Please note this is a comparison between Version 5 by Bruce Ren and Version 4 by Bruce Ren.
Over the years, biosensors have acquired increasing importance in a wide range of applications due to synergistic studies of various scientific disciplines, determining their great commercial potential and revealing how nanotechnology and biotechnology can be strictly connected. In the present scenario, biosensors have increased their detection limit and sensitivity unthinkable until a few years ago. The most widely used biosensors are optical-based devices such as surface plasmon resonance (SPR)-based biosensors and fluorescence-based biosensors.
biosensor
SPR
fluorescence
food
security
health
environment
Please wait, diff process is still running!
References
Martin, F. Chaplin; Bucke, C. Enzyme Technology; Cambridge University Press: Cambridge, UK, 1990.
Byrne, B.; Stack, E.; Gilmartin, N.; O’Kennedy, R.J. Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors 2009, 9, 4407–4445, doi:10.3390/s90604407.
Mitchell, J.S. Small molecule immunosensing using surface plasmon resonance. Sensors 2010, 10, 7323–7346, doi:10.3390/s100807323.
Lavers, C.; Harris, R.; Hao, S.; Wilkinson, J.; O’Dwyer, K.; Brust, M.; Schiffrin, D. Electrochemically-controlled wave-guide-coupled surface plasmon sensing. J. Electroanal. Chem. 1995, 387, 11–22, doi:10.1016/0022-0728(95)03865-e.
Baba, A.; Park, M.-K.; Advincula, R.C.; Knoll, W. Simultaneous surface plasmon optical and electrochemical investigation of layer-by-layer self-assembled conducting ultrathin polymer films. Langmuir 2002, 18, 4648–4652, doi:10.1021/la011078b.
Badia, A.; Arnold, S.; Scheumann, V.; Zizlsperger, M.; Mack, J.; Jung, G.; Knoll, W. Probing the electrochemical deposition and/or desorption of self-assembled and electropolymerizable organic thin films by surface plasmon spectroscopy and atomic force microscopy. Sensors Actuators B Chem. 1999, 54, 145–165, doi:10.1016/s0925-4005(98)00333-5.
Peterlinz, K.A.; Georgiadis, R. In situ kinetics of self-assembly by surface plasmon resonance spectroscopy. Langmuir 1996, 12, 4731–4740, doi:10.1021/la9508452.
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sen-sors 2008, 8, 1400–1458, doi:10.3390/s80314000.
Ghosh, S.K.; Nath, S.; Kundu, S.; Esumi, A.K.; Pal, T. Solvent and ligand effects on the Localized Surface Plasmon Resonance (LSPR) of gold colloids. J. Phys. Chem. B 2004, 108, 13963–13971, doi:10.1021/jp047021q.
Ly, N.; Foley, K.; Tao, N. Integrated label-free protein detection and separation in real time using confined surface plasmon resonance imaging. Anal. Chem. 2007, 79, 2546–2551, doi:10.1021/ac061932+.
Jain, P.K.; El-Sayed, M.A. Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing. Nano Lett. 2008, 8, 4347–4352, doi:10.1021/nl8021835.
Knight, M.W.; Wu, Y.; Lassiter, J.B.; Nordlander, P.; Halas, N.J. Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett. 2009, 9, 2188–2192, doi:10.1021/nl900945q.
Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S.R. Shape effects in plasmon resonance of individual colloidal sil-ver nanoparticles. J. Chem. Phys. 2002, 116, 6755–6759, doi:10.1063/1.1462610.
Murray, W.A.; Auguié, B.; Barnes, W.L. Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J. Phys. Chem. C 2009, 113, 5120–5125, doi:10.1021/jp810322q.
17. Mustafa, D.E.; Yang, T.; Xuan, Z.; Chen, S.; Tu, H.; Zhang, A. Surface plasmon coupling effect of gold nanoparticles with dif-ferent shape and size on conventional surface plasmon resonance signal. Plasmonics 2010, 5, 221–231, doi:10.1007%2Fs11468-010-9141-z.
Park, H.K.; Yoon, J.K.; Kim, K. Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering. Langmuir 2006, 22, 1626–1629, doi:10.1021/la052559o.
