Somatic Embryogenesis Initiation in Sugi: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Tsuyoshi Maruyama.
This study aimed to obtain information from several embryogenic cell (EC) genotypes analyzing the factors that affect somatic embryogenesis (SE) initiation in sugi (Cryptomeria japonica, Cupressaceae) to apply them in the improvement of protocols for efficient induction of embryogenic cell lines (ECLs). The results of several years of experiments including studies on the influence of initial explant, seed collection time, and explant genotype as the main factors affecting SE initiation from male-fertile, male-sterile, and polycross-pollinated-derived seeds are described. Initiation frequencies depending on the plant genotype varied from 1.35 to 57.06%. The best induction efficiency was achieved when seeds were collected on mid-July using the entire megagametophyte as initial explants. The extrusion of ECs started approximately after 2 weeks of culture, and the establishment of ECLs was observed mostly 4 weeks after extrusion on media with or without plant growth regulators (PGRs). Subsequently, induced ECLs were maintained and proliferated on media with PGRs by 2–3-week-interval subculture routines. Although, the initial explant, collection time, and culture condition played important roles in ECL induction, the genotype of the plant material of sugi was the most influential factor in SE initiation.

This entry aimed to obtain information from several embryogenic cell (EC) genotypes analyzing the factors that affect somatic embryogenesis (SE) initiation in sugi (Cryptomeria japonica, Cupressaceae) to apply them in the improvement of protocols for efficient induction of embryogenic cell lines (ECLs). The results of several years of experiments including studies on the influence of initial explant, seed collection time, and explant genotype as the main factors affecting SE initiation from male-fertile, male-sterile, and polycross-pollinated-derived seeds are described. Initiation frequencies depending on the plant genotype varied from 1.35 to 57.06%. The best induction efficiency was achieved when seeds were collected on mid-July using the entire megagametophyte as initial explants. The extrusion of ECs started approximately after 2 weeks of culture, and the establishment of ECLs was observed mostly 4 weeks after extrusion on media with or without plant growth regulators (PGRs). Subsequently, induced ECLs were maintained and proliferated on media with PGRs by 2–3-week-interval subculture routines. Although, the initial explant, collection time, and culture condition played important roles in ECL induction, the genotype of the plant material of sugi was the most influential factor in SE initiation.

  • Cupressaceae
  • embryogenic cell induction
  • EM medium
  • megagametophyte
  • pollen-free
  • tissue culture
Please wait, diff process is still running!

References

  1. Park, Y.S.; Lelu-Walter, M.A.; Harvengt, L.; Trontin, F.J.; MacEacheron, I.; Klimaszewska, K.; Bonga, J.M. Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tiss. Organ. Cult. 2006, 86, 87–101.
  2. Klimaszewska, K.; Trontin, J.F.; Becwar, M.R.; Devillard, C.; Park, Y.S.; Lelu-Walter, M.A. Recent progress in somatic embryogenesis of four Pinus spp. Tree For. Sci. Biotechol. 2007, 1, 11–25.
  3. Maruyama, E.T.; Hosoi, Y. Progress in somatic embryogenesis of Japanese pines. Front. Plant. Sci. 2019, 10, 31.
  4. Garin, E.; Isabel, N.; Plourde, A. Screening of large numbers of seed families of Pinus strobus L. for somatic embryogenesis from inmature and mature zygotic embryos. Plant. Cell Rep. 1998, 18, 37–43.
  5. Miguel, C.; Goncalves, S.; Tereso, S.; Marum, L.; Maroco, J.; Oliveira, M. Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Plant Cell Tiss. Organ. Cult. 2004, 76, 121–130.
  6. Tautorus, T.E.; Fowke, L.C.; Dunstan, D.I. Somatic embryogenesis in conifers. Can. J. Bot. 1991, 69, 1873–1899.
  7. Becwar, M.R.; Wann, S.R.; Johnson, M.A.; Verhagen, S.A.; Feirer, R.P.; Nagmani, R. Development and characterization of in vitro embryogenic system in conifers. In Somatic Cell Genetics of Woody Plants; Ahuja, M.R., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 1–18.
  8. Carneros, E.; Celestino, C.; Klimaszewska, K.; Park, Y.S.; Toribio, M.; Bonga, J.M. Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tiss. Organ. Cult. 2009, 98, 165–178.
  9. Find, J.I.; Hargreaves, C.L.; Reeves, C.B. Progress towards initiation of somatic embryogenesis from differentiated tissues of radiata pine (Pinus radiata D. Don) using cotyledonary embryos. In Vitro Cell. Dev. Biol. Plant 2014, 50, 190–198.
  10. Maruyama, E.; Tanaka, T.; Hosoi, Y.; Ishii, K.; Morohoshi, N. Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Cryptomeria japonica D. Don). Plant. Biotechnol. 2000, 17, 281–296.
