Your browser does not fully support modern features. Please upgrade for a smoother experience.
Brain Connectivity in Migraine: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Marina De Tommaso.
A neuronal dysfunction based on the imbalance between excitatory and inhibitory cortical-subcortical neurotransmission seems at the basis of migraine. Intercritical neuronal abnormal excitability can culminate in the bioelectrical phenomenon of Cortical Spreading Depression (CSD) with secondary involvement of the vascular system and release of inflammatory mediators, modulating in turn neuronal activity. Neuronal dysfunction encompasses the altered connectivity between the brain areas implicated in the genesis, maintenance and chronic evolution of migraine. Advanced neuroimaging techniques allow to identify changes in functional connectivity (FC) between brain areas involved in pain processes. Through a narrative review, we re-searched case-control studies on FC in migraine, between 2015 and 2020, by inserting the words migraine, fMRI, EEG, MEG, connectivity, pain in Pubmed. Studies on FC have shown that cortical processes, in the neurolimbic pain network, are likely to be prevalent for triggering attacks, in response to predisposing factors, and that these lead to a demodulation of the subcortical areas, at the basis of migraine maintenance. The link between brain dysfunction and peripheral interactions through the inhibition of CGRP, the main mediator of sterile migraine inflammation needs to be further investigated. Preliminary evidence could suggest that peripheral nerves inference at somatic and trigeminal levels, appears to change brain FC.
  • migraine
  • pathophysiology
  • brain connectivity
  • FMRI
  • EEG
  • MEG
  • CGRP
Please wait, diff process is still running!

References

  1. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259.
  2. May, A.; Schulte, L.H. Chronic migraine: Risk factors, mechanisms and treatment. Nat. Rev. Neurol. 2016, 12, 455–464.
  3. Stewart, W.F.; Ricci, J.A.; Chee, E.; Morganstein, D.; Lipton, R. Lost productive time and cost due to common pain conditions in the U.S. workforce. JAMA 2003, 290, 2443–2454.
  4. Nyholt, D.R.; Van Den Maagdenberg, A.M. Genome-wide association studies in migraine: Current state and route to follow. Curr. Opin. Neurol. 2016, 29, 302–308.
  5. Sutherland, H.G.; Griffiths, L.R. Genetics of migraine: Insights into the molecular basis of migraine disorders. Headache 2017, 57, 537–569.
  6. Kelman, L. The triggers or precipitants of the acute migraine attack. Cephalalgia 2007, 27, 394–402.
  7. De Tommaso, M.; Ambrosini, A.; Brighina, F.; Coppola, G.; Perrotta, A.; Pierelli, F.; Sandrini, G.; Valeriani, M.; Marinazzo, D.; Stramaglia, S.; et al. Altered processing of sensory stimuli in patients with migraine. Nat. Rev. Neurol. 2014, 10, 144–155.
  8. Schulte, L.H.; May, A. The migraine generator revisited: Continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016, 139, 1987–1993.
  9. Charles, A. The pathophysiology of migraine: Implications for clinical management. Lancet Neurol. 2018, 17, 174–182.
  10. Wang, T.; Chen, N.; Zhan, W.; Liu, J.; Zhang, J.; Liu, Q.; Huang, H.; He, L.; Zhang, J.; Gong, Q. Altered effective connectivity of posterior thalamus in migraine with cutaneous allodynia: A resting-state fMRI study with Granger causality analysis. J. Headache Pain 2015, 17, 1–11.
  11. Coppola, G.; Di Renzo, A.; Tinelli, E.; Di Lorenzo, C.; Di Lorenzo, G.; Parisi, V.; Serrao, M.; Schoeen, J.; Pierelli, F. Thalamo-cortical network activity during spontaneous migraine attacks. Neurology 2016, 87, 2154–2160.
  12. De Tommaso, M.; Trotta, G.; Vecchio, E.; Ricci, K.; Siugzdaite, R.; Stramaglia, S. Brain networking analysis in migraine with and without aura. J. Headache Pain 2017, 18, 1–12.
  13. De Tommaso, M.; Trotta, G.; Vecchio, E.; Ricci, K.; Van De Steen, F.; Montemurno, A.; Lorenzo, M.; Marinazzo, D.; Bellotti, R.; Stramaglia, S. Functional Connectivity of EEG Signals Under Laser Stimulation in Migraine. Front. Hum. Neurosci. 2015, 9, 640.