Vernon, K.; Funston, A.M.; Novo, C.; Gómez, D.E.; Mulvaney, P.; Davis, T.J. Influence of particle−substrate interaction on localized plasmon resonances. Nano Lett. 2010, 10, 2080–2086, doi:10.1021/nl100423z.
Yguerabide, J.; Yguerabide, E.E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem. 1998, 262, 157–176, doi:10.1006/abio.1998.2760.
Byun, K.-M. Development of nanostructured plasmonic substrates for enhanced optical biosensing. J. Opt. Soc. Korea 2010, 14, 65–76, doi:10.3807/josk.2010.14.2.065.
McFarland, A.D.; Van Duyne, R.P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062, doi:10.1021/nl034372s.
Bassil, N.; Maillart, E.; Canva, M.; Lévy, Y.; Millot, M.-C.; Pissard, S.; Narwa, R.; Goossens, M. One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations. Sensors Actuators B Chem. 2003, 94, 313–323, doi:10.1016/s0925-4005(03)00462-3.
Jordan, C.E.; Frutos, A.G.; Thiel, A.J.; Corn, R.M. Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem. 1997, 69, 4939–4947, doi:10.1021/ac9709763.
Shumaker-Parry, J.S.; Aebersold, R.; Campbell, C.T. Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal. Chem. 2004, 76, 2071–2082, doi:10.1021/ac035159j.
Huang, B.; Yu, A.F.; Zare, R.N. Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal. Chem. 2007, 79, 2979–2983, doi:10.1021/ac062284x.
Jamil, M.M.A.; Denyer, M.C.T.; Youseffi, M.; Britland, S.; Liu, S.; See, C.; Somekh, M.; Zhang, J. Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy. J. Struct. Biol. 2008, 164, 75–80, doi:10.1016/j.jsb.2008.06.005.
Sefat, F.; Denyer, M.; Youseffi, M. Imaging via widefield surface plasmon resonance microscope for studying bone cell inter-actions with micropatterned ECM proteins. J. Microsc. 2011, 241, 282–290, doi:10.1111/j.1365-2818.2010.03430.x.
Wei, D.; Oyarzabal, O.A.; Huang, T.-S.; Balasubramanian, S.; Sista, S.; Simonian, A.L. Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. J. Microbiol. Methods 2007, 69, 78–85, doi:10.1016/j.mimet.2006.12.002.
Taylor, A.D.; Ladd, J.; Yu, Q.; Chen, S.; Homola, J.; Jiang, S. Quantitative and simultaneous detection of four foodborne bac-terial pathogens with a multi-channel SPR sensor. Biosens. Bioelectron. 2006, 22, 752–758, doi:10.1016/j.bios.2006.03.012.
Barlen, B.; Mazumdar, S.D.; Lezrich, O.; Kämpfer, P.; Keusgen, M. Detection of salmonella by surface plasmon resonance. Sensors 2007, 7, 1427–1446, doi:10.3390/s7081427.
Oh, B.-K.; Lee, W.; Chun, B.S.; Bae, Y.M.; Lee, W.H.; Choi, J.-W. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 2005, 20, 1847–1850, doi:10.1016/j.bios.2004.05.010.
Koubová, V.; Brynda, E.; Karasová, L.; Škvor, J.; Homola, J.; Dostálek, J.; Tobiška, P.; Rošický, J. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors Actuators B Chem. 2001, 74, 100–105, doi:10.1016/s0925-4005(00)00717-6.
Hearty, S.; Leonard, P.; Quinn, J.; O’Kennedy, R.J. Production, characterisation and potential application of a novel mono-clonal antibody for rapid identification of virulent Listeria monocytogenes. J. Microbiol. Methods 2006, 66, 294–312, doi:10.1016/j.mimet.2005.12.009.
Van Der Gaag, B.; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; Van Osenbruggen, T.; Koopal, K. Biosensors and multi-ple mycotoxin analysis. Food Control. 2003, 14, 251–254, doi:10.1016/s0956-7135(03)00008-2.