  11. Hargreaves, C.L.; Reeves, C.B.; Find, J.I.; Gough, K.; Josekutty, P.; Skudder, D.B.; van der Maas, S.A.; Sigley, M.R.; Menzies, M.I.; Low, C.B.; et al. Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation. Can. J. For. Res. 2009, 39, 1566–1574.
  12. Montalbán, I.A.; de Diego, N.; Moncaleán, P. Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol. Plant. 2012, 34, 451–460.
  13. Kim, Y.W.; Moon, H.K. Relationship between initiation of embryogenic suspensor mass (ESM) and zygotic embryo development in Pinus densiflora. For. Sci. Technol. 2014, 3, 166–171.
  14. Saito, M.; Teranishi, H. A breeding strategy of male sterile Cryptomeria japonica D. Don cultivars. Jpn. J. Palynol. 2014, 60, 27–35, (In Japanese with English Abstract).
  15. Moriguchi, Y.; Ueno, S.; Hasegawa, Y.; Tadama, T.; Watanabe, M.; Saito, R.; Hirayama, S.; Iwai, J.; Konno, Y. Marker-assisted selection of trees with MALE STERILITY 1 in Cryptomeria japonica D. Don. Forests 2020, 11, 734.
  16. Shidei, T.; Akai, T.; Ichikawa, S. Flower bud formation on Sugi (Cryptomeria japonica) and Metasequoia (Metasequoia glyptosytoboides) by gibberellic acid treatment. J. Jpn. For. Soc. 1959, 41, 312–315. (In Japanese)
  17. Nagao, A. Differences of flower initiation of Cryptomeria japonica under various alternating temperatures. J. Jpn. For. Soc. 1983, 65, 335–338, (In Japanese with English Abstract).
  18. Maruyama, E.T.; Miyazawa, S.; Ueno, S.; Onishi, N.; Totsuka, S.; Iwai, J.; Moriguchi, Y. Differences among families on embryogenic cell induction from seed of pollen-free sugi (Cryptomeria japonica) produced at the Niigata prefecture. Kanto Shinrin Kenkyu 2018, 69, 1–2, (In Japanese with English Abstract).
  19. Maruyama, E.T.; Ueno, S.; Hirayama, S.; Kaneeda, T.; Moriguchi, Y. Somatic embryogenesis and plant regeneration from sugi (Japanese Cedar, Cryptomeria japonica D. Don, Cupressaceae) seed families by marker assisted selection for the male sterility allele ms1. Plants 2020, 9, 1029.
  20. Moriguchi, Y.; Ishiduka, D.; Kaneko, T.; Itoo, S.; Taira, H.; Tsumura, Y. The contribution of pollen germination rates to uneven paternity among polycrosses of Cryptomeria japonica. Silvae Genet. 2009, 58, 139–144.
  21. Smith, D.R. Growth Medium. U.S. Patent No. 5,565,455, 15 October 1996.
  22. Lelu, M.A.; Bastien, C.; Drugeault, A.; Gouez, M.L.; Klimaszewska, K. Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol. Plant. 1999, 105, 719–728.
  23. Salajová, T.; Salaj, J. Somatic embryogenesis in Pinus nigra: Embryogenic tissue initiation, maturation and regeneration ability of stablished cell lines. Biol. Plant. 2005, 49, 333–339.
  24. Maruyama, E.; Hosoi, Y.; Ishii, K. Somatic embryogenesis and plant regeration in Yakutanegoyou, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima, an endemic and endangered species in Japan. In Vitro Cell. Dev. Biol. Plant 2007, 43, 28–34.
  25. Maruyama, E.; Ishii, K.; Hosoi, Y. Efficient plant regeneration of Hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.) via somatic embryogenesis. J. For. Res. 2005, 10, 73–77.
  26. Ahn, C.H.; Tull, R.A.; Montello, P.M.; Merkle, S.A. A clonal propagation system for Atlantic white cedar (Chamaecyparis thyoides) via somatic embryogenesis without the use of plant growth regulators. Plant Cell Tiss. Organ. Cult. 2017, 130, 91–101.
  27. Ahn, C.H.; Choi, Y.E. In vitro clonal propagation and stable cryopreservation system for Platycladus orientalis via somatic embryogenesis. Plant Cell Tiss. Organ Cult. 2017, 131, 513–523.
  28. Ogita, S.; Ishikawa, H.; Kubo, T.; Sasamoto, H. Somatic embryogenesis from immature and mature zygotic embryos of Cryptomeria japonica I: Embryogenic cell induction and its morphological characteristics. J. Wood Sci. 1999, 45, 87–91.
  29. Taniguchi, T.; Kondo, T. Difference in ability of initiation and maintenance of embryogenic cultures among sugi (Cryptomeria japonica D. Don) seed families. Plant. Biotechnol. 2000, 17, 159–162.
  30. Finner, J.J.; Kriebel, H.B.; Becwar, M.R. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant. Cell Rep. 1989, 8, 203–206.