  14. Hadjikhani, N.; Sanchez Del Rio, M.; Wu, O.; Schwartz, D.; Bakker, D.; Fischl, B.; Kwong, K.K.; Cutrer, F.M.; Rosen, B.R.; Tootell, R.B.; et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl. Acad. Sci. USA 2001, 98, 4687–4692.
  15. Vecchia, D.; Pietrobon, D. Migraine: A disorder of brain excitatory-inhibitory balance? Trends Neurosci. 2012, 35, 507–520.
  16. Pietrobon, D.; Moskowitz, M.A. Pathophysiology of migraine. Annu. Rev. Physiol. 2013, 75, 365–391.
  17. Legrain, V.; Iannetti, G.D.; Plaghki, L.; Mouraux, A. The pain matrix reloaded: A salience detection system for the body. Prog. Neurobiol. 2011, 93, 111–124.
  18. Brennan, K.C.; Pietrobon, D. A Systems Neuroscience Approach to Migraine. Neuron 2018, 97, 1004–1021.
  19. Burstein, R.; Noseda, R.; Borsook, D. Migraine: Multiple processes, complex pathophysiology. J. Neurosci. 2015, 35, 6619–6629.
  20. Chong, C.D.; Schwedt, T.J.; Hougaard, A. Brain functional connectivity in headache disorders: A narrative review of MRI investigations. J. Cereb. Blood Flow Metab. 2019, 39, 650–669.
  21. Smitha, K.A.; Akhil Raja, K.; Arun, K.M.; Rajesh, P.G.; Thomas, B.; Kapilamoorthy, T.R.; Kesavadas, C. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 2017, 30, 305–317.
  22. Russo, A.; Silvestro, M.; Tedeschi, G.; Tessitore, A. Physiopathology of Migraine: What Have We Learned from Functional Imaging? Curr. Neurol. Neurosci. Rep. 2017, 17, 1–11.
  23. Mainero, C.; Boshyan, J.; Hadjikhani, N. Altered functional magnetic resonance imaging restingstate connectivity in periaqueductal gray networks in migraine. Ann. Neurol. 2011, 70, 838–845.
  24. Schwedt, T.J.; Larson-Prior, L.; Coalson, R.S.; Nolan, T.; Mar, S.; Ances, B.M.; Benzinger, T.; Schlaggar, B.L. Allodynia and descending pain modulation in migraine: A resting state functional connectivity analysis. Pain Med. 2014, 1, 154–165.
  25. Moulton, E.A.; Becerra, L.; Johnson, A.; Burstein, R.; Borsook, D. Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS ONE 2014, 17, e95508.
  26. Schulte, L.H.; Menz, M.M.; Haaker, J.; May, A. The migraineur’s brain networks: Continuous resting state fMRI over 30 days. Cephalalgia 2020, 40, 1614–1621.
  27. Qin, Z.X.; Su, J.J.; He, X.W.; Zhu, Q.; Cui, Y.Y.; Zhang, J.L.; Wang, M.X.; Gao, T.T.; Tang, W.; Hu, Y.; et al. Resting-state functional connectivity between subregions in the thalamus and cortex in migraine without aura. Eur. J. Neurol. 2020, 27, 2233–2241.
  28. Tu, Y.; Fu, Z.; Zeng, F.; Maleki, N.; Lan, L.; Li, Z.; Park, J.; Wilson, G.; Gao, Y.; Liu, M.; et al. Abnormal thalamocortical network dynamics in migraine. Neurology 2019, 92, e2706–e2716.
  29. Mehnert, J.; May, A. Functional and structural alterations in the migraine cerebellum. J. Cereb. Blood Flow Metab. 2019, 39, 730–739.
  30. Ke, J.; Yu, Y.; Zhang, X.; Su, Y.; Wang, X.; Hu, S.; Dai, H.; Hu, C.; Zhao, H.; Dai, L. Functional Alterations in the Posterior Insula and Cerebellum in Migraine Without Aura: A Resting-State MRI Study. Front. Behav. Neurosci. 2020, 14.
