Your browser does not fully support modern features. Please upgrade for a smoother experience.
Stress and Strain Induced Transformations: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Adriana Eres-Castellanos.

Displacive stress and strain induced transformations are those transformations that occur when the formation of martensite or bainitic ferrite is promoted by the application of stress or strain. These transformations have been shown to be one of the mechanisms by which the mechanical properties of a microstructure can be improved, as they lead to a better ductility and strength by the transformation induced plasticity effect. 

  • stress induced transformations
  • strain induced transformations
  • transformation induced plasticity
  • displacive transformations
  • bainite
  • martensite
Please wait, diff process is still running!

References

  1. Sugimoto, K.; Tsunezawa, M.; Hojo, T.; Ikeda, S. Ductility of 0.1-0.6C-1.5Si-1.5Mn ultra high-strength TRIP-aided sheet steels with bainitic ferrite matrix. ISIJ Int. 2004, 44, 1608–1614.
  2. Sugimoto, K.; Tanino, H.; Kobayashi, J. Warm ductility of 0.2% C–1.5% Si–5% Mn TRIP-aided steel. Mater. Sci. Eng. A 2017, 688, 237–243.
  3. Sugimoto, K.-I.; Kobayashi, M.; Hashimoto, S.-I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall. Trans. A 1992, 23, 3085–3091.
  4. Nagasaka, A.; Sugimoto, K.; Kobayashi, M.; Hashimoto, S. Effects of warm forming on deep drawability of a TRIP-aided dual-phase sheet steel. Tetsu-to-hagane 1999, 85, 552–557.
  5. Scheil, E. Über die Umwandlung des Austenits in Martensit in Eisen-Nickellegierungen unter Belastung. Zeitschrift für Anorg. und Allg. Chemie 1932, 207, 21–40.
  6. Huang, G.L.; Matlock, D.K.; Krauss, G. Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet. Metall. Trans. A 1989, 20, 1239–1246.
  7. Fang, X.F.; Dahl, W. Strain hardening and transformation mechanism of deformation-induced martensite transformation in metastable austenitic stainless steels. Mater. Sci. Eng. A 1991, 141, 189–198.
  8. Fang, X.F.; Gusek, C.O.; Dahl, W. Strain hardening of steels at large strain deformation. Part II: Strain hardening of pearlitic and austenitic steels and the estimation of mechanical properties. Mater. Sci. Eng. A 1995, 203, 26–35.
  9. Choi, J.-Y.; Jin, W. Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels. Scr. Mater. 1997, 36, 99–104.
  10. Soares, G.C.; Rodrigues, M.C.M.; Santos, L.d.A. Influence of Temperature on Mechanical Properties, Fracture Morphology and Strain Hardening Behavior of a 304 Stainless Steel. Mater. Res. 2017, 20, 141–151.
  11. Lee, B.-S.; Koizumi, Y.; Matsumoto, H.; Chiba, A. Collective behavior of strain-induced martensitic transformation (SIMT) in biomedical Co–Cr–Mo–N alloy polycrystal: An ex-situ electron backscattering diffraction study. Mater. Sci. Eng. A 2014, 611, 263–273.
  12. Zackay, V.F.; Parker, E.R.; Fahr, D.; Busch, R. Enhancement Of Ductility In High-Strength Steels. ASM Trans. 1967, 60, 252–259.
  13. Fonstein, N. Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; ISBN1 9783319191652. ISBN2 9783319191645.
  14. Speich, G.R.; Miller, R.L.; Kot, R.A.; Morris, J.W. Structure and properties of dual-phase steels. Ed. RA Kot JW Morris AIME N. Y. 1979, 146–181.
  15. Sachdev, A.K. Effect of retained austenite on the yielding and deformation behavior of a dual phase steel. Acta Metall. 1983, 31, 2037–2042.
  16. Chen, H.C.; Era, H.; Shimizu, M. Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet. Metall. Trans. A 1989, 20, 437–445.