  31. Harry, I.S.; Thorpe, T.A. Somatic embryogenesis and plant regeneration from mature somatic embryos of red spruce. Bot. Gaz. 1991, 152, 446–452.
  32. Klimaszewska, K.; Cyr, D.R. Conifer somatic embryogenesis: I. Development. Dendrobiology 2002, 48, 31–39.
  33. Cairney, J.; Pullman, G.S. The cellular and molecular biology of conifer embryogenesis. New Phytol. 2007, 176, 511–536.
  34. Attree, S.M.; Fowke, L.C. Embryogeny of gymnosperms: Advances in systhetic seed technology of conifers. Plant Cell Tiss. Organ. Cult. 1993, 35, 1–35.
  35. Maruyama, E.; Hosoi, Y.; Ishii, K. Somatic embryogenesis in Sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.) for stable and efficient plant regeneration, propagation and protoplast culture. J. For. Res. 2002, 7, 23–34.
  36. Hakman, I.; Fowke, L.C. Somatic embryogenesis in Picea glauca (white spruce) and Picea mariana (black spruce). Can. J. Bot. 1987, 65, 656–659.
  37. Montalbán, I.A.; García-Mendiguren, O.; Goicoa, T.; Ugarte, M.D.; Moncaleán, P. Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata. New For. 2015, 46, 309–317.
  38. Häggman, H.; Jokela, A.; Krajnakova, J.; Kauppi, A.; Niemi, K.; Aronen, T. Somatic embryogenesis of Scots pine: Cold treatment and characteristics of explants affecting induction. J. Exp. Bot. 1999, 341, 1769–1778.
  39. Park, J.S. Implementation of conifer somatic embryogenesis in clonal forestry: Technical requirements and deployment considerations. Ann. For. Sci. 2002, 59, 651–656.
  40. Kaneeda, T.; Honda, M.; Maruyama, T.E.; Ueno, S.; Hirayama, S.; Bamba, Y.; Moriguchi, Y. Effects of somatic embryogenesis process on the paternal contribution in Cryptomeria japonica. In Proceedings of the 132th Japan Forest Society Conference, Tokyo University of Agriculture and Technology, Tokyo, Japan, 20–23 March 2021. (in press).
  41. Taniguchi, T.; Konagaya, K.; Nanasato, Y. Somatic embryogenesis in artificially pollinated seed families of 2nd generation plus trees and cryopreservation of embryogenic tissue in Cryptomeria japonica D. Don (sugi). Plant. Biotechnol. 2020, 37, 239–245.
  42. Becwar, M.R.; Nagmani, R.; Wann, S.R. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. For. Res. 1990, 20, 810–817.
  43. Klimaszewska, K.; Park, Y.S.; Overton, C.; MacEacheron, I.; Bonga, J.M. Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell. Dev. Biol. Plant 2001, 37, 392–399.
  44. Pullman, G.S.; Johnson, S.; Van Tassel, S.; Zhang, Y. Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas-fir (Pseudotsuga menziensii): Improving culture initiation with MES, pH buffer, biotin, and folic acid. Plant Cell Tiss. Organ. Cult. 2004, 80, 91–103.
  45. MacKay, J.J.; Becwar, M.R.; Park, Y.S.; Corderro, J.P.; Pullman, G.S. Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet. Genomes 2006, 2, 1–9.
  46. Maruyama, T.E.; Ueno, S.; Mori, H.; Kaneeda, T.; Moriguchi, Y. Factor influencing somatic embryo maturation in sugi (Japanese cedar, Cryptomeria japonica D. Don). Unpublished Work, (manuscript in preparation).
  47. Izuno, A.; Maruyama, T.E.; Ueno, S.; Ujino-Ihara, T.; Moriguchi, Y. Genotype and transcriptome effects on somatic embryogenesis in Cryptomeria japonica. PLoS ONE 2020, 15, e0244634.
  48. Pullman, G.S.; Buchanan, M. Loblolly pine (Pinus taeda L.): Stage-specific elemental analysis of zygotic embryo and female gametophyte tissue. Plant. Sci. 2003, 164, 943–954.
  49. Hasegawa, Y.; Ueno, S.; Matsumoto, A.; Ujino-Ihara, T.; Uchiyama, K.; Totsuka, S.; Iwai, J.; Hakamata, T.; Moriguchi, Y. Fine mapping of the male-sterile genes (MS1, MS2, MS3, and MS4) and development of SNP markers for marker-assisted selection in Japanese cedar (Cryptomeria japonica D. Don). PLoS ONE 2018, 13, e0206695.
  50. Wright, S.P. Adjusted p-values for simultaneous inference. Biometrics 1992, 48, 1005–1013.
  51. R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019.
  52. Ebbert, D. Chisq.posthoc.test: A Post Hoc Analysis for Pearson’s Chi-Squared Test for Count Data. R Package Vers. 0.1.2. Available online: (accessed on 17 December 2020).
More
ScholarVision Creations