  31. Chen, Z.; Chen, X.; Liu, M.; Dong, Z.; Ma, L.; Yu, S. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J. Headache Pain 2017, 18, 7.
  32. Hadjikhani, N.; Ward, N.; Boshyan, J.; Napadow, V.; Maeda, Y.; Truini, A.; Caramia, F.; Tinelli, E.; Mainero, C. The missing link: Enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia 2013, 33, 1264–1268.
  33. Lee, M.J.; Park, B.Y.; Cho, S.; Kim, S.T.; Park, H.; Chung, C.S. Increased connectivity of pain matrix in chronic migraine: A resting-state functional MRI study. J. Headache Pain 2019, 20.
  34. Maizels, M.; Aurora, S.; Heinricher, M. Beyond neurovascular: Migraine as a dysfunctional neurolimbic pain network. Headache 2012, 52, 1553–1565.
  35. Zhang, J.; Su, J.; Wang, M.; Zhao, Y.; Zhang, Q.T.; Yao, Q.; Lu, H.; Zhang, H.; Li, G.F.; Wu, Y.L.; et al. The sensorimotor network dysfunction in migraineurs without aura: A resting-state fMRI study. J. Neurol. 2017, 264, 654–663.
  36. Wei, H.L.; Chen, J.; Chen, Y.C.; Yu, Y.S.; Guo, X.; Zhou, G.P.; Qing-Qing Zhou, Q.Q.; He, Z.Z.; Yang, L.; Yin, X.; et al. Impaired effective functional connectivity of the sensorimotor network in interictal episodic migraineurs without aura. J. Headache Pain 2020, 21, 111.
  37. Tessitore, A.; Russo, A.; Giordano, A.; Conte, F.; Corbo, D.; De Stefano, M.; Cirillo, S.; Cirillo, M.; Esposito, F.; Tedeschi, G. Disrupted default mode network connectivity in migraine without aura. J. Headache Pain 2013, 14, 89.
  38. Zhang, J.; Su, J.; Wang, M.; Zhao, Y.; Yao, Q.; Zhang, Q.; Lu, H.; Zhang, H.; Wang, S.; Li, G.F.; et al. Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura. J. Headache Pain 2016, 17, 98.
  39. Russo, A.; Silvestro, M.; Trojsi, F.; Bisecco, A.; De Micco, R.; Caiazzo, G.; Di Nardo, F.; Esposito, F.; Tessitore, A.; Tedeschi, G. Cognitive Networks Disarrangement in Patients with Migraine Predicts Cutaneous Allodynia. Headache 2020, 60, 1228–1243.
  40. Androulakis, X.M.; Rorden, C.; Peterlin, B.L.; Krebs, K. Modulation of salience network intranetwork resting state functional connectivity in women with chronic migraine. Cephalalgia 2018, 38, 1731–1741.
  41. Borsook, D.; Maleki, N.; Becerra, L.; McEwen, B. Understanding migraine through the lens of maladaptive stress responses: A model disease of allostatic load. Neuron 2012, 73, 219–234.
  42. Puledda, F.; Ffytche, D.; O‘Daly, O.; Goadsby, P.J. Imaging the Visual Network in the Migraine Spectrum. Front. Neurol. 2019, 10, 1325.
  43. Amin, F.M.; Hougaard, A.; Magon, S.; Asghar, M.S.; Ahmad, N.N.; Rostrup, E.; Sprenger, T.; Ashina, M. Change in brain network connectivity during PACAP38-induced migraine attacks: A resting-state functional MRI study. Neurology 2016, 86, 180–187.
  44. Coppola, G.; Di Renzo, A.; Tinelli, E.; Lepre, C.; Di Lorenzo, C.; Di Lorenzo, G.; Scapeccia, M.; Parisi, V.; Serrao, M.; Colonnese, C.; et al. Thalamo-cortical network activity between migraine attacks: Insights from MRI-based microstructural and functional resting-state network correlation analysis. J. Headache Pain 2016, 17, 100.
  45. Lisicki, M.; D‘Ostilio, K.; Coppola, G.; De Noordhout, A.M.; Parisi, V.; Schoenen, J.; Magis, D. Increased functional connectivity between the right temporo-parietal junction and the temporal poles in migraine without aura. Cephalalgia Rep. 2018, 1, 2515816318804823.