  17. Sakuma, Y.; Matsumura, O.; Takechi, H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions. Metall. Trans. A-PHYSICAL Metall. Mater. Sci. 1991, 22, 489–498.
  18. Sugimoto, K.; Hashimoto, S.; Ikeda, S. Ultra high-strength low-alloy TRIP-aided sheet steels with bainitic ferrite matrix. In Proceedings of the International Conferance on Advanced High Strength Sheet Steels for Automotive Applications, Winter Park, CO, USA, 6–9 June 2004; Volume 2, pp. 63–70.
  19. Sugimoto, K.; Tanino, H.; Kobayashi, J. Warm stretch-formability of 0.2% C-1.5% Si-(1.5-5.0)% Mn TRIP-aided steels. Arch. Mater. Sci. 2016, 6, 6.
  20. Matsumura, O.; Sakuma, Y.; Takechi, H. Enhancement of elongation by retained austenite in Intercritical Annealed 0.4C-1.5Si-0.8Mn Steel. Trans. ISIJ 1987, 27, 570–579.
  21. Caballero, F.G.; Allain, S.; Cornide, J.; Puerta Velasquez, J.D.; Garcia-Mateo, C.; Miller, M.K. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Mater. Des. 2013, 49, 667–680.
  22. Kaar, S.; Schneider, R.; Krizan, D.; Béal, C.; Sommitsch, C. Influence of the quenching and partitioning process on the transformation kinetics and hardness in a lean medium manganese TRIP steel. Metals 2019, 9, 353.
  23. Tasaki, W.; Sawaguchi, T.; Tsuchiya, K. EBSD analysis of dual γ/ε phase microstructures in tensile-deformed Fe-Mn-Si shape memory alloy. J. Alloys Compd. 2019, 797, 529–536.
  24. Fahr, D. Stress-and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels. Metall. Trans. 1971, 2, 1883–1892.
  25. Weiß, A.; Gutte, H.; Scheller, P.R. Deformation induced martensite formation and its effect on Transformation Induced Plasticity (TRIP). Steel Res. Int. 2006, 77, 727–732.
  26. Jacques, P.J.; Girault, E.; Harlet, P.; Delannay, F. The developments of cold-rolled TRIP-assisted multiphase steels. Low silicon TRIP-assisted multiphase steels. ISIJ Int. 2001, 41, 1061–1067.
  27. Tan, X.; He, H.; Lu, W.; Yang, L.; Tang, B.; Yan, J.; Xu, Y.; Wu, D. Effect of matrix structures on TRIP effect and mechanical properties of low-C low-Si Al-added hot-rolled TRIP steels. Mater. Sci. Eng. A 2020, 771, 138629.
  28. Nakada, N.; Ishibashi, Y.; Tsuchiyama, T.; Takaki, S. Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation. Acta Mater. 2016, 110, 95–102.
  29. Wang, J.; Yang, Q.; Wang, X.; Zhao, Y.; Wang, L. A phenomenon of strain induced bainitic transformation and its effect on strength enhancement in a lightweight transformation-induced-plasticity steel. Mater. Sci. Eng. A 2019, 751, 340–350.
  30. Umemoto, M.; Bando, S.; Tamura, I. Morphology and Transformation Kinetics of Bainite in Fe--Ni--C and Fe--Ni--Cr--C Alloys. In Proceedings of the International Conference on Martensitic Transformations (ICOMAT-86), Nara, Japan, 26–30 August 1986; pp. 595–600.
  31. Bhadeshia, H.K.D.H. Bainite in Steels: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2019; ISBN 1351574817.
  32. Shipway, P.H.; Bhadeshia, H.K.D.H. The effect of small stresses on the kinetics of the bainite transformation. Mater. Sci. Eng. A. 1995, 201, 143–149.
