Sensors Used in Water Monitoring: Comparison
Please note this is a comparison between Version 2 by Lily Guo and Version 1 by Fiona Regan.

Water monitoring sensors in industrial, municipal and environmental monitoring are advancing our understanding of science, aid developments in process automatization and control and support real-time decisions in emergency situations. Sensors are becoming smaller, smarter, increasingly specialized and diversified and cheaper. Advanced deployment platforms now exist to support various monitoring needs together with state-of-the-art power and communication capabilities. For a large percentage of submerged instrumentation, biofouling is the single biggest factor affecting the operation, maintenance and data quality. This increases the cost of ownership to the extent that it is prohibitive to maintain operational sensor networks and infrastructures. In this context, the paper provides a brief overview of biofouling, including the development and properties of biofilms. The state-of-the-art established and emerging antifouling strategies are reviewed and discussed. 

  • biofouling
  • instrumentation
  • biomimetics
  • materials
  • marine
  • freshwater
  • coatings
  • optical sensors
Please wait, diff process is still running!

References

  1. Characklis, W.G. Bioengineering report: Fouling biofilm development: A process analysis. Biotechnol. Bioeng. 1981, 23, 1923–1960, doi:10.1002/bit.260230902.
  2. Railkin, A.I. Marine biofouling: colonization processes and defenses; CRC press, 2003;
  3. Dafforn, K.A.; Lewis, J.A.; Johnston, E.L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 2011, 62, 453–465, doi:10.1016/j.marpolbul.2011.01.012.
  4. Davidson, I.C.; Brown, C.W.; Sytsma, M.D.; Ruiz, G.M. The role of containerships as transfer mechanisms of marine biofouling species. Biofouling 2009, 25, 645–655, doi:10.1080/08927010903046268.
  5. Champ, M.A. Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Mar. Pollut. Bull. 2003, 46, 935–940, doi:10.1016/S0025-326X(03)00106-1.
  6. Swain, G. Biofouling control: a critical component of drag reduction. In Proceedings of the Proceedings of the International Symposium on Sea Water Drag Reduction; 1998; pp. 155–161.
  7. Turner, A.; Singh, N.; Richards, J.P. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles. Environ. Pollut. 2009, 157, 1526–1532.
  8. Manov, D. V; Chang, G.C.; Dickey, T.D. Methods for Reducing Biofouling of Moored Optical Sensors. J. Atmos. Ocean. Technol. 2004, 21, 958–968.
  9. Whelan, A.; Regan, F. Antifouling strategies for marine and riverine sensors. J. Environ. Monit. 2006.
  10. Whitt, C.; Pearlman, J.; Polagye, B.; Caimi, F.; Muller-Karger, F.; Copping, A.; Spence, H.; Madhusudhana, S.; Kirkwood, W.; Grosjean, L.; et al. Future Vision for Autonomous Ocean Observations. Front. Mar. Sci. 2020, 7, 697, doi:10.3389/fmars.2020.00697.
  11. Delauney, L.; Compère, C.; Lehaitre, M.; Compare, C.; Lehaitre, M.; Compère, C.; Lehaitre, M. Biofouling protection for marine environmental sensors. Ocean Sci. 2010, 6, 503–511, doi:10.5194/os-6-503-2010.
  12. Alliance for Coastal Technologies Biofouling Prevention Technologies for Coastal Sensors / Sensor Platforms. In Proceedings of the University of Maryland Center of Environmental Science, Workshop Proceedings; Solomons, Maryland, 2003; p. 23. No. ACT-03-05. Ref. No. [UMCES]CBL 04-016
  13. Lobe, H. Recent advances in biofouling protection for oceanographic instrumentation. Ocean. 2015 - MTS/IEEE Washingt. 2016, doi:10.23919/oceans.2015.7401854.
  14. Little, B.J.; Wagner, P.A. Succession in microfouling; 1997;
  15. Afroz, F.; Lang, A.; Habegger, M.L. Bristled shark skin: a microgeometry for boundary layer control? Related content Experimental study of laminar and turbulent boundary layer separation control of shark skin. Bioinspir. Biomim. 2008, 3, doi:10.1088/1748-3182/3/4/046005.