  46. Hougaard, A.; Amin, F.M.; Larsson, H.B.; Rostrup, E.; Ashina, M. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Hum. Brain Mapp. 2017, 38, 2635–2642.
  47. Coppola, G.; Di Renzo, A.; Petolicchio, B.; Tinelli, E.; Di Lorenzo, C.; Parisi, V.; Serrao, M.; Calistri, V.; Tardioli, S.; Cartocci, G.; et al. Aberrant interactions of cortical networks in chronic migraine: A resting-state fMRI study. Neurology 2019, 92, e2550–e2558.
  48. Coppola, G.; Di Renzo, A.; Petolicchio, B.; Tinelli, E.; Di Lorenzo, C.; Serrao, M.; Calistri, V.; Tardioli, S.; Cartocci, G.; Parisi, V.; et al. Increased neural connectivity between the hypothalamus and cortical resting-state functional networks in chronic migraine. J. Neurol. 2020, 267, 185–191.
  49. Schwedt, T.J.; Si, B.; Li, J.; Wu, T.; Chong, C.D. Migraine Subclassification via a Data-Driven Automated Approach Using Multimodality Factor Mixture Modeling of Brain Structure Measurements. Headache 2017, 57, 1051–1064.
  50. Liu, J.; Zhao, L.; Li, G.; Xiong, S.; Nan, J.; Li, J.; Yuan, K.; Von Deneen, K.M.; Liang, F.; Qin, W.; et al. Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PLoS ONE 2012, 7, e51250.
  51. Li, K.; Liu, L.; Yin, Q.; Dun, W.; Xiaolin Xu, X.; Liu, X.; Zhang, M. Abnormal rich club organization and impaired correlation betweenst ructural and functional connectivity in migraine sufferers. Brain Imaging Behav. 2017, 11, 526–540.
  52. Liu, J.; Zhao, L.; Nan, J.; Li, G.; Xiong, S.; Von Deneen, K.M.; Gong, Q.; Liang, F.; Qin, W.; Tian, J. The trade-off between wiring cost and network topology in white matter structural networks in health and migraine. Exp. Neurol. 2013, 248, 196–204.
  53. Ren, J.; Xiang, J.; Chen, Y.; Li, F.; Wu, T.; Shi, J. Abnormal functional connectivity under somatosensory stimulation in migraine: A multi-frequency magnetoencephalography study. J. Headache Pain 2019, 20, 3.
  54. Mathur, V.A.; Moayedi, M.; Keaser, M.L.; Khan, S.A.; Hubbard, C.S.; Goyal, M.; Seminowicz, D.A. High Frequency Migraine Is Associated with Lower Acute Pain Sensitivity and Abnormal Insula Activity Related to Migraine Pain Intensity, Attack Frequency, and Pain Catastrophizing. Front. Hum. Neurosci. 2016, 10, 489.
  55. Moulton, E.A.; Becerra, L.; Maleki, N.; Pendse, G.; Tully, S.; Hargreaves, R.; Burstein, R.; Borsook, D. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine States. Cereb. Cortex 2011, 21, 435–448.
  56. Russo, A.; Tessitore, A.; Silvestro, M.; Di Nardo, F.; Trojsi, F.; Del Santo, T.; De Micco, R.; Esposito, F.; Tedeschi, G. Advanced visual network and cerebellar hyperresponsiveness to trigeminal nociception in migraine with aura. J. Headache Pain 2019, 20, 46.
  57. Russo, A.; Esposito, F.; Conte, F.; Fratello, M.; Caiazzo, G.; Marcuccio, L.; Giordano, A.; Tedeschi, G.; Tessitore, A. Functional interictal changes of pain processing in migraine with ictal cutaneous allodynia. Cephalalgia 2017, 37, 305–314.
  58. Russo, A.; Tessitore, A.; Esposito, F.; Di Nardo, F.; Silvestro, M.; Trojsi, F.; De Micco, R.; Marcuccio, L.; Schoenen, J.; Tedeschi, G. Functional Changes of the Perigenual Part of the Anterior Cingulate Cortex after External Trigeminal Neurostimulation in Migraine Patients. Front. Neurol. 2017, 8, 282.