  33. Matsuzaki, A.; Bhadeshia, H.K.D.H.; Harada, H. Stress affected bainitic transformation in a Fe - C - Si - Mn alloy. Acta Metall. Mater. 1994, 42, 1081–1090.
  34. Bhadeshia, H.K.D.H.; David, S.A.; Vitek, J.M.; Reed, R.W. Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel. Mater. Sci. Technol. 1991, 7, 686–698.
  35. Eres-Castellanos, A.; Caballero, F.G.; Garcia-Mateo, C. Stress or strain induced martensitic and bainitic transformations during ausforming processes. Acta Mater. 2020, 189, 60–72.
  36. Min, J.; Lin, J.; Min, Y.; Li, F. On the ferrite and bainite transformation in isothermally deformed 22MnB5 steels. Mater. Sci. Eng. A 2012, 550, 375–387.
  37. Liu, J.; Kaoumi, D. Use of in-situ TEM to characterize the deformation-induced martensitic transformation in 304 stainless steel at cryogenic temperature. Mater. Charact. 2018, 136, 331–336.
  38. Spencer, K.; Véron, M.; Yu-Zhang, K.; Embury, J.D. The strain induced martensite transformation in austenitic stainless steels: Part 1–Influence of temperature and strain history. Mater. Sci. Technol. 2009, 25, 7–17.
  39. Brooks, J.W.; Loretto, M.H.; Smallman, R.E. In situ observations of the formation of martensite in stainless steel. Acta Metall. 1979, 27, 1829–1838.
  40. Sato, K.; Ichinose, M.; Hirotsu, Y.; Inoue, Y. Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe–Mn–Al alloys. ISIJ Int. 1989, 29, 868–877.
  41. Souza Filho, I.R.; Sandim, M.J.R.; Cohen, R.; Nagamine, L.; Sandim, H.R.Z.; Raabe, D. Magnetic properties of a 17.6 Mn-TRIP steel: Study of strain-induced martensite formation, austenite reversion, and athermal α′-formation. J. Magn. Magn. Mater. 2019, 473, 109–118.
  42. Pisarik, S.T.; Van Aken, D.C. Crystallographic orientation of the ε→ α′ martensitic (athermal) transformation in a FeMnAlSi steel. Metall. Mater. Trans. A 2014, 45, 3173–3178.
  43. Lu, F.; Yang, P.; Meng, L.; Cui, F.; Ding, H. Influences of thermal martensites and grain orientations on strain-induced martensites in high manganese TRIP/TWIP steels. J. Mater. Sci. Technol. 2011, 27, 257–265.
  44. de Dafé, S.S.F.; Sicupira, F.L.; Matos, F.C.S.; Cruz, N.S.; Moreira, D.R.; Santos, D.B. Effect of cooling rate on (ε, α′) martensite formation in twinning/transformation-induced plasticity Fe-17Mn-0.06 C steel. Mater. Res. 2013, 16, 1229–1236.
  45. Takaki, S.; Nakatsu, H.; Tokunaga, Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass% Mn alloy. Mater. Trans. JIM 1993, 34, 489–495.
  46. Nakatsu, H.; Takaki, S. Effect of austenite grain size in Fe-Mn alloys on ε martensitic transformation and their mechanical properties. Nippon Kinzoku Gakkaishi/J. Jpn. Inst. Met. 1996, 60, 141–148.
  47. Shen, Y.F.; Dong, X.X.; Song, X.T.; Jia, N. Carbon content-tuned martensite transformation in low-alloy TRIP steels. Sci. Rep. 2019, 9, 1–9.
  48. Li, N.; Wang, Y.D.; Liu, W.J.; An, Z.N.; Liu, J.P.; Su, R.; Li, J.; Liaw, P.K. In situ X-ray microdiffraction study of deformation-induced phase transformation in 304 austenitic stainless steel. Acta Mater. 2014, 64, 12–23.
