, 319–330.
  116. Sklodowski, K.; Riedelsberger, J.; Raddatz, N.; Riadi, G.; Caballero, J.; Chérel, I.; Schulze, W.; Graf, A.; Dreyer, I. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2. Sci. Rep. 2017, 7, 44611.
  117. Hedrich, R.; Salvador-Recatalà, V.; Dreyer, I. Electrical wiring and long-distance plant communication. Trends Plant Sci. 2016, 21, 376–387.
  118. Zhang, Z.; Chao, M.; Wang, S.; Bu, J.; Tang, J.; Li, F.; Wang, Q.; Zhang, B. Proteome quantification of cotton xylem sap suggests the mechanisms of potassium-defficiency-induced changes in plant resistance to environmental stresses. Sci. Rep. 2016, 6, 21060.
  119. Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324.
  120. Anschütz, U.; Becker, D.; Shabala, S. Going beyond nutrition: Regulation of potassium homeostasis as a common denominator of plant adaptive response to environment. J. Plant Physiol. 2014, 171, 670–687.
  121. Shahzad, Z.; Canut, M.; Tournaire-Roux, C.; Martinière, A.; Boursiac, Y.; Loudet, O.; Maurel, C. A potassium-dependent oxygen sensing pathway regulates plant root hydraulics. Cell 2016, 167, 87–98.
  122. Demidchik, V.; Straltsova, V.; Medvedev, S.S.; Pozhvanov, G.A.; Sokolik, A.; Yurin, V. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 2014, 65, 1259–1270.
  123. Wang, Y.; Wu, W.H. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Cur. Opin. Plant Biol. 2015, 25, 46–52.
  124. Ashley, M.K.; Grabov, M.G.A. Plant responses to potassium deficiencies: A role for potassium transport proteins. J. Exp. Bot. 2005, 57, 425–436.
  125. Becker, D.; Hoth, S.; Ache, P.; Wenkel, S.; Roelfsema, M.R.; Meyerhoff, O.; Harting, W.; Hedrich, R. Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett. 2003, 554, 119–126.
  126. Qi, J.G.; Sun, S.M.; Yang, L.; Li, M.J.; Ma, F.W.; Zou, Y.J. Potassium uptake and transport in apple roots under drought stress. Horticul. Plant J. 2019, 5, 10–16.
  127. Bortner, C.D.; Hughes, F.M., Jr.; Cidlowski, J.A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 1997, 272, 32436–32442.
  128. Demidchik, V.; Cuin, T.A.; Svistunenko, D.; Smith, S.J.; Miller, A.J.; Shabala, S.; Slkolik, A.; Yurin, V. Root K+-efflux conductance activated by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death. J. Cell Sci. 2010, 1233, 1468–1479.
  129. Pilot, G.; Gaymard, F.; Mouline, K.; Cherel, I.; Sentenac, H. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol. Biol. 2003, 51, 773–787.
  130. Sharp, R.E.; Hsiao, T.C.; Silk, W.K. Growth of the maize primary root at low water potentials: II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol. 1990, 93, 1337–1346.
  131. Zain, N.A.M.; Ismail, M.R.; Puteh, A.; Mahmood, M.; Isla, M.R. Drought tolerance and ion accumulation of rice following application of additional potassium fertilizer. Commun. Soil Sci. Plant Anal. 2014, 45, 2502–2514.
  132. Teixeira, J.; Pereira, S. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environ. Exp. Bot. 2007, 60, 121–126.
  133. Kishor, P.B.K.; Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014, 37, 300.
  134. Prasad, D.; Singh, R.; Singh, A. Management of sheath blight of rice with integrated nutrients. Indian Phytol. 2010, 63, 11–15.
  135. Zhao, D.; Oosterhuis, D.M.; Bednarz, C.W. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 2001, 39, 103–109.
  136. Zhu, X.C.; Song, F.B.; Liu, S.Q.; Liu, F.L.; Li, X.N. Arbuscular mycorrhiza enhances nutrient accumulation in wheat exposure to elevated CO2 and soil salinity. J. Plant Nutr. Soil Sci. 2018, 181, 836–846.
  137. Laus, M.N.; Soccio, M.; Trono, D.; Liberatore, M.T.; Pastore, D. Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters: A possible defence mechanism in the response to hyperosmotic stress. J. Exp. Bot. 2011, 62, 141–154.
  138. Trono, D.; Laus, M.N.; Soccio, M.; Alfaro, M.; Pastore, D. Modulation of Potassium cannel activity in the balance of ROS and ATP production by durum wheat mitochondria-an amazing defense tool agaisnt hyperosmotic stress. Front. Plant Sci. 2015, 6, 1072.
  139. Amjad, M.; Akhtar, J.; Anwar-ul-Haq, M.; Riaz, M.A.; Saqib, Z.A.; Murtaza, B.; Naeem, M.A. Effectiveness of potassium in mitigating the salt-induced oxidative stress in contrasting tomato genotypes. J. Plant Nutr. 2016, 39, 1926–1935.
  140. Liang, T.B.; Wang, Z.L.; Wang, R.J.; Liu, L.L.; Shi, C.Y. Effects of potassium humate on ginger root growth and its active oxygen metabolism. Ying Yong Sheng Tai Xue Bao 2007, 18, 813–817.
  141. García-Martí, M.; Piñero, M.C.; García-Sanchez, F.; Mestre, T.C.; López-Delacalle, M.; Martínez, V.; Rivero, R.M. Amelioration of the oxidatice stress generated by simple or combined abiotic stress through the K+ and Ca2+ supplementation in tomato plants. Antioxidants 2019, 8, 81.