  16. Zobell, C.E.; Allen, E.C. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 1935, 29, 239–251.
  17. Zobell, C.E.; Rittenberg, S.C. The occurrence and characteristics of chitinoclastic bacteria in the sea. J. Bacteriol. 1938, 35, 275–287.
  18. Busscher, H.J.; Bos, R.; Van Der Mei, H.C. Hypothesis Initial microbial adhesion is a determinant for the strength of biofilm adhesion; 1995; Vol. 128;.
  19. Jain, A.; Bhosle, N.B. Biochemical composition of the marine conditioning film: Implications for bacterial adhesion. Biofouling 2009, 25, 13–19, doi:10.1080/08927010802411969.
  20. Roberts, D.; Rittschof, D.; Holm, E.; Schmidt, A. Factors influencing initial larval settlement: temporal, spatial and surface molecular components. J. Exp. Mar. Bio. Ecol. 1991, 150, 203–221, doi:https://doi.org/10.1016/0022-0981(91)90068-8.
  21. Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R.J.K. Modern approaches to marine antifouling coatings. Surf. Coatings Technol. 2006, 201, 3642–3652, doi:10.1016/j.surfcoat.2006.08.129.
  22. Nazar C, J. Biofilms bacterianos. Rev. Otorrinolaringol. y cirugía cabeza y cuello 2007, 67, 61–72, doi:10.4067/S0718-48162007000100011.
  23. Donlan, R.M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890, doi:10.3201/eid0809.020063.
  24. Chloe, R.A.; Faddis, B.T. Anatomical evidence of microbial biofilms in tonsillar tissues: a possible mechanism to explain chronicity. Arch. Otolaryngol. Neck Surg. 2002, 129, 634–636.
  25. Post, J.C.; Stoodley, P.; Hall–Stoodley, L.; Ehrlich, G.D. The role of biofilms in otolaryngologic infections. Curr. Opin. Otolaryngol. Head Neck Surg. 2004, 12, 185–190.
  26. Delrin® Plastic | Acetal Plastic Available online: https://www.dupont.com/products/delrin.html (accessed on Dec 31, 2020).
  27. Solvay’s Ryton® PPS used for flexible, lightweight coolant lines, brackets and connectors advances complex automotive thermal management assembly systems | Solvay Available online: https://www.solvay.com/en/article/solvays-ryton-pps-used-flexible-lightweight-coolant-lines-brackets-and-connectors-advances (accessed on Dec 31, 2020).
  28. Agarwal, D.C. A new Ni-Cr-Mo alloy 59, UNS N06059, for providing cost-effective/reliable solutions to various maintenance and corrosion problems in naval applications; Houston,TX 77065-4939, 2007;
  29. Shin, Y. ho; Chung, J. hoon; Kim, J.H. Test and estimation of ballistic armor performance for recent naval ship structural materials. Int. J. Nav. Archit. Ocean Eng. 2018, 10, 762–781, doi:10.1016/j.ijnaoe.2017.10.007.
  30. Choung, J.; Nam, W.; Lee, J.Y. Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature. Mar. Struct. 2013, 32, 49–67, doi:10.1016/j.marstruc.2013.02.001.
  31. Ailor, W.H. Five-year corrosion of aluminium alloys at several marine sites. Br. Corros. J. 1966, 1, 237–243, doi:10.1179/000705966798327687.
  32. Delauney, L.; Compère, C.; Lehaitre, M. Biofouling protection for marine environmental sensors. Ocean Sci 2010, 6, 503–511, doi:10.5194/os-6-503-2010.
  33. Lopez, G.; Tiznado, H.; Soto Herrera, G.; De la Cruz, W.; Valdez, B.; Schorr, M.; Roumen, Z. Use of AES in corrosion of copper connectors of electronic devices and equipments in arid and marine environments. Anti-Corrosion Methods Mater. 2011, 58, 331–336, doi:10.1108/00035591111178909.
  34. Lynch, R.F. Hot-Dip Galvanizing Alloys. JOM 1987, 39, 39–41, doi:10.1007/BF03258608.
  35. Xu, C.; Zhang, Y.; Cheng, G.; Zhu, W. Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. Mater. Sci. Eng. A 2007, 443, 235–241, doi:10.1016/j.msea.2006.08.110.