  49. Liu, M.; Xu, G.; Chen, G.; Jia, J.; Chen, Z.; Xiong, Z. Effects of Stress on Martensite Transformation During Continuous Cooling and Mechanical Response of a Medium-Carbon High-Strength Steel. Metall. Mater. Trans. A 2020, 51, 597–607.
  50. Das, A. Crystallographic variant selection of martensite at high stress/strain. Philos. Mag. 2015, 95, 2210–2227.
  51. de Abreu, H.F.G.; Gomes da Silva, M.J.; Maia do Nascimento, A.; Freitas, F.N.C. Stress induced martensite transformation texture in AISI 304 austenitic stainless steel. Mater. Sci. Technol. 2011, 27, 1627–1631.
  52. Malet, L.; Sinclair, C.W.; Jacques, P.; Godet, S. Grain scale analysis of variant selection during the gamma-epsilon-alpha’phase transformation in austenitic steels. Solid State Phenom. 2011, 172, 84–89.
  53. Li, Y.; Li, W.; Hu, J.C.; Song, H.M.; Jin, X.J. Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance. Int. J. Plast. 2017, 88, 53–69.
  54. Olson, G.B.; Cohen, M. Stress-assisted isothermal martensitic transformation: Application to TRIP steels. Metall. Trans. A 1982, 13, 1907–1914.
  55. Timokhina, I.B.; Hodgson, P.D.; Pereloma, E.V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004, 35 A, 2331–2341.
  56. Mukherjee, M.; Mohanty, O.N.; Hashimoto, S.; Hojo, T.; Sugimoto, K. Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure. ISIJ Int. 2006, 46, 316–324.
  57. Sugimoto, K.; Usui, N.; Kobayashi, M.; Hashimoto, S. Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels. ISIJ Int. 1992, 32, 1311–1318.
  58. Gautier, E.; Simon, A.; Collette, G.; Beck, G. Effect of stress and strain on martensitic transformation in a Fe-Ni-Mo-C alloy with a high MS temperature. Le J. Phys. Colloq. 1982, 43, C4–C473.
  59. Tomota, Y.; Piao, M.; Hasunuma, T.; Kimura, Y. Effects of Applied Stress and Plastic Strain on gamma <-> epsilon Martensitic Transformation in High Manganese Alloy Polycrystals. J. Jpn. Inst. Met. 1990, 54, 628–634.
  60. Videau, J.-C.; Cailletaud, G.; Pineau, A. Experimental study of the transformation-induced plasticity in a Cr-Ni-Mo-Al-Ti steel. Le J. Phys. IV 1996, 6, C1–C465.
  61. Nagayama, K.; Terasaki, T.; Tanaka, K.; Fischer, F.D.; Antretter, T.; Cailletaud, G.; Azzouz, F. Mechanical properties of a Cr–Ni–Mo–Al–Ti maraging steel in the process of martensitic transformation. Mater. Sci. Eng. A 2001, 308, 25–37.
  62. Oberste-Brandenburg, C. A unified tensorial driving force for phase transitions–calculation of the onset of the transformation. PAMM Proc. Appl. Math. Mech. 2003, 2, 200–201.
  63. Patel, J.R.; Cohen, M. Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1953, 1, 531–538.
  64. Kundu, S.; Verma, A.K.; Sharma, V. Quantitative analysis of variant selection for displacive transformations under stress. Metall. Mater. Trans. A 2012, 43, 2552–2565.
  65. Kundu, S.; Bhadeshia, H.K.D.H. Crystallographic texture and intervening transformations. Scr. Mater. 2007, 57, 869–872.
  66. Mishiro, Y.; Nambu, S.; Inoue, J.; Koseki, T. Effect of stress on variant selection in lath martensite in low-carbon steel. ISIJ Int. 2013, 53, 1453–1461.