  142. Shirazi, M.U.; Asif, S.M.; Khanzada, M.; Khan, M.A.; Ali, M.; Mumtaz, S.; Yousufzai, M.N.; Saif, M.S. Growth and ion accumulation in some wheat genotypes under NaCl stress. Pak. J. Biol. Sci. 2001, 4, 388–391.
  143. Zheng, Y.; Aijun, J.; Tangyuan, N.; Jialin, X.; Zengjia, L.; Gaoming, J. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J. Plant Physiol. 2008, 165, 1455–1465.
  144. Bar-Tal, A.S.; Sparks, D.L.F. Potassium-salinity interaction in irrigated corn. Irrig. Sci. 2004, 12, 27–35.
  145. Cha-um, S.; Siringam, K.; Juntawong, N.; Kirdmanee, C. Water relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application. Int. J. Plant Prod. 2010, 4, 187–198.
  146. Pyo, Y.J.; Gierth, M.; Schroeder, J.I.; Cho, M.H. High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and post germination growth under low-potassium conditions. Plant Physiol. 2010, 153, 863–875.
  147. Yamaguchi-Shinozaki, K.; Shinozaki, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. An. Rev. Plant Biol. 2006, 57, 781–803.
  148. Osabake, Y.; Arinaga, N.; Umezawa, T.; Katsura, S.; Nagamachi, K.; Tanaka, H.; Ohiraki, H.; Yamada, K.; Seo, S.U.; Abo, M.; et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 2013, 25, 609–624.
  149. Kim, T.H.; Böhmer, M.; Hu, H.; Nishimura, N.; Schroeder, J.I. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 2010, 61, 561–591.
  150. Ueno, K.; Kinoshita, T.; Inoue, S.; Emi, T.; Shimazaki, K. Bio chemical characterization of plasma membrane HC-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol. 2005, 46, 955–963.
  151. Pilot, G.; Lacombe, B.; Gaymard, F.; Cherel, I.; Boucherez, J.; Thibaud, J.B.; Sentenac, H. Guard cell inward KC channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem. 2001, 276, 3215–3221.
  152. Szyroki, A.; Ivashikina, N.; Dietrich, P.; Roelfsema, M.R.; Ache, P.; Reintanz, B.; Deeken, R.; Godde, M.; Felle, H.; Steinmeyer, R.; et al. KAT1 is not essential for stomatal opening. Proc. Natl. Acad. Sci. USA 2001, 98, 2917–2921.
  153. Hedrich, R. Ion channels in plants. Physiol. Rev. 2012, 92, 1777–1811.
  154. Talbott, L.D.; Zeiger, E. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 1998, 49, 329–337.
  155. Geiger, D.; Scherzer, S.; Mumm, P.; Stange, A.; Marten, I.; Bauer, H.; Ache, P.; Matschi, S.; Liese, A.; Al-Rasheid, K.A.; et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl. Acad. Sci. USA 2011, 106, 21425–21430.
  156. Geiger, D.; Scherzer, S.; Mumm, P.; Marten, I.A.; Ache, P.; Matschi, S.; Liese, A.; Wellmann, C.; Al-Rasheid, K.A.; Grill, E.; et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Natl. Acad. Sci. USA 2010, 107, 8023–8028.
  157. Brandt, B.; Brodsky, D.E.; Xue, S.; Negi, J.; Iba, K.; Kangasiärvi, J.; Ghassemian, M.; Stephan, A.B.; Hu, H.; Schroeder, J.I. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl. Acad. Sci. USA 2012, 109, 10593–10598.
  158. Ye, W.; Muroyama, D.; Munemasa, S.; Nakamura, Y.; Mori, I.C.; Murata, Y. Calcium-dependent protein kinase CPK6 positively functions in induction by yeast elicitor of stomatal closure and inhibition by yeast elicitor of light induced opening in Arabidopsis. Plant Physiol. 2013, 163, 591–599.
  159. Endo, A.; Sawada, Y.; Takahashi, H.; Okamoto, M.; Ikegami, K.; Koi-wai, H. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 2008, 147, 1984–1993.
  160. Melhorn, V.; Matsumi, K.; Koiwai, H.; Ikegami, K.; Okamoto, M.; Nambara, E. Transient expres-s ion of AtNCED3 andAAO3 genes in the guard cells causes stomatal closur in Viciafaba. J. Plant Res. 2008, 121, 125–131.
  161. Meyer, S.; Scholz-Starke, J.; De Angelis, A.; Kovermann, P.; Gambale, B.B.F.; Martinoia, E. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J. 2011, 67, 247–257.
  162. Jeanguenin, L.; Lebaudy, A.; Xicluna, J.; Alcon, C.; Hosy, E.; Duby, G. Heteromerization of Arabidopsis Kv channela-subunits. Plant Signal. Behav. 2008, 3, 622–625.
  163. Schroeder, J.I.; Keller, B.U. Two types of anion channels currents in guard cells with distinct voltage regulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5025–5029.
  164. Willmer, C.; Fricker, M. Stomata, 2nd ed.; Chap-Man &Hall: London, UK, 1996.
  165. Munemasa, S.; Oda, K.; Watanabe-Sugimoto, M.; Nakamura, Y.; Shi-moishi, Y.; Murata, Y. The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 2007, 143, 1398–1407.
  166. Lebaduy, A.; Vavasseur, A.; Hosy, E.; Dreye, I.; Leonhardt, N.; Thibaud, J.B.; Véry, A.A.; Simonneau, T.; Sentenac, H. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc. Natl. Acad. Sci. USA 2008, 105, 5271–5276.