  59. Stankewitz, A.; May, A. Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology 2011, 77, 476–482.
  60. Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667.
  61. Schwedt, T.J.; Chong, C.D.; Chiang, C.C.; Baxter, L.; Schlaggar, B.L.; Dodick, D.W. Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia 2014, 34, 947–958.
  62. Mehnert, J.; Schulte, L.; Timmann, D.; May, A. Activity and connectivity of the cerebellum in trigeminal nociception. Neuroimage 2017, 150, 112–118.
  63. Schulte, L.H.; Allers, A.; May, A. Visual stimulation leads to activation of the nociceptive trigeminal nucleus in chronic migraine. Neurology 2018, 90, e1973–e1978.
  64. Schulte, L.H.; Mehnert, J.; May, A. Longitudinal Neuroimaging over 30 Days: Temporal Characteristics of Migraine. Ann. Neurol. 2020, 87, 646–651.
  65. Bahra, A.; Matharu, M.S.; Buchel, C.; Frackowiak, R.S.; Goadsby, P.J. Brainstem activation specific to migraine headache. Lancet 2001, 357, 1016–1017.
  66. Weiller, C.; May, A.; Limmroth, V.; Jüptner, M.; Kaube, H.; Schayck, R.V.; Coenen, H.H.; Diener, H.C. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1995, 1, 658–660.
  67. Maniyar, F.; Sprenger, T.; Monteith, T.; Schankin, C.; Goadsby, P.J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 2014, 137, 232–241.
  68. Coppola, G.; Parisi, V.; Di Lorenzo, C.; Serrao, M.; Magis, D.; Schoenen, J.; Pierelli, F. Lateral inhibition in visual cortex of migraine patients between attacks. J. Headache Pain 2013, 14, 20.
  69. Judit, A.; Sandor, P.S.; Schoenen, J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia 2000, 20, 714–719.
  70. Shibata, K.; Yamane, K.; Iwata, M. Change of excitability in brainstem and cortical visual processing in migraine exhibiting allodynia. Headache 2006, 46, 1535–1544.
  71. Hebestreit, J.M.; May, A. The enigma of site of action of migraine preventives: No effect of metoprolol on trigeminal pain processing in patients and healthy controls. J. Headache Pain 2017, 18, 116.
  72. Ziegeler, C.; Mehnert, J.; Asmussen, K.; May, A. Central effects of erenumab in migraine patients: An event-related functional imaging study. Neurology 2020, 95, e2794–e2802.
  73. Schulte, L.H.; Allers, A.; May, A. Hypothalamus as a mediator of chronic migraine. Neurology 2017, 88, 2011–2016.
  74. De Tommaso, M. An update on EEG in migraine. Expert Rev. Neurother. 2019, 19, 729–737.
  75. Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438.
  76. Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modeling. Neuroimage 2003, 19, 1273–1302.
  77. Marinazzo, D.; Pellicoro, M.; Stramaglia, S. Kernel method for nonlinear granger causality. Phys. Rev. Lett. 2008, 100, 144103.
  78. Frid, A.; Shor, M.; Shifrin, A.; Yarnitsky, D.; Granovsky, Y. A Biomarker for Discriminating Between Migraine with and Without Aura: Machine Learning on Functional Connectivity on Resting-State EEGs. Ann. Biomed. Eng. 2020, 48, 403–412.
  79. Cao, Z.; Lin, C.T.; Chuang, C.H.; Lai, K.L.; Yang, A.C.; Fuh, J.L.; Wang, S.J. Resting-state EEG power and coherence vary between migraine phases. J. Headache Pain 2016, 17, 102.
  80. Wu, D.; Zhou, Y.; Xiang, J.; Tang, L.; Liu, H.; Huang, S.; Wu, T.; Chen, Q.; Wang, X. Multi-frequency analysis of brain connectivity networks in migraineurs: A magnetoencephalography study. J. Headache Pain 2016, 17, 8.
  81. Nieboer, D.; Sorrentino, P.; Hillebrand, A.; Heymans, M.W.; Twisk, J.W.R.; Stam, C.J.; Douw, L. Brain Network Integration in Patients with Migraine: A Magnetoencephalography Study. Brain Connect. 2020, 10, 224–235.
More
Academic Video Service