Mullett, W.; Lai, E.P.; Yeung, J.M. Immunoassay of fumonisins by a surface plasmon resonance biosensor. Anal. Biochem. 1998, 258, 161–167, doi:10.1006/abio.1998.2616.
Naimushin, A.N.; Soelberg, S.D.; Nguyen, D.K.; Dunlap, L.; Bartholomew, D.; Elkind, J.; Melendez, J.; Furlong, C.E. Detec-tion of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens. Bioelectron. 2002, 17, 573–584, doi:10.1016/s0956-5663(02)00014-3.
Feltis, B.N.; Sexton, B.; Glenn, F.; Best, M.; Wilkins, M.; Davis, T.J. A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens. Bioelectron. 2008, 23, 1131–1136, doi:10.1016/j.bios.2007.11.005.
Zhou, H.; Zhou, B.; Ma, H.; Carney, C.; Janda, K.D. Selection and characterization of human monoclonal antibodies against Abrin by phage display. Bioorg. Med. Chem. Lett. 2007, 17, 5690–5692, doi:10.1016/j.bmcl.2007.07.053.
Taylor, A.D.; Ladd, J.; Etheridge, S.M.; Deeds, J.; Hall, S.; Jiang, S. Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor. Sensors Actuators B Chem. 2008, 130, 120–128, doi:10.1016/j.snb.2007.07.136.
Caldow, M.; Stead, S.L.; Day, J.; Sharman, M.; Situ, C.; Elliott, C. Development and validation of an optical SPR biosensor assay for tylosin residues in honey. J. Agric. Food Chem. 2005, 53, 7367–7370, doi:10.1021/jf050725s.
Choi, J.-W.; Park, K.-W.; Lee, D.-B.; Lee, W.; Lee, W.H. Cell immobilization using self-assembled synthetic oligopeptide and its application to biological toxicity detection using surface plasmon resonance☆. Biosens. Bioelectron. 2005, 20, 2300–2305, doi:10.1016/j.bios.2004.11.019.
Shrivastav, A.M.; Mishra, S.K.; Gupta, B.D. Surface plasmon resonance-based fiber optic sensor for the detection of ascorbic acid utilizing molecularly imprinted polyaniline film. Plasmonics 2015, 10, 1853–1861, doi:10.1007/s11468-015-0005-4.
Shaner, D.L. Sugarcane soils exhibit enhanced atrazine degradation and cross adaptation to other s-triazines. J. Am. Soc. Sugar Cane Technol. 2010, 30, 1–10.
Yao, G.-H.; Liang, R.-P.; Huang, C.-F.; Wang, Y.; Qiu, J.-D. Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal. Chem. 2013, 85, 11944–11951, doi:10.1021/ac402848x.
Agrawal, H.; Shrivastav, A.M.; Gupta, B.D. Surface plasmon resonance based optical fiber sensor for atrazine detection using molecular imprinting technique. Sensors Actuators B Chem. 2016, 227, 204–211, doi:10.1016/j.snb.2015.12.047.
Brenet, S.; John-Herpin, A.; Gallat, F.-X.; Musnier, B.; Buhot, A.; Herrier, C.; Rousselle, T.; Livache, T.; Hou, Y. High-ly-selective optoelectronic nose based on surface plasmon resonance imaging for sensing volatile organic compounds. Anal. Chem. 2018, 90, 9879–9887, doi:10.1021/acs.analchem.8b02036.
Lokman, N.F.; Bakar, A.A.A.; Suja, F.; Abdullah, H.; Ab Rahman, W.B.W.; Huang, N.-M.; Yaacob, M.H. Highly sensitive SPR response of Au/chitosan/graphene oxide nanostructured thin films toward Pb (II) ions. Sensors Actuators B Chem. 2014, 195, 459–466, doi:10.1016/j.snb.2014.01.074.
Kamaruddin, N.H.; Bakar, A.A.A.; Yaacob, M.H.; Mahdi, M.A.; Zan, M.S.D.; Shaari, S. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au–Ag–Au nanostructure for lead(II) ion detection. Appl. Surf. Sci. 2016, 361, 177–184, doi:10.1016/j.apsusc.2015.11.099.