  167. Blatt, M.R.; Thiel, G. KC channels of stomatal guard cells:bimodal control of the KC inward-rectifier evoked by auxin. Plant J. 1994, 5, 55–68.
  168. Tanaka, Y.; Sano, T.; Tamaoki, M.; Nakajima, N.; Kondo, N.; Hasezawa, S. Cytokin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 2006, 57, 2259–2266.
  169. Dietrich, P.; Sanders, D.; Hedrich, R. The role of ion channels in light-dependent stomatal opening. J. Exp. Bot. 2001, 52, 1959–1967.
  170. Liu, K.; Fu, H.; Bei, Q.; Luan, S. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 2000, 124, 1315–1325.
  171. Fazeli, F.; Ghorbanli, M.; Niknam, V. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol. Plant. 2007, 51, 98–103.
  172. Degenkolbe, T.; Do, P.T.; Zuther, E.; Repsilber, D.; Walther, D.; Hincha, D.K.; Köhl, K.I. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol. Biol. 2009, 69, 133–153.
  173. Soleimanzadeh, H.; Habibi, D.; Ardakani, M.R.; Paknejad, F.; Rejali, F. Effect of potassium levels on antioxidant enzymes and malondialdehyde content under drought stress in sunflower (Helianthus annuus L.). Am. J. Agric. Biol. Sci. 2010, 5, 56–61.
  174. Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530.
  175. Tomar, N.S.; Agarwal, R.M. Influence of treatment of Jatropha curcas L. leachates and potassium on growth and phytochemical constituents of wheat (Triticum aestivum L.). Am. J. Plant Sci. 2013, 4, 1134–1150.
  176. Jatav, K.S.; Agarwal, R.M.; Tomar, N.S.; Tyagi, S.R. Nitrogen metabolism, growth and yield responses of wheat (Triticum aestivum L.) to restricted water supply and varying potassium treatments. J. Indian Bot. Soc. 2014, 93, 177–189.
  177. Hernandez, M.; Fernandez-Garcia, N.; Garcia-Garma, J.; Rubio-Asensio, J.S.; Rubio, F.; Olmos, E. Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots. J. Plant Physiol. 2012, 169, 1366–1374.
  178. Assaha, D.V.M.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017, 8, 509.
  179. Ahanger, M.A.; Agarwal, R.M. Potassium up-regulates antioxidant metabolism and alleviates growth inhibitor under water and osmotic stress in wheat (Triticum aesticum L). Protoplasma 2017, 254, 1471–1486.
  180. Waraich, E.A.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. Soil Sci. Plant Nutr. 2012, 12, 221–244.
  181. Egilla, J.N.; Davies, J.F.T.; Boutton, T.W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 2005, 43, 135–140.
  182. Raza, M.A.S.; Saleem, M.F.; Shah, G.M.; Khan, I.H.; Raza, A. Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought. J. Soil Sci. Plant Nutr. 2014, 14, 348–364.
  183. Kanai, S.; Moghaieb, R.E.; El-Shemy, H.A.; Panigrahi, R.; Mohapatra, P.K.; Ito, J.; Nguyen, N.T.; Saneoka, H.; Fujita, K. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci. 2011, 180, 368–374.
  184. Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.L.; Laloi, M.; Coutos-Thévenot, P.; Maurouss, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272.
  185. Maathuis, F.J.M.; Amtmann, A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 1999, 84, 123–133.
  186. Wu, H.; Zhang, X.; Giraldo, J.P.; Shabala, S. It is nota ll about sodium: Revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil 2018, 431, 1–17.
  187. Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2020, 10, 80.
  188. Marten, I.; Hoth, S.; Deeken, R.; Ache, P.; Ketchum, K.A.; Hoshi, T.; Hedrich, R. AKT3, a phloem-localized K1 channel, is blocked by protons. Proc. Natl. Acad. Sci. USA 1999, 96, 7581–7586.
  189. Maathuis, F.J.M. The role of monovalent cation transporters in plant responses to salinity. J. Exp. Bot. 2006, 57, 1137–1147.
  190. Checchetto, V.; Teardo, E.; Carratto, L.; Leanza, L.; Szabo, I. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? Biochim. Biophys. Acta Biol. 2016, 1857, 1258–1266.
  191. Latorre, R.; Muñoz, F.; Gonzalez, C.; Cosmelli, D. Structure and function of potassium channels in plants: Some inferences about the molecular origin of inward rectification in KAT1 channels (Review). Mol. Membr. Biol. 2003, 20, 19–25.
  192. Reiser, V.; Raitt, D.C.; Saito, H. Yeast osmosensor Sln1 and plant cytokinn receptor Cre1 respond to changes in turgor pressure. J. Cell Biol. 2003, 161, 1035–1040.
  193. Wang, H.Y.; Zhou, J.M.; Du, C.W.; Chen, X.Q. Potassium fractions in soils as affected by monocalcium phosphate, ammonium sulfate and potassium chloride application. Pedosphere 2010, 20, 368–377.
  194. Britzke, D.; da Silva, L.S.; Moterle, D.F.; dos Santos Rheinheimer, D.; Bortoluzzi, E.C. A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands. J. Soil Sed. 2012, 12, 185–197.
  195. Sardans, J.; Peñuelas, J. Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct. Ecol. 2007, 21, 191–201.
  196. Sardans, J.; Peñuelas, J.; Prieto, P.; Estiarte, M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant Soil 2008, 306, 261–271.