  67. Tamura, I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Met. Sci. 1982, 16, 245–253.
  68. Chatterjee, S.; Bhadeshia, H.K.D.H. Transformation induced plasticity assisted steels: Stress or strain affected martensitic transformation? Mater. Sci. Technol. 2007, 23, 1101–1104.
  69. Ou, X.; Sietsma, J.; Santofimia, M.J. Coalescence of martensite under uniaxial tension of iron crystallites by atomistic simulations. Mater. Sci. Technol. 2020, 36, 1191–1199.
  70. Tian, Y.; Borgenstam, A.; Hedström, P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys. J. Alloys Compd. 2018, 766, 131–139.
  71. Lee, S.-J.; Han, J.; Lee, S.; Kang, S.-H.; Lee, S.-M.; Lee, Y.-K. Design for Fe-high Mn alloy with an improved combination of strength and ductility. Sci. Rep. 2017, 7, 1–9.
  72. Celada-Casero, C.; Kooiker, H.; Groen, M.; Post, J.; San-Martin, D. In-situ investigation of strain-induced martensitic transformation kinetics in an austenitic stainless steel by inductive measurements. Metals 2017, 7, 271.
  73. Yamashita, T.; Koga, N.; Umezawa, O. Martensitic Transformation of Retained Austenite in Ferrite Matrix for Low Alloy Steel. Mater. Trans. 2018, M2017330.
  74. Liu, Y.; Xie, Z.L.; Hänninen, H.; Van Humbeeck, J.; Pietikäinen, J. Isothermal martensitic transformation as an internal-stress-increasing process. Le J. Phys. IV 1995, 5, C8–C179.
  75. Sadhukhan, P. Computational Design and Analysis of High Strength Austenitic TRIP Steels for Blast Protection Applications. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 2008.
  76. Tsuchida, N.; Morimoto, Y.; Tonan, T.; Shibata, Y.; Fukaura, K.; Ueji, R. Stress-induced martensitic transformation behaviors at various temperatures and their TRIP effects in SUS304 metastable austenitic stainless steel. ISIJ Int. 2011, 51, 124–129.
  77. Narutani, T.; Olson, G.B.; Cohen, M. Constitutive flow relations for austenitic steels during straininduced martensitic transformation. Le J. Phys. Colloq. 1982, 43, C4–C429.
  78. Olson, G.B. Transformation plasticity and toughening. Le J. Phys. IV 1996, 6, C1–C407.
  79. Datta, K.; Delhez, R.; Bronsveld, P.M.; Beyer, J.; Geijselaers, H.J.M.; Post, J. A low-temperature study to examine the role of ε-martensite during strain-induced transformations in metastable austenitic stainless steels. Acta Mater. 2009, 57, 3321–3326.
  80. Hedström, P.; Lienert, U.; Almer, J.; Odén, M. Elastic strain evolution and ε-martensite formation in individual austenite grains during in situ loading of a metastable stainless steel. Mater. Lett. 2008, 62, 338–340.
  81. Lin, S. Deformation-Induced Martensitic Transformation and Mechanical Properties of Duplex and Austenitic Stainless Steels: A Synchrotron X-Ray Diffraction Study. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2017.
  82. Talonen, J. Effect of Strain-Induced α′-Martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels; Aalto University: Espoo, Filand, 2007.
  83. Zhou, W.; Hou, T.; Zhang, C.; Zhong, L.; Wu, K. Effect of carbon content in retained austenite on the dynamic tensile behavior of nanostructured bainitic steel. Metals 2018, 8, 907.
  84. Garcia-Mateo, C.; Caballero, F.G.; Chao, J.; Capdevila, C.; Garcia de Andres, C. Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels. J. Mater. Sci. 2009, 44, 4617–4624.
  85. Babu, S.S.; Vogel, S.; Garcia-Mateo, C.; Clausen, B.; Morales-Rivas, L.; Caballero, F.G. Microstructure evolution during tensile deformation of a nanostructured bainitic steel. Scr. Mater. 2013, 69, 777–780.