  36. C3 Submersible Fluorometer; Turner Designs; United States Available online: https://www.turnerdesigns.com/c3-submersible-fluorometer (accessed on Oct 8, 2020).
  37. C6P Submersible Fluorometer; Turner Designs; United States Available online: https://www.turnerdesigns.com/c6p-submersible-fluorometer (accessed on Oct 8, 2020).
  38. Modular Underwater Pressure Housings; Available online: http://www.develogic.de/products/underwater-housing-systems/ (accessed on Oct 8, 2020).
  39. Lizotte, M. Fighting Fouling; Extending sonde deployment times with EXO´s Wiped (C/T) sensor; Yellow Springs, OH, 2015;
  40. VIPER - TriOS Mess- und Datentechnik Available online: https://www.trios.de/en/viper.html (accessed on Oct 5, 2020).
  41. enviroFlu - TriOS Mess- und Datentechnik Available online: https://www.trios.de/en/enviroflu.html (accessed on Oct 5, 2020).
  42. nanoFlu - TriOS Mess- und Datentechnik Available online: https://www.trios.de/en/nanoflu.html (accessed on Oct 5, 2020).
  43. WQM Water Quality Monitor | Sea-Bird Scientific - Videos | Sea-Bird Available online: https://www.seabird.com/moored/wqm-water-quality-monitor/family-video?productCategoryId=54627473783 (accessed on Oct 5, 2020).
  44. ECO Scattering Sensor, Sea-Bird Scientific Available online: https://www.seabird.com/scattering-sensors/eco-scattering-sensor/family?productCategoryId=54627869916 (accessed on Oct 5, 2020).
  45. ECO Triplet, Sea-Bird Scientific Available online: https://www.seabird.com/combination-sensors/eco-triplet/family?productCategoryId=54758054351# (accessed on Oct 5, 2020).
  46. HydroCAT-EP, Sea Bird Scientific, User manual Available online: https://www.google.com/search?rlz=1C1CHBF_esES913ES913&sxsrf=ALeKk03IIi6AodF6GvbgCEOD6lA5skPWbA%3A1601933486724&ei=rpB7X7bWK6Wd1fAPvqKfoAk&q=HydroCAT-EP+user+manual&oq=HydroCAT-EP+user+manual&gs_lcp=CgZwc3ktYWIQAzoFCAAQywE6BAgAEB46BQghEKABOgcIIRAKEKABSgUI (accessed on Oct 5, 2020).
  47. HyperOCR Radiometer, Sea-Bird Scientific Available online: https://www.seabird.com/hyperspectral-radiometers/hyperocr-radiometer/family?productCategoryId=54627869935 (accessed on Oct 6, 2020).
  48. ECO Photosynthetically Active Radiation (PAR) sensor, Sea-Bird Scientific Available online: https://www.seabird.com/multispectral-radiometers/eco-photosynthetically-active-radiation-par-sensor/family?productCategoryId=54627869940 (accessed on Oct 6, 2020).
  49. Multispectral Radiometers, Sea-Bird Scientific Available online: https://www.seabird.com/multispectral-radiometers/multispectral-radiometers/family?productCategoryId=54627869938 (accessed on Oct 6, 2020).
  50. WQM Water Quality Monitor Sea-Bird Scientific Available online: https://www.seabird.com/moored/wqm-water-quality-monitor/family?productCategoryId=54627473783 (accessed on Oct 5, 2020).
  51. Water Quality Monitor (WQM) Sea Bird Scientific, User manual 12/2013, Edition 1 Available online: https://www.ott.com/download/sea-bird-scientific-wqm-manual/ (accessed on Oct 5, 2020).
  52. Multiparameter Sondes for Water Quality Monitoring Data Collection; © 2020 YSI, a Xylem brand Available online: https://www.ysi.com/products/multiparameter-sondes (accessed on Oct 6, 2020).
  53. 6-Series Anti-Fouling Kits System Inhibits Biofouling to Lengthen Deployment Times and Reduce Operating Costs; © 2020 YSI, a Xylem brand Available online: https://www.fondriest.com/pdf/ysi_af_spec.pdf (accessed on Oct 6, 2020).