  197. Soil Survey Staff. Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting soil Surveys, 2nd ed.; US Department of Agriculture Handbook 436; Natural Resources Conservation Service, United States Department of Agriculture: Buckeye, AZ, USA, 1999; Volume 1, pp. 1–871.
  198. Jobbágy, E.G.; Jackson, R.B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 2001, 53, 51–77.
  199. Sardans, J.; Peñuelas, J. Hydraulic redistribution by plants and nutrient stoichiometry. Shifts under global change. Ecohydrology 2014, 7, 1–20.
  200. Chen, G.; Liu, C.L.; Gao, Z.Y.; Zhang, Y.; Jiang, H.Z.; Zhu, L.; Ren, D.Y.; Yu, L.; Xu, G.H.; Qian, Q. OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress rice. Front. Plant Sci. 2017, 8, 1885.
  201. Han, M.; Wu, W.; Wu, W.H.; Wang, Y. Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol. Plant 2016, 9, 437–446.
  202. IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 688.
  203. Benlloch-Gonzalez, M.; Sanchez-Lucas, R.; Benlloch, M. Effects of olive root warming on potassium transport and plant growth. J. Plant Physiol. 2017, 218, 182–188.
  204. Ventura, M.; Scandellari, F.; Bonora, E.; Tagliavini, M. Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutrit. Cycl. Agroecosys. 2010, 87, 115–125.
  205. Jonczak, J. Decomposition of beech leaves in 120-years old stand on the area of Middle Pomerania. Sylvan 2014, 158, 621–629.
  206. Vinh, T.V.; Allenbach, M.; Linh, K.T.V.; Marchand, C. Changes in leaf litter quality during its decomposition in a tropic planted mangrove forest (Can Gio, Vietnam). Front. Environ. Sci. 2020, 8, 10.
  207. Ranibar, F.; Jalali, M. Calcium, magnesium, sodium, and potassium release during decomposition of some organic residues. Com. Soil Sci. Plant Anal. 2012, 43, 645–659.
  208. Palviainen, M.; Finer, L.; Kurka, A.M.; Mannerkoski, H.; Piirainen, S.; Starr, M. Release of potassium, calcium, iron and aluminium from Norway spruce, scots pine and silver birch logging residues. Plant Soil 2004, 259, 123–136.
  209. Moro, H.; Kunito, T.; Saito, T.; Yaguchi, N.; Sato, T. Soil microorganisms are less susceptible tan crop plants to potassium deficiency. Arch. Agon. Soil Sci. 2014, 60, 1807–1813.
  210. Etesami, H.; Emami, S.; Alikhani, H.A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects–a review. J. Soil Sci. Plant Nutrit. 2017, 17, 897–911.
  211. Khanghahi, M.Y.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.H.; Sapanlou, M.G.; Salvatori, E.; Crecchio, C. Leaf photosynthetic characteristics and photosystem II photochemistry of rice (Oryza sativa L.) under potassium-solubilizing bacteria inoculation. Photosynthetica 2019, 57, 500–511.
  212. Burghelea, C.; Zaharescu, D.G.; Dontsova, K.; Maier, R.; Huxman, T.; Chorover, J. Mineral nutritient mobilization by plants from rock: Influence of rock type and arbuscular mycorrhiza. Biogeochemistry 2015, 124, 187–203.
  213. Ajithkumar, I.P.; Panneerselvam, R. ROS scavenging system, osmotic maintenance pigment and growth status of Panicum sumatrense Roth. Under drought stress. Cell Biochem. Biophys. 2013, 68, 587–595.
  214. Wang, F.Y.; Sun, Y.H.; Shi, Z.Y. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 2019, 7, 289.
  215. Wang, H.Y.; Shen, Q.H.; Zhou, J.M.; Wang, J.; Du, C.W.; Chen, X.Q. Plants use alternative strategies to utilize nonexchangeable potassium in minerals. Plant Soil 2011, 343, 209–220.
  216. Yang, Z.X.; Yu, S.Z.; Lin, Y.C.; Zhang, W.J.; Wang, Y.; Wang, R.G.; Xu, S.X.; Yang, T.Z.; Xue, G. Activation of potassium released from soil by root-secreted organic acids in different varieties of tabacco (Nicotiniana tabacum). Funct. Plant Biol. 2020, 47, 318–326.
  217. Yang, Y.F.; Yang, Z.X.; Yu, S.Z.; Chen, H.L. Organic acids exuded from roots increase the available potassium content in the rhizosphere soil: A rizobag experiment in Nicotiana tabacum. Hortscience 2019, 54, 23–27.
  218. Gahoonia, T.S.; Nielsen, N.E. Root activity and acquisition of soil phosphorus and potassium. Edited by Box, J.E. Root Demographics and Their Efficiencies in Sustainable Agriculture, Grassland and Forest Ecosystems. Develop. Plant Soil Sci. 1998, 82, 331–344.
  219. Yuan, J.; Huang, J.G.; Li, X.L.; Christie, P. Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil 2004, 262, 351–361.
  220. Yang, T.; Lu, X.; Wang, Y.; Xie, Y.; Ma, J.; Cheng, X.; Xia, E.; Wan, X.; Zhang, Z. HAK/KUP/KT family potassium transporter genes are involved in potassium deficiency and stress responses in tea plants (Camelia sinensis L.): Expression and functional analysis. BMC Gen. 2020, 21, 556.
  221. Argiolas, A.; Puleo, G.L.; Sinibaldi, E.; Mazzolai, B. Osmolyte cooperation affects turgor dynamics in plants. Sci. Rep. 2016, 6, 30139.