  86. Seetharaman, V. Deformation and martensitic transformation. Bull. Mater. Sci. 1984, 6, 703–716.
  87. Tamura, I.; Maki, T.; Hato, H.; Aburai, K. Plasticity induced by martensitic transformation in Fe-Ni and Fe-Cr-Ni alloys. J. Jpn. Inst. Met. 1969, 33, 1383–1389.
  88. Garcia-Mateo, C.; Caballero, F.G. Ultra-high-strength bainitic steels. ISIJ Int. 2005, 45, 1736–1740.
  89. Xie, Z.J.; Ren, Y.Q.; Zhou, W.H.; Yang, J.R.; Shang, C.J.; Misra, R.D.K. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel. Mater. Sci. Eng. A 2014, 603, 69–75.
  90. De Moor, E.; Lacroix, S.; Clarke, A.J.; Penning, J.; Speer, J.G. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall. Mater. Trans. A 2008, 39, 2586.
  91. Benzing, J.T.; Poling, W.A.; Pierce, D.T.; Bentley, J.; Findley, K.O.; Raabe, D.; Wittig, J.E. Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel. Mater. Sci. Eng. A 2018, 711, 78–92.
  92. Wan, J.; Chen, S.; Xu, Z. The influence of temperature on stacking fault energy in Fe-based alloys. Sci. China Ser. E Technol. Sci. 2001, 44, 345–352.
  93. Talonen, J.; Nenonen, P.; Pape, G.; Hänninen, H. Effect of strain rate on the strain-induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2005, 36 A, 421–432.
  94. Krüger, L.; Wolf, S.; Martin, U.; Martin, S.; Scheller, P.R.; Jahn, A.; Weiß, A. The influence of martensitic transformation on mechanical properties of cast high alloyed CrMnNi-steel under various strain rates and temperatures. In Proceedings of the Journal of Physics: Conference Series, Dresden, Germany, 16–21 August 2009; IOP Publishing: Dresden, Germany, 2010; Volume 240, p. 12098.
  95. Latourte, F.; Feinberg, Z.; Mori, L.F.; Olson, G.B.; Espinosa, H.D. Shear and tensile plastic behavior of austenitic steel TRIP-120 compared with martensitic steel HSLA-100. Int. J. Fract. 2010, 162, 187–204.
  96. Wu, C.-C.; Wang, S.-H.; Chen, C.-Y.; Yang, J.-R.; Chiu, P.-K.; Fang, J. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel. Scr. Mater. 2007, 56, 717–720.
  97. Gao, Y.; Xu, C.; He, Z.; He, Y.; Li, L. Response characteristics and adiabatic heating during high strain rate for trip steel and dp steel. J. Iron Steel Res. Int. 2015, 22, 48–54.
  98. He, Z.; He, Y.; Ling, Y.; Wu, Q.; Gao, Y.; Li, L. Effect of strain rate on deformation behavior of TRIP steels. J. Mater. Process. Technol. 2012, 212, 2141–2147.
  99. Rana, R.; Matlock, D.K.; Speer, J.G.; De Moor, E. Effects of Strain Rate and Temperature on the Mechanical Properties of Medium Manganese Steels. In Proceedings of the 1st International Conference on Automobile Steel (ICAS2016), Chengdu, China, 16–18 November 2016; United States Automotive Materials Partnership LLC (USAMP LLC): Washington, DC, USA, 2016.
  100. Taylor, K.A.; Thompson, S.W.; Fletcher, F.B. Physical metallurgy of direct-quenched steels. In Proceedings of the Minerals, Metals, and Materials Society/American Society for Metals (TMS/ASM) Materials Week 92, Chicago, IL, USA, 2–4 November 1992; Available online: https://www.osti.gov/biblio/6100643-physical-metallurgy-direct-quenched-steels (accessed on 12 October 2020).