Saleviter, S.; Fen, Y.W.; Omar, N.A.S.; Zainudin, A.A.; Yusof, N.A. Development of optical sensor for determination of Co(II) based on surface plasmon resonance phenomenon. Sens. Lett. 2017, 15, 862–867, doi:10.1166/sl.2017.3883.
Daniyal, W.M.E.M.M.; Fen, Y.W.; Abdullah, J.; Sadrolhosseini, A.R.; Saleviter, S.; Omar, N.A.S. Exploration of surface plas-mon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film. Opt. Express 2018, 26, 34880–34893, doi:10.1364/oe.26.034880.
Zeck, A.; Weller, M.G.; Niessner, R. Characterization of a monoclonal TNT-antibody by measurement of the cross-reactivities of nitroaromatic compounds. Anal. Bioanal. Chem. 1999, 364, 113–120, doi:10.1007/s002160051309.
Shankaran, D.R.; Kawaguchi, T.; Kim, S.J.; Matsumoto, K.; Toko, K.; Miura, N. Evaluation of the molecular recognition of monoclonal and polyclonal antibodies for sensitive detection of 2,4,6-trinitrotoluene (TNT) by indirect competitive surface plasmon resonance immunoassay. Anal. Bioanal. Chem. 2006, 386, 1313–1320, doi:10.1007/s00216-006-0699-4.
Singh, P.; Onodera, T.; Mizuta, Y.; Matsumoto, K.; Miura, N.; Toko, K. Dendrimer modified biochip for detection of 2, 4, 6 trinitrotoluene on SPR immunosensor: Fabrication and advantages. Sensors Actuators B Chem. 2009, 137, 403–409, doi:10.1016/j.snb.2008.12.027.
Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbò, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sensors Actuators B Chem. 2013, 188, 221–226, doi:10.1016/j.snb.2013.07.005.
Onodera, T.; Toko, K. Towards an electronic dog nose: Surface plasmon resonance immunosensor for security and safety. Sensors 2014, 14, 16586–16616, doi:10.3390/s140916586.
Nakamura, S.; Yatabe, R.; Onodera, T.; Toko, K. Sensitive detection of capsaicinoids using a surface plasmon resonance sen-sor with anti-homovanillic acid polyclonal antibodies. Biosensors 2013, 3, 374–384, doi:10.3390/bios3040374.
Luo, B.; Xu, Y.; Wu, S.; Zhao, M.; Jiang, P.; Shi, S.; Zhang, Z.; Wang, Y.; Wang, L.; Liu, Y. A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus. Biosens. Bioelectron. 2018, 100, 169–175, doi:10.1016/j.bios.2017.08.064.
Lee, J.-H.; Kim, B.-C.; Oh, B.-K.; Choi, J.-W. Highly sensitive localized surface plasmon resonance immunosensor for la-bel-free detection of HIV-1. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1018–1026, doi:10.1016/j.nano.2013.03.005.
Chang, Y.-F.; Wang, W.-H.; Hong, Y.-W.; Yuan, R.-Y.; Chen, K.-H.; Huang, Y.-W.; Lu, P.-L.; Chen, Y.-H.; Chen, Y.-M.A.; Su, L.-C.; et al. Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Anal. Chem. 2018, 90, 1861–1869, doi:10.1021/acs.analchem.7b03934.
Gillis, E.H.; Traynor, I.; Gosling, J.P.; Kane, M. Improvements to a surface plasmon resonance-based immunoassay for the steroid hormone progesterone. J. AOAC Int. 2006, 89, 838–842, doi:10.1093/jaoac/89.3.838.
Ou, H.; Luo, Z.; Jiang, H.; Zhou, H.; Wang, X.; Song, C.-X. Indirect inhibitive immunoassay for estradiol using surface plas-mon resonance coupled to online in-tube SPME. Anal. Lett. 2009, 42, 2758–2773, doi:10.1080/00032710903082812.
Mitchell, J.S.; Lowe, T.E.; Ingram, J.R. Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry cou-pled with surface plasmon resonance detection. Analyst 2009, 134, 380–386, doi:10.1039/b817083p.