  222. Grefen, C.; Karnik, R.; Larson, E.; Lefoulon, C.; Wang, Y.Z.; Waghmare, S.; Zhang, B.; Hills, A.; Blatt, M.R. A vesicle-trafficking protein commanders kv channel sensors for voltage-dependent secretion. Nat. Plants 2015, 1, 15108.
  223. Mengel, K. Principles of Plant Nutrition, 5th ed.; Kluwer Academic: Dordrecht, The Netherlands, 2001; pp. 481–509.
  224. Zhao, W.Q.; Dong, H.R.; Zahoor, R.W.; Zhou, Z.G.; Snider, J.L.; Chen, Y.L.; Siddique, K.H.M.; Wang, Y.H. Ameliorative effects of potassium on drought-induced decreases in fiber length of cotton (Gossypium hirsutum L.) are associated with osmolyte dynamics during fiber development. Crop J. 2019, 7, 619–634.
  225. Berg, W.K.; Cunningham, S.M.; Brouder, S.M.; Joern, B.C.; Johnson, K.D.; Volence, J.J. Influence of phosphorus and potassium on alfalfa yield, taproot C and N pools, and transcript levels of key genes after defoliation. Crop Sci. 2009, 49, 974–982.
  226. Wright, S.J.; Yavitt, J.B.; Wurzburger, N.; Turner, B.L.; Tanner, E.V.J.; Sayer, E.J.; Santiago, L.S.; Kasparl, M.; Hedin, L.O.; Harms, K.E.; et al. Potassium, phosphorus, or nitrogen limit root allocation tree growth, or litter production in a lowland tropical forest. Ecology 2011, 92, 1616–1625.
  227. Bond, W.J. Do nutrient-poor soils inhibit development of forest? A nutrient stock analysis. Plant Soil 2010, 334, 47–60.
  228. Jin, S.H.; Huang, J.Q.; Li, X.Q.; Zheng, B.S.; Wu, J.; Wang, Z.J.; Liu, G.H.; Chen, M. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol. 2011, 31, 1142–1151.
  229. Smith, S.; Stewart, G.R. Effect of potassium levels on the stomatal behavior of the hemi-parasite Striga hermonthica. Plant Physiol. 1990, 94, 1472–1476.
  230. Carlson, C.A.; Fox, T.R.; Allen, H.L.; Albaugh, T.J.; Rubilar, R.A.; Stape, J. Growth response of Loblolly Pine in the southeast United States to Midrotation applications of nitrogen, phosphorus, potassium, and micronutrients. For. Sci. 2014, 60, 157–169.
  231. Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11106.
  232. Kerkhoff, A.J.; Enquist, B.J.; Elser, J.J.; Fagan, W.F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Glob. Ecol. Biogeog. 2005, 14, 585–598.
  233. Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). For. Ecol. Manag. 2011, 262, 2024–2034.
  234. Sardans, J.; Peñuelas, J.; Coll, M.; Vayreda, J.; Rivas-Ubach, A. Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests. Funct. Ecol. 2012, 26, 1077–1089.
  235. Tomlinson, K.W.; Pooter, L.; Sterck, F.J.; Borghetti, F.; Ward, D.; de Bie, S.; van Langevelde, F. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J. Ecol. 2013, 101, 430–440.
  236. Milla, R.; Castro-Díaz, P.; Maestro-Martínez, M.; Montserrat-Martí, G. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytol. 2005, 168, 167–178.
  237. Rivas-Ubach, A.; Sardans, J.; Pérez-Trujillo, M.; Estiarte, M.; Peñuelas, J. Strong relationships between elemental stoichiometry and metabolome in plants. Proc. Natl. Acad. Sci. USA 2012, 109, 4181–4186.
  238. IPCC. Climaste Change: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007.
  239. Benlloch-Gonzalez, M.; Quintero, J.M.; Suárez, M.P.; Sánchez-Lucas, R.; Fernández-Escobar, R.; Benlloch, M. Effect of moderate high temperatures on the vegetative growth and potassium allocation in olive plants. J. Plant Physiol. 2016, 207, 22–29.
  240. Ge, T.D.; Sun, N.B.; Bai, L.P.; Tong, C.L.; Sui, F.G. Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) through the growth cycle. Acta Physiol. Plant. 2012, 34, 2179–2186.
  241. Watson, R.; Pritchard, J.; Malone, M. Direct measurement of sodium and potassium in the transpirating stream of salt-excluding and non-excluding varieties of wheat. J. Exp. Bot. 2001, 52, 1873–1881.
  242. Oliveira, R.H.; Rosolem, C.A.; Trigueiro, R.M. Importance of mass flow and diffusion on the potassium supply to cotton plants as affected by soil water and potassium. Rev. Brasil. Ciencia Solo 2004, 28, 439–445.
  243. Sardans, J.; Peñuelas, J. Plant–soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant Soil 2013, 365, 1–33.
  244. Ryel, R.J. Hydrailic redistribution. Progr. Bot. 2004, 65, 413–435.
  245. Smith, D.M.; Jackson, N.A.; Roberts, J.M.; Ong, C.K. Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta. Funct. Ecol. 1999, 13, 256–264.
  246. Florez-Florez, C.P.; Leon-Pelaez, J.D.; Osorio-Vega, N.W.; Restrepo-Llano, M.F. Nutrient dynamics in forest plantations of Azadirachta indica (Meliaceae) established for restoration of degraded lands in Colombia. Rev. Biol. Trop. 2013, 61, 515–529.
  247. Schreeg, L.A.; Mack, M.C.; Turner, B.L. Nutrient specific patterns of leaf litter across 41 lowland tropical woody species. Ecology 2013, 94, 94–105.