  101. Freiwillig, R.; Kudrman, J.; Chráska, P. Bainite transformation in deformed austenite. Metall. Trans. A 1976, 7, 1091–1097.
  102. Jepson, M.D.; Thompson, F.C. The acceleration of the rate of isothermal transformation of austenite. J. Iron Steel Inst. 1949, 162, 49.
  103. Drozdov, B.Y.; Kogan, L.I.; Entin, R.I. Influence of stresses and strains on the kinetics of the intermediate austenite transformation. Phys. Met. Met. 1962, 13, 135–138.
  104. Maalekian, M.; Kozeschnik, E.; Chatterjee, S.; Bhadeshia, H.K.D.H. Mechanical stabilisation of eutectoid steel. Mater. Sci. Technol. 2007, 23, 610–612.
  105. Chatterjee, S.; Wang, H.S.; Yang, J.R.; Bhadeshia, H.K.D.H. Mechanical stabilisation of austenite. Mater. Sci. Technol. 2006, 22, 641–644.
  106. Shipway, P.H.; Bhadeshia, H.K.D.H. Mechanical stabilisation of bainite. Mater. Sci. Technol. 1995, 11, 1116–1128.
  107. Lambers, H.-G.; Tschumak, S.; Maier, H.J.; Canadinc, D. On the bainitic and martensitic phase transformation behavior and the mechanical properties of low alloy 51CrV4 steel. Int. J. Struct. Chang. Solids 2011, 3, 15–27.
  108. Holzweissig, M.J.; Canadinc, D.; Maier, H.J. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation. Mater. Charact. 2012, 65, 100–108.
  109. Bhattacharyya, S.; KEHL, G.L. Isothermal Transformation of Austenite under Externally Applied Tensile Stress; Henry Krumb School of Mines: New York, NY, USA, 1954.
  110. Hase, K.; Garcia-Mateo, C.; Bhadeshia, H.K.D.H. Bainite formation influenced by large stress. Mater. Sci. Technol. 2004, 20, 1499–1505.
  111. Cornide, J.; Garcia-Mateo, C.; Capdevila, C.; Caballero, F.G. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels. J. Alloys Compd. 2013, 577, S43–S47.
  112. Singh, S.B.; Bhadeshia, H.K.D.H. Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A 1998, 245, 72–79.
  113. Yang, Z.; Chu, C.; Jiang, F.; Qin, Y.; Long, X.; Wang, S.; Chen, D.; Zhang, F. Accelerating nano-bainite transformation based on a new constructed microstructural predicting model. Mater. Sci. Eng. A 2019, 748, 16–20.
  114. Eres-Castellanos, A.; Hidalgo, J.; Zorgani, M.; Jahazi, M.; Toda-Caraballo, I.; Caballero, F.G.; Garcia-Mateo, C. Assessing the scale contributing factors of three carbide-free bainitic steels: A complementary theoretical and experimental approach. Mater. Des. 2021, 197, 109217.
  115. Pak, J.; Suh, D.W.; Bhadeshia, H.K.D.H. Promoting the Coalescence of Bainite Platelets. Scr. Mater. 2012, 66, 951–953.
  116. Lee, T.-H.; Ha, H.-Y.; Hwang, B.; Kim, S.-J.; Shin, E. Effect of carbon fraction on stacking fault energy of austenitic stainless steels. Metall. Mater. Trans. A 2012, 43, 4455–4459.
  117. Schramm, R.E.; Reed, R.P. Stacking fault energies of seven commercial austenitic stainless steels. Metall. Trans. A 1975, 6, 1345.
  118. Hasan, S.M.; Ghosh, A.; Chakrabarti, D.; Singh, S.B. Orientation Dependence of Deformation-Induced Martensite Transformation During Uniaxial Tensile Deformation of Carbide-Free Bainitic Steel. Metall. Mater. Trans. A 2020, 51, 2053–2063.
More
Academic Video Service