Mitchell, J.S.; Lowe, T.E. Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparti-cle-enhanced surface plasmon resonance biosensor. Biosens. Bioelectron. 2009, 24, 2177–2183, doi:10.1016/j.bios.2008.11.018.
Situ, C.; Crooks, S.R.H.; Baxter, A.G.; Ferguson, J.; Elliott, C.T. On-line detection of sulfamethazine and sulfadiazine in por-cine bile using a multi-channel high-throughput SPR biosensor. Anal. Chim. Acta 2002, 473, 143–149, doi:10.1016/s0003-2670(02)00934-0.
Crooks, S.R.H.; Stenberg, E.; Johansson, M.A.; Hellenaes, K.-E.; Elliott, C.T. Optical biosensor for high-throughput detection of veterinary drug residues in foods. Environ. Ind. Sens. 2001, 4206, 123–131, doi:10.1117/12.418721.
Verma, R.; Gupta, B.D. Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting. Analyst 2013, 138, 7254–7263, doi:10.1039/c3an01098h.
Shrivastav, A.M.; Mishra, S.K.; Gupta, B.D. Localized and propagating surface plasmon resonance based fiber optic sensor for the detection of tetracycline using molecular imprinting. Mater. Res. Express 2015, 2, 035007, doi:10.1088/2053-1591/2/3/035007.
Verma, R.; Gupta, B.D. Fiber optic SPR sensor for the detection of 3-pyridinecarboxamide (vitamin B3) using molecularly im-printed hydrogel. Sensors Actuators B Chem. 2013, 177, 279–285, doi:10.1016/j.snb.2012.10.135.
Verma, R.; Gupta, B.D. Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel. In Proceedings of the Fifth European Workshop on Optical Fibre Sensors; SPIE: Bellingham (WA), USA: 2013; Volume 8794, p. 87941D.
Klenkar, G.; Liedberg, B. A microarray chip for label-free detection of narcotics. Anal. Bioanal. Chem. 2008, 391, 1679–1688, doi:10.1007/s00216-008-1839-9.
Cennamo, N.; D’Agostino, G.; Pesavento, M.; Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in ta-pered plastic optical fibers for the detection of l-nicotine. Sensors Actuators B Chem. 2014, 191, 529–536, doi:10.1016/j.snb.2013.10.067.
De Boer, A.R.; Hokke, C.H.; Deelder, A.M.; Wuhrer, M. Serum antibody screening by surface plasmon resonance using a natural glycan microarray. Glycoconj. J. 2008, 25, 75–84, doi:10.1007/s10719-007-9100-x.
Weinhart, M.; Grunwald, I.; Wyszogrodzka, M.; Gaetjen, L.; Hartwig, A.; Haag, R. Linear poly(methyl glycerol) and linear polyglycerol as potent protein and cell resistant alternatives to poly(ethylene glycol). Chem. Asian J. 2010, 5, 1992–2000, doi:10.1002/asia.201000127.
Yashunsky, V.; Shimron, S.; Lirtsman, V.; Weiss, A.M.; Melamed-Book, N.; Golosovsky, M.; Davidov, D.; Aroeti, B. Real-time monitoring of transferrin-induced endocytic vesicle formation by mid-infrared surface plasmon resonance. Biophys. J. 2009, 97, 1003–1012, doi:10.1016/j.bpj.2009.05.052.
Vaisocherová, H.; Mrkvová, K.; Piliarik, M.; Jinoch, P.; Šteinbachová, M.; Homola, J. Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosens. Bioelectron. 2007, 22, 1020–1026, doi:10.1016/j.bios.2006.04.021.
Uludag, Y.; Tothill, I. Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal mi-crobalance sensors with nanoparticle signal amplification. Anal. Chem. 2012, 84, 5898–5904, doi:10.1021/ac300278p.
Chang, C.-C.; Chiu, N.-F.; Lin, D.S.; Chu-Su, Y.; Liang, Y.-H.; Lin, C.-W. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal. Chem. 2010, 82, 1207–1212, doi:10.1021/ac901797j.