  248. Watmough, S.A.; Aherne, J.; Alewell, C.; Arp, P.; Bailey, S.; Clair, T.; Dillon, P.; Duchesne, L.; Eimers, C.; Fernandez, I.; et al. Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe. Environ. Monit. Assess. 2005, 109, 1–36.
  249. Anguelov, G.; Anguelova, I.; Bailey, N.O. Land-use impact on soil solution constituents from an Ultisol of north Florida. Nutri. Cycl. Agroecosyst. 2011, 90, 171–187.
  250. Dunlop, J.; Glass, A.D.M.; Tomkins, B.D. Regulation of K+ uptake by ryegrass and white clover roots in relation to their competition for potassium. New Phytol. 1979, 83, 365–370.
  251. Tilman, E.A.; Tilman, D.; Crawley, M.J.; Johnston, A.E. Biological weed control via nutrient competition: Potassium limitation of dandelions. Ecol. Monogr. 1999, 9, 103–111.
  252. Neva, G.A.; Newbery, D.M.; Chuyong, G.B. Limitation of seedling growth by potassium and magnesium supply for two ectomycorrhizal tree species of a central African rain forest and its implication for their recruitment. Ecol. Evol. 2016, 6, 125–142.
  253. Khan, S.A.; Mulbaney, R.L.; Ellsworth, T.R. The potassium paradox: Implications for soil fertility, crop production an human health. Renew. Agric. Food Syst. 2014, 29, 3–27.
  254. Gélinas, Y.; Lucotte, M.; Schmit, J.P. History of the atmospheric deposition of major and trace elements in the industrialized St. Lawrence Valley, Quebec, Canada. Atmos. Environ. 2000, 34, 1797–1810.
  255. Ruoho-Airola, T.; Salminen, K. Trends in the base cation deposition in Finland. Air Pollution XI. Adv. Air Pollut. Ser. 2003, 13, 273–282.
  256. Allen, A.G.; Cardoso, A.A.; Wiate, A.G.; Machado, C.M.D.; Paterlini, W.C.; Baker, J. Influence of intensive agriculture on dry deposition of aerosol nutrients. J. Braz. Chem. Soc. 2010, 21, 87–97.
  257. Ferm, M.; Hultberg, H. Dry deposition and internal circulation of nitrogen, sulphur and base cations to a coniferous forest. Atmos. Dep. 1999, 33, 4421–4430.
  258. Golobocanin, D.; Zujic, A.; Milenkovic, A.; Miljevic, N. Precipitation composition and wet deposition temporal pattern in Central Serbia for the period from 1998 to 2004. Environ. Monit. Assess. 2009, 142, 185–198.
  259. Poor, N.; Pollman, C.; Tate, P.; Begum, M.; Evans, M.; Campbell, S. Nature and magnitude of atmospheric fluxes of total inorganic nitrogen and other inorganic species to the Tampa Bay watershed, FL, USA. Water Air Soil Pollut. 2006, 170, 267–283.
  260. Prathibha, P.; Kothai, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D. Chemical characterization of precipitation at a coastal site in Trombay, Mumbai, India. Environ. Monit. Assess. 2010, 168, 45–53.
  261. Friedland, A.J.; Miller, E.K. Major-element cycling in a high-elevation Adirondack forest: Patterns and changes, 1986–1996. Ecol. Appl. 1999, 9, 958–967.
  262. Watmough, S.A.; Dillon, P.J. Major element fluxes from a coniferous catchment in central Ontario, 1983–1999. Biogeochemistry 2004, 67, 369–398.
  263. Vitousek, P.M.; Sanford, R.L. Nutrient cycling in moist tropical forest. An. Rev. Ecol. Syst. 1986, 17, 585–594.
  264. Muoghalu, J.I.; Oakhumen, A. Nutrient content of incident rainfall, throughfall and stemflow in a Nigerian secondary lowland rainforest. Appl. Veg. Sci. 2000, 3, 181–188.
  265. Ahmad, Z.; Anjum, S.; Waraichj, E.A.; Ayub, M.A.; Ahmad, T.; Tariq, R.M.S.; Ahmad, R.; Iqbal, M.A. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress–a review. J. Plant Nutr. 2018, 41, 1734–1743.
  266. Farahani, S.; Heravan, E.M.; Rad, A.H.S.; Noormohammadi, G. Effect of potassium sulfate on quantitative and qualitative characteristics of canola cultivars upon late-season drought stress conditions. J. Plant Nutr. 2019, 42, 1543–1555.
  267. Hussain, S.; Tahir, M.; Tanveer, A.; Ahmad, R. Mitigating the effects of drought stress in wheat through potassium application. Int. J. Bot. St. 2019, 4, 86–91.
  268. Ma, Q.F.; Bell, R.; Biddulph, B. Potassium application alleviates grain sterility and increases yield of wheat (Triticum aesticum) in frost-prone Mediterranean-type climate. Plant Soil 2019, 434, 203–2016.
  269. Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Al Mahmud, J.; Hossen, M.S.; Masud, A.A.C.; Moumita, F.M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agron. Basel 2018, 8, 31.
  270. Ahmad, W.; Ayyub, C.M.; Shehzad, M.A.; Ziaf, K.; Ijaz, M.; Sher, A.; Abbas, T.; Shafi, J. Supplemental potassium mediates antioxidant metabolism, physiological processes, and osmoregulation to confer salt stress tolerant in cabbage (Brasica oleracea L.). Horticul. Environ. Biotechnol. 2019.