  54. UV254 Products Available online: https://www.photonicmeasurements.com/products (accessed on Oct 6, 2020).
  55. Sonde DCO UV-Probe 254+ multi-paramètres - EFS Available online: https://www.efs.fr/project/sonde-dco-uv-probe-254/ (accessed on Oct 6, 2020).
  56. VLux AlgaePro - Chelsea Technologies Available online: https://chelsea.co.uk/products/vlux-algaepro/ (accessed on Oct 8, 2020).
  57. Hydro-Wiper; Zebra Tech Available online: https://www.zebra-tech.co.nz/hydro-wiper/ (accessed on Oct 9, 2020).
  58. OBS501 Smart Turbidity Meter with Antifouling Features; CampBell-Scientific Available online: https://www.campbellsci.eu/turbidity (accessed on Oct 7, 2020).
  59. Hydrolab DS5X - Multiparameter Data Sonde - OTT Hydromet Available online: https://www.ott.com/products/water-quality-2/hydrolab-ds5x-multiparameter-data-sonde-855/ (accessed on Nov 6, 2020).
  60. Spectrometer Probes; S::can Available online: https://www.s-can.at/index.php?option=com_virtuemart&view=category&virtuemart_category_id=1&virtuemart_manufacturer_id=0&categorylayout=0&showcategory=1&showproducts=1&productsublayout=0&Itemid=731&scrollto=product-145 (accessed on Oct 9, 2020).
  61. Granhag, L.M.; Finlay, J.A.; Jonsson, P.R.; Callow, J.A.; Callow, M.E. Roughness-dependent removal of settled spores of the green alga Ulva (syn. Enteromorpha) exposed to hydrodynamic forces from a water jet. Biofouling 2004, 20, 117–122, doi:10.1080/08927010410001715482.
  62. Multiparameter water quality instrument; YSI EXO 2 Sonde, © 2020 YSI, a Xylem brand Available online: https://www.ysi.com/EXO2 (accessed on Oct 6, 2020).
  63. Ponsel Hydroclean_P Anti Fouling Wiper Available online: https://www.bellenviro.co.uk/ponsel-hydroclean_p-anti-fouling-wiper.html (accessed on Oct 5, 2020).
  64. SUNA V2 Nitrate Sensor | Sea-Bird Scientific - Overview | Sea-Bird Available online: https://www.seabird.com/nutrient-sensors/suna-v2-nitrate-sensor/family?productCategoryId=54627869922 (accessed on Oct 5, 2020).
  65. ECO Triplet-w Sea-Bird Scientific Available online: https://www.seabird.com/combination-sensors/eco-triplet-w/family?productCategoryId=54627869918 (accessed on Oct 5, 2020).
  66. Inc, Y. 6-Series Anti-Fouling Kits System Inhibits Biofouling to Lengthen Deployment Times and Reduce Operating Costs;
  67. Sreenivasan, P.K.; Chorny, R.C. The effects of disinfectant foam on microbial biofilms. Biofouling 2005, 21, 141–149, doi:10.1080/08927010500155694.
  68. Davis, R.F.; Moore, C.C.; Zaneveld, J.R. V.; Napp, J.M. Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments. J. Geophys. Res. Ocean. 1997, 102, 5851–5855, doi:10.1029/96JC02430.
  69. Rajagopal, S.; Van Der Velde, G.; Van Der Gaag, M.; Jenner, H.A. Laboratory evaluation of the toxicity of chlorine to the fouling hydroid Cordylophora caspia. Biofouling 2002, 18, 57–64, doi:10.1080/08927010290017734.
  70. McGinnis, C.L.; Crivello, J.F. Elucidating the mechanism of action of tributyltin (TBT) in zebrafish. Aquat. Toxicol. 2011, 103, 25–31.
  71. Alzieu, C. Tributyltin: case study of a chronic contaminant in the coastal environment. Ocean Coast. Manag. 1998, 40, 23–36.
  72. Stauber, J.L.; Florence, T.M. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 1987, 94, 511–519, doi:10.1007/BF00431397.