Tang, D.-P.; Yuan, R.; Chai, Y.-Q. Novel immunoassay for carcinoembryonic antigen based on protein A-conjugated im-munosensor chip by surface plasmon resonance and cyclic voltammetry. Bioprocess Biosyst. Eng. 2006, 28, 315–321, doi:10.1007/s00449-005-0036-x.
Jung, S.-H.; Jung, J.-W.; Suh, I.-B.; Yuk, J.S.; Kim, W.-J.; Choi, E.Y.; Kim, Y.-M.; Ha, K.-S. Analysis of C-reactive protein on amide-linkedn-hydroxysuccinimide−dextran arrays with a spectral surface plasmon resonance biosensor for serodiagnosis. Anal. Chem. 2007, 79, 5703–5710, doi:10.1021/ac070433l.
Gillis, E.H.; Gosling, J.P.; Sreenan, J.M.; Kane, M. Development and validation of a biosensor-based immunoassay for proges-terone in bovine milk. J. Immunol. Methods 2002, 267, 131–138, doi:10.1016/s0022-1759(02)00166-7.
Mohseni, S.; Moghadam, T.T.; Dabirmanesh, B.; Jabbari, S.; Khajeh, K. Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip. Biosens. Bioelectron. 2016, 81, 510–516, doi:10.1016/j.bios.2016.03.038.
Ziblat, R.; Lirtsman, V.; Davidov, D.; Aroeti, B. Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells. Biophys. J. 2006, 90, 2592–2599, doi:10.1529/biophysj.105.072090.
Lee, S.H.; Ko, H.J.; Park, H.H. Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens. Bioelectron. 2009, 25, 55–60, doi:10.1016/j.bios.2009.06.007.
Yang, N.; Su, X.; Tjong, V.; Knoll, W. Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein–DNA binding. Biosens. Bioelectron. 2007, 22, 2700–2706, doi:10.1016/j.bios.2006.11.012.
Jiang, T.; Minunni, M.E.; Wilson, P.K.; Zhang, J.; Turner, A.P.F.; Mascini, M. Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. Biosens. Bioelectron. 2005, 20, 1939–1945, doi:10.1016/j.bios.2004.08.040.
Hide, M.; Tsutsui, T.; Sato, H.; Nishimura, T.; Morimoto, K.; Yamamoto, S.; Yoshizato, K. Real-time analysis of lig-and-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Anal. Biochem. 2002, 302, 28–37, doi:10.1006/abio.2001.5535.
Tanaka, M.; Hiragun, T.; Tsutsui, T.; Yanase, Y.; Suzuki, H.; Hide, M. Surface plasmon resonance biosensor detects the downstream events of active PKCβ in antigen-stimulated mast cells. Biosens. Bioelectron. 2008, 23, 1652–1658, doi:10.1016/j.bios.2008.01.025.
Yanase, Y.; Suzuki, H.; Tsutsui, T.; Hiragun, T.; Kameyoshi, Y.; Hide, M. The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens. Bioelectron. 2007, 22, 1081–1086, doi:10.1016/j.bios.2006.03.011.
Chabot, V.; Cuerrier, C.M.; Escher, E.; Aimez, V.; Grandbois, M.; Charette, P. Biosensing based on surface plasmon resonance and living cells. Biosens. Bioelectron. 2009, 24, 1667–1673, doi:10.1016/j.bios.2008.08.025.
Kosaihira, A.; Ona, T. Rapid and quantitative method for evaluating the personal therapeutic potential of cancer drugs. Anal. Bioanal. Chem. 2008, 391, 1889–1897, doi:10.1007/s00216-008-2152-3.
Nishijima, H.; Kosaihira, A.; Shibata, J.; Ona, T. Development of signaling echo method for cell-based quantitative efficacy evaluation of anti-cancer drugs in apoptosis without drug presence using high-precision surface plasmon resonance sensing. Anal. Sci. 2010, 26, 529–534, doi:10.2116/analsci.26.529.
Maltais, J.-S.; Denault, J.-B.; Gendron, L.; Grandbois, M. Label-free monitoring of apoptosis by surface plasmon resonance de-tection of morphological changes. Apoptosis 2012, 17, 916–925, doi:10.1007/s10495-012-0737-y.