  271. Gul, M.; Wakeel, A.; Steffens, D.; Lindberg, S. Potassium-induced decrease in cytosolic Na+ alleviates deleterious effects of salt stress on wheat (Triticum aesticum L.). Plant Biol. 2019, 21, 825–831.
  272. Zörb, C.; Senbayran, M.; Peiter, E. Potassium in Agriculture–status and perspectives. J. Plant Physiol. 2014, 171, 656–669.
  273. Ruan, J.; Wu, X.; Härdter, R. The interaction between soil water regime and potassium availability on the growth of tea. Commun. Soil Sci. Plant Anal. 1997, 28, 89–98.
  274. Römheld, V.; Kirkby, E.S. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180.
  275. Ryan, J.; Sommer, R. Soil fertility and crop nutrition research at an international center in the Mediterranean region: Achievements and future perspective. Arch. Agric. Soil Sci. 2012, 58, S41–S54.
  276. Ryan, J.; Sommer, R.; Ibrikci, H. Fertilizer best management practices: A perspective from the dryland west Asia– North Africa region. J. Agric. Crop Sci. 2012, 198, 57–67.
  277. Singh, K.; Bansai, S.K. Potassium indexing of crops grown on eight benchmark soil series of India. Com. Soil Sci. Plant Anal. 2009, 40, 1369–1379.
  278. Sharifi, M.; Cheema, M.; McVicar, K.; LeBlanc, L.; Fillmore, S. Evaluation of liming properties and potassium bioavailability of three Atlantic Canada wood ash sources. Can. J. Plant Sci. 2013, 93, 1209–1216.
  279. Mitchell, A.D.; Smethurst, P.J. Base cation availability and leaching after nitrogen fertilization of a eucalypt plantation. Aust. J. Soil Res. 2008, 46, 445–454.
  280. Yavitt, J.B.; Harms, K.E.; Garcia, M.N.; Mirabello, M.J.; Wright, S.J. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest Panama. Austral Ecol. 2011, 36, 433–445.
  281. Glab, T.; Gondek, K. The influence of soil compaction and fertilization on physico-chemical properties of mollic fluvisol under red clover/grass mixture. Geoderma 2014, 226, 204–212.
  282. Roberts, T.L. Global Potassium Reserves and Potassium Fertilizer Use. Presentation to Global Nutrient Cycling Symposium; International Plant Nutrition Institute: Peachtree Corners, GA, USA, 2008; Available online: (accessed on 5 December 2014).
  283. Cakmak, I. Potassium for better crop production and quality. Plant Soil 2010, 335, 1–2.
  284. Dhillon, J.S.; Eickhoff, E.M.; Mullen, R.W.; Raun, W.R. World potassium use efficiency in Cereal crops. Agron. J. 2019, 111, 889–896.
  285. Mikhailova, E.A.; Post, G.; Cope, M.; Post, C.; Schlautman, M.A.; Zhang, L. Quantifying and mapping atmospheric potassium deposition for soil ecosystem services assessment in the United States. Front. Environ. Sci. 2019, 7, 74.
  286. Grimshaw, H.J.; Dolske, D.A. Rainfall concentrations and wet atmospheric deposition of phosphorus and other constituents in Florida, U.S.A. Water Air Soil Pollut. 2002, 137, 117–140.
  287. Klumpp, A.; Domingos, M.; Klumpp, G. Foliar nutrient contents in tree species of the Atlantic rainforest as influenced by air pollution from the industrial complex of Cubatao, SE-Brazil. Water Air Soil Pollut. 2002, 133, 315–333.
  288. Gorostiza, S.; Saurí, D. Naturalizing pollution: A critical social science view on the link between potash mining and salinization in the Llobregat river basin, northeast Spain. Phill. Trans. R. Soc. B 2018, 374, 20180006.
  289. Urban, R.C.; Lima-Souza, M.; Caetano-Silva, L.; Queiroz, M.E.C.; Nogueira, R.F.P.; Allen, A.G.; Cardoso, A.A.; Held, G.; Campos, M.L.A.M. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atm. Environ. 2012, 61, 562–569.
  290. Tung, P.G.A.; Yussok, M.K.; Majid, N.M.; Joo, G.J.; Huang, G.H. Effect of N and K fertilizers on nutrient leaching and groundwater quality under mature oil palm in Sabah during the Monsoon period. Am. J. Appl. Sci. 2009, 6, 1788–1799.
  291. Mendes, W.C.; Júnior, J.A.; da Cunha, P.C.R.; da Silva, A.R.; Evangelista, A.W.P.; Casaroli, D. Potassium leaching in different Soils as a function of irrigation depths. Rev. Brasil. Engenharia Agríla Amb. 2016, 20, 972–977.
  292. Cowan, A.E.; Jun, S.; Tooze, J.A.; Eicher-Miller, H.A.; Dodd, K.W.; Gahche, J.J.; Guenther, P.M.; Dwyer, J.T.; Potischman, N.; Bhadra, A.; et al. Total Usual Micronutrient Intakes Compared to the Dietary Reference Intakes among U.S. Adults by Food Security Status. Nutrients 2020, 12, 38.
  293. Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant 2008, 133, 670–681.
  294. Valentinuzzi, F.; Maver, M.; Fontanari, S.; Mott, D.; Savini, G.; Tiziani, R.; Pii, Y.; Mimmo, T.; Cesco, S. Foliar application of potassium-based fertilizer improves strawberry fruit quality. VIII International Symposium on Mineral Nutrition of Fruit Crops. Ed. by: Mimmo, T., Pii, Y., Scandellari, F. Book Series. Acta Hortic. 2018, 1217, 379–384.