  73. Breur, H. Fouling and bioprotection of metals: Monitoring and control of deposition processes in aqueous environments. Ph.D. thesis, TNO Industrial Technology, 2001, 2003. Available online: http://resolver.tudelft.nl/uuid:d5455703-294c-4187-86e2-b5b4de636b4e (accessed on 31 December 2020)
  74. Soldo, D.; Hari, R.; Sigg, L.; Behra, R. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat. Toxicol. 2005, 71, 307–317.
  75. Mudryk, Z.J. Antibiotic Resistance among Bacteria Inhabiting Surface and Subsurface Water Layers in Estuarine Lake Gardno; 2002; Vol. 11;.
  76. Kobori, H.; Sullivan, C.W.; Shizuya, H. Bacterial Plasmids in Antarctic Natural Microbial Assemblages Downloaded from; 1984;
  77. Gerigk, U.; Schneider, U.; Abstracts, U.S.-C.P. of E.; 1998, U. The present status of TBT copolymer antifouling paints versus TBT-free technology. ACS Div. Environ. Chem. Prepr. 1998, 38, 91–94.
  78. Omae, I. Organotin antifouling paints and their alternatives. Appl. Organomet. Chem. 2003, 17, 81–105.
  79. Voulvoulis, N.; Chemistry, M.S.-… organometallic; 1999, U. Alternative antifouling biocides. Appl. Organomet. Chem. 1999, 13.
  80. Thomas, K. V. The environmental fate and behaviour of antifouling paint booster biocides: A review. Biofouling 2001, 17, 73–86.
  81. Bringhurst, B.T.; Christensen, C.B.; Ewert, D.W.; Thurston, R.J.; John P. Downing, J. Sensor with antifouling control; U.S. Patent No. 8,429,952. Washington, DC: U.S. Patent and Trademark Office. 2013, 1–20.
  82. Cook, M. Using a Copper-Alloy Based System for Effective Biofouling Deterrence New Anti-Fouling Methods from YSI Inc. Reduce Impact of Biological Fouling on Water Monitoring Instrumentation; Yellow Springs, Ohio, USA, 2010;
  83. Higgins, P. Tips to Prevent Biofouling on Water Quality Instruments Recommended Anti-fouling Items: Anti-fouling wipers, Anti-fouling port plugs 2" wide copper tape, Plastic anti-fouling sleeves, Copper-alloy sensor guard, Copper-alloy screen, C-Spray protective prob; Yellow Springs, Ohio, USA, 2013;
  84. Kerr, A.; Cowling, M.J.; Beveridge, C.M.; Smith, M.J.; Parr, A.C.S.; Head, R.M.; Davenport, J.; Hodgkiess, T. The early stages of marine biofouling and its effect on two types of optical sensors. Environ. Int. 1998, 24, 331–343, doi:10.1016/S0160-4120(98)00011-7.
  85. Lindner, E. A low surface free energy approach in the control of marine biofouling. Biofouling 1992, 6, 193–205, doi:10.1080/08927019209386222.
  86. Tang, Y.; Finlay, J.A.; Kowalke, G.L.; Meyer, A.E.; Bright, F. V.; Callow, M.E.; Callow, J.A.; Wendt, D.E.; Detty, M.R. Hybrid xerogel films as novel coatings for antifouling and fouling release. Biofouling 2005, 21, 59–71, doi:10.1080/08927010500070935.
  87. Dugdale, T.M.; Wetherbee, R.; Brennan, A. Adhesion and motility of fouling diatoms on a silicone elastomer The effectiveness of invasive species management in wetlands View project 15th International Symposium on Aquatic Plants View project. Taylor Fr. 2004, 20, 323–329, doi:10.1080/08927010400029031.
  88. Tao, S.; Xu, L.; Fanguy, J.C. Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers. Sensors Actuators B Chem. 2006, 115, 158–163.
  89. Hu, Z.; Pitet, L.M.; Hillmyer, M.A.; Desimone, J.M. High Modulus, Low Surface Energy, Photochemically Cured Materials from Liquid Precursors. Macromolecules 2010, 43, 10397–10405, doi:10.1021/ma101180k.