  295. Holland, J.E.; Hayes, R.C.; Refshauge, G.; Poile, G.J.; Newell, M.T.; Conyers, M.K. Biomass, feed quality, mineral concentration and grain yield responses to potassium fertilizer of dual-purpose crops. N. Z. J. Agric. Res. 2019, 62, 476–494.
  296. Milford, G.F.J.; Armstrong, M.J.; Jarvis, P.J.; Houghton, B.J.; Bellett-Travers, D.M.; Jones, J.; Leigh, R.A. Effect of potassium fertilizer on the yield, quality and potassium offtake of sugar beet crops grown on soils of different potassium status. J. Agric. Sci. 2000, 135, 1–10.
  297. Wu, L.Q.; Cui, Z.L.; Chen, X.P.; Zhao, R.F.; Si, D.X.; Sun, Y.X.; Yue, S.C. High-Yield maize production in relation to potassium uptake requirements in China. Agron. J. 2014, 106, 1153–1158.
  298. Preciado-Rangel, P.; Salas-Pérez, L.; Gallegos-Robles, M.A.; Ruiz-Espinoza, F.H.; Ayala-Garay, A.V.; Fortis-Hernández, M.; Murillo-Amador, B. Increasing doses of potassium increases yield and Quality of muskmelon fruits under greenhouse. Hortic. Bras. 2018, 36, 184–188.
  299. Umar, S.; Bansal, S.K.; Imas, P.; Magen, H. Effect of foliar fertilization of potassium on yield, quality, and nutrient uptake of groundnut. J. Plant Nutr. 2008, 22, 1785–1795.
  300. Yawson, D.O.; Adu, M.O.; Ason, B.; Armah, F.A.; Boateng, E.; Quansah, R. Ghanaians might be a risk of excess dietary intake of potassium based on food supply data. J. Nutrit. Metab. 2018, 1, 1–9.
  301. Lanham-New, S.; Lambert, H. Potassium. Adv. Nutr. 2012, 3, 820–821.
  302. Dorup, I. Magnesium and potassium deficiency. Its diagnosis, occurrence and treatment in diuretic therapy and its consequences for growth, protein synthesis and growth factors. Acta Physiol. Scad. 1994, 618, 1–55.
  303. Sharkey, J.R.; Nalty, C.; Johnson, C.M.; Dean, W.R. Children’s very low food security is associated with increased dietary intakes and energy, fat, and added sugar among Mexican-origin children (6-11 y) in Texas border Colonias. BMC Pediatr. 2012, 12, 16.
  304. Park, G.A.; Kim, S.H.; Kim, S.J.; Yang, Y.J. Health and nutritional status of Korean adults according to age and household food security: Using the data from 2010–2012 Korea National Health and Nutrition Examination survey. J. Nutr. Health 2017, 50, 603–614.
  305. Clegg, D.J.; Headley, S.A.; Germain, M.J. Impact of dietary potassium restrictions in CKD on clinical outcomes benefits of a plnat-based diet. Kidney Med. 2020, 2, 476–487.
  306. Sun, H.B.; Weaver, C.M. Rise in potassium deficiency in the US population linked to agriculture practices and dietary potassium deficits. J. Agric. Food Chem. 2020, 68, 11121–11127.
  307. He, F.J.; MacGregor, G.A. Beneficial effects of potassium on human health. Physiol. Plant. 2008, 133, 725–735.
  308. Whelton, P.K.; He, J. Health effects of sodium and potassium in humans. Curr. Opin. Lipidol. 2014, 25, 75–79.
  309. Bekele, M. Effects of different levels of potassium fertilization on yield, quality and storage life of onion (Allium cepa L.) at Jimma, Southwestern Ethiopia. J. Food Sci. Nutr. 2018, 1, 32–39.
  310. Liu, Y.X.; Ma, J.C.; Ding, W.C.; He, W.T.; Lei, Q.L.; Gao, Q.; He, P. Temporal and spatial variation of potassium balance in agricultural land at national and regional levels in China. PLoS ONE 2017, 12, e0184156.
  311. Panda, B.B.; Sharma, S.; Mohapatra, P.K.; Das, A. Application of excess nitrogen, phosphorus, and potassium fertilizers leads to lowering of grain iron content in high-yielding tropical rice. Com. Soil Sci Plant Anal. 2011, 43, 2590–2602.
  312. Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G.; Zhu, Z.; Ge, S.; Jiang, Y. Growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 2020, 11, 904.
  313. Zhang, L.; Gao, M.; Li, S.; Alva, A.K.; Ashraf, M. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars. Turk. J. Bot. 2014, 38, 713–723.
  314. Zheng, J.B.; Quan, X.Y.; He, X.Y.; Cai, S.G.; Ye, Z.L.; Chen, G.; Zhang, G.P. Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley. BMC Plant Biol. 2018, 18, 187.
  315. Mao, X.H.; Zheng, Y.M.; Xiao, K.Z.; Wei, Y.D.; Zhu, Y.S.; Cai, Q.H.; Chen, L.P.; Xie, H.A.; Zhang, J.F. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem. Biophy. Res. Commun. 2018, 495, 461–467.
  316. Cao, X.; Hu, L.; Chen, X.; Zhang, R.; Cheng, D.; Li, H.; Xu, Z.; Li, L.; Zhou, Y.; Liu, A.; et al. Genome-wide analysis and identification of the low potassium stress responsive gene SiMYB3 in foxtail millet (Setaria italica L.). BMC Genom. 2019, 20, 136.
More
Video Production Service