  90. Lewis, A. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surfaces B Biointerfaces 2000, 18, 261–275.
  91. Lejars, M.; Margaillan, A.; Bressy, C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 2012, 112, 4347–4390.
  92. Almeida, E.; Diamantino, T.C.; de Sousa, O. Marine paints: the particular case of antifouling paints. Prog. Org. Coatings 2007, 59, 2–20, doi:10.1016/j.porgcoat.2007.01.017.
  93. Omae, I. General aspects of tin-free antifouling paints. Chem. Rev. 2003, 103, 3431–3448, doi:10.1021/cr030669z.
  94. Hellio, C.; Yebra, D. Advances in marine antifouling coatings and technologies; Hellio, C., Yebra, D., Eds.; Woodshead Publishing: Cambridge, U.K., 2009;
  95. Wood, P.; Jones, M.; Bhakoo, M.; Gilbert, P. A Novel Strategy for Control of Microbial Biofilms through Generation of Biocide at the Biofilm-Surface Interface; 1996; Vol. 62;.
  96. Nakasono, S.; Matsunaga, T. Electrochemical Sterilization of Marine Bacteria Adsorbed onto a Graphite-Silicone Electrode by Application of an Alternating Potential. Denki Kagaku oyobi Kogyo Butsuri Kagaku 1993, 61, 899–902, doi:10.5796/electrochemistry.61.899.
  97. Nakayama, T.; Wake, H.; Ozawa, K.; Kodama, H.; Nakamura, N.; Matsunaga, T. Use of a titanium nitride for electrochemical inactivation of marine bacteria. Environ. Sci. Technol. 1998, 32, 798–801, doi:10.1021/es970578h.
  98. Amr A.-G., K.H.S. Biofouling prevention with pulsed electric fields. IEEE Trans. Plasma Sci. 2000, 28, 115–121, doi:10.1109/27.842878.
  99. Laurent, D.; Kada, B.; Mathieu, D.; Bertrand, F.; Michel, P.; Giovanni, P.; Faimali, M. Optimized and high efficiency biofouling protection for oceanographic optical devices. In Proceedings of the OCEANS 2017 - Aberdeen; IEEE, 2017; Vol. 2017-Octob, pp. 1–14.
  100. Patent WO 2004069645 A1 - Method for production of an anti-fouling protective coating on a support and corresponding support.
  101. Debiemme-Chouvy, C.; Hua, Y.; Hui, F.; Duval, J.-L.; Cachet, H. Electrochemical treatments using tin oxide anode to prevent biofouling. Electrochim. Acta 2011, 56, 10364–10370, doi:10.1016/j.electacta.2011.03.025.
  102. Spears, L.G.; Stone, J.H.; Klein, E. Electrolysis of copper screening: a technique for the prevention of marine fouling. Environ. Sci. Technol. 1969, 3, 576–580, doi:10.1021/es60029a006.
  103. J.A., H.; B.J., H.; F. J., K. Clinical and Pathogenic Microbiology, Mosby-Year Book Inc. In Clinical and Pathogenic Microbiology, Mosby-Year Book Inc; St. Louis, 1994; pp. 145–195.
  104. Boyce, J.M. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob. Resist. Infect. Control 2016, 5.
  105. Titus, J.M.; Ryskiewich, B.S. Ultraviolet marine anti-biofouling systems. U.S. Pat. 5322569; 1994, 1–8.
  106. Zheng, J.; Feng, C.; Matsuura, T. Study on reduction of inorganic membrane fouling by ultraviolet irradiation. J. Memb. Sci. 2004, 244, 179–182.
  107. Blatchley, E.R.; Bastian, K.C.; Duggirala, R.K.; Alleman, J.E.; Moore, M.; Schuerch, P. Ultraviolet irradiation and chlorination/dechlorination for municipal wastewater disinfection: Assessment of performance limitations. Water Environ. Res. 1996, 68, 194–204, doi:10.2175/106143096x127389.
  108. Koutchma, T. UV Light for Processing Foods; 2008; Vol. 30;.
  109. Jongerius, M.; Paulussen, E.; Visser, C.; Wijnen, M.; R, H. RunWell UVC antifouling solutions Device design simulation and experimental verification. RunWell. Philips Royal; 2018;
More
ScholarVision Creations