Forecasting Plant and Crop Disease: Comparison
Please note this is a comparison between Version 4 by Lily Guo and Version 3 by Francesca Maridina Malloci.

Every year, plant diseases cause a significant loss of valuable food crops around the world. The plant and crop disease management practice implemented in order to mitigate damages have changed considerably. Today, through the application of new information and communication technologies, it is possible to predict the onset or change in the severity of diseases using modern big data analysis techniques. In this paper, we present an analysis and classification of research studies conducted over the past decade that forecast the onset of disease at a pre-symptomatic stage (i.e., symptoms not visible to the naked eye) or at an early stage. We examine the specific approaches and methods adopted, pre-processing techniques and data used, performance metrics, and expected results, highlighting the issues encountered. The results of the study reveal that this practice is still in its infancy and that many barriers need to be overcome.

  • plant disease prediction
  • precision agriculture
  • machine learning
  • artificial intelligence
  • deep learning
  • food security
  • review
Please wait, diff process is still running!

References

  1. Food and Agriculture Organization of the United Nations. Plant Health and Food Security; International Plant Protection Convention: Roma, Itay, 2017.
  2. Food and Agriculture Organization of the United Nations. The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk; Earthscan: London, UK, 2011.
  3. Fenu, G.; Malloci, F.M. Artificial Intelligence Technique in Crop Disease Forecasting: A Case Study on Potato Late Blight Prediction. In International Conference on Intelligent Decision Technologies (IDT); Springer: Singapore, 2020; Volume 193, pp. 79–89.
  4. Rong, L.; Liu, D.; Pedersen, E.F.; Zhang, G. The effect of wind speed and direction and surrounding maize on hybrid ventilation in a dairy cow building in Denmark. Energy Build. 2015, 86, 25–34.
  5. Das, T.; Majumdar, M.H.D.; Devi, R.T.; Rajesh, T. Climate change impacts on plant diseases. SAARC J. Agric. 2016, 14, 200–209.
  6. Newbery, F.; Qi, A.; Fitt, B.D. Modelling impacts of climate change on arable crop diseases: Progress, challenges and applications. Curr. Opin. Plant Biol. 2016, 32, 101–109.
  7. Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224.
  8. Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34.
  9. Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2020, 100–187.
  10. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111–402.
  11. Mekala, M.S.; Viswanathan, P. A Survey: Smart agriculture IoT with cloud computing. In Proceedings of the 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Vellore, India, 10–12 August 2017; pp. 1–7.
  12. Pierce, F.J.; Nowak, P. Aspects of precision agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1999; Volume 67, pp. 1–85.
  13. Semmens, K.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.G.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170.
  14. Fenu, G.; Malloci, F.M. LANDS DSS: A Decision Support System For Forecasting Crop Disease In Southern Sardinia. Int. J. Decis. Support Syst. Technol. IJDSST 2021, 13, 21–33.
  15. Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37.
  16. Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69.
  17. Milioto, A.; Lottes, P.; Stachniss, C. Real-Time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots Leveraging Background Knowledge in CNNs. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2229–2235.
  18. Fu, L.; Feng, Y.; Majeed, Y.; Zhang, X.; Zhang, J.; Karkee, M.; Zhang, Q. Kiwifruit detection in field images using Faster R-CNN with ZFNet. IFAC Pap. 2018, 51, 45–50.
  19. Cheema, M.J.M.; Khan, M.A. Information Technology for Sustainable Agriculture. In Innovations in Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2019; pp. 585–597.
  20. Fenu, G.; Malloci, F.M. An Application of Machine Learning Technique in Forecasting Crop Disease. In Proceedings of the 2019 3rd International Conference on Big Data Research, Paris, France, 20–22 November 2019; pp. 76–82.
  21. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674.
  22. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90.
  23. Eastburn, D.; McElrone, A.; Bilgin, D. Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathol. 2011, 60, 54–69.
  24. Juroszek, P.; von Tiedemann, A. Linking plant disease models to climate change scenarios to project future risks of crop diseases: A review. J. Plant Dis. Prot. 2015, 122, 3–15.
  25. Classen, A.T.; Sundqvist, M.K.; Henning, J.A.; Newman, G.S.; Moore, J.A.; Cregger, M.A.; Moorhead, L.C.; Patterson, C.M. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 2015, 6, 1–21.
  26. Stevens, R. An Advanced Treatise. Plant Pathol. 1960, 3, 357–429.
  27. Francl, L. The Disease Triangle: A plant pathological paradigm revisited. Plant Health Instr. 2001.
  28. Agrios, G.N. Introduction to plant pathology. In Plant Pathology, 3rd ed.; Academic Press: San Diego, CA, USA, 1988; pp. 3–40.
  29. Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107.
  30. Madden, L.V.; Hughes, G.; Van Den Bosch, F. The Study of Plant Disease Epidemics; The American Phytopatological Society: Saint Paul, MN, USA, 2007.
  31. Nutter, F., Jr.; Teng, P.; Shokes, F. Disease assessment terms and concepts. Plant Dis. 1991, 75, 1187–1188.
  32. Kim, Y.H.; Yoo, S.J.; Gu, Y.H.; Lim, J.H.; Han, D.; Baik, S.W. Crop Pests Prediction Method Using Regression and Machine Learning Technology: Survey. IERI Procedia 2014, 6, 52–56.
  33. Yandun Narvaez, F.; Reina, G.; Torres-Torriti, M.; Kantor, G.; Cheein, F.A. A Survey of Ranging and Imaging Techniques for Precision Agriculture Phenotyping. IEEE/ASME Trans. Mechatron. 2017, 22, 2428–2439.
  34. Elavarasan, D.; Vincent, D.R.; Sharma, V.; Zomaya, A.Y.; Srinivasan, K. Forecasting yield by integrating agrarian factors and machine learning models: A survey. Comput. Electron. Agric. 2018, 155, 257–282.
  35. Kaur, S.; Pandey, S.; Goel, S. Plants disease identification and classification through leaf images: A survey. Arch. Comput. Methods Eng. 2019, 26, 507–530.
  36. Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659.
  37. Zhang, J.; Yuan, L.; Nie, C.; Wei, L.; Yang, G. Forecasting of powdery mildew disease with multi-sources of remote sensing information. In Proceedings of the 2014 The Third International Conference on Agro-Geoinformatics, Beijing, China, 11–14 August 2014; pp. 1–5.
  38. Duarte-Carvajalino, J.M.; Alzate, D.F.; Ramirez, A.A.; Santa-Sepulveda, J.D.; Fajardo-Rojas, A.E.; Soto-Suárez, M. Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sens. 2018, 10, 1513.
  39. Sannakki, S.; Rajpurohit, V.; Sumira, F.; Venkatesh, H. A neural network approach for disease forecasting in grapes using weather parameters. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–5.
  40. Wang, H.; Ma, Z. Prediction of wheat stripe rust based on support vector machine. In Proceedings of the 2011 Seventh International Conference on Natural Computation, Shanghai, China, 26–28 July 2011; Volume 1, pp. 378–382.
  41. Ahmed, N.; Khan, M.; Khan, N.; Ali, M. Prediction of potato late blight disease based upon environmental factors in Faisalabad. Pak. J. Plant Pathol. Microbiol. S 2015, 3.
  42. Xiao, Q.; Li, W.; Chen, P.; Wang, B. Prediction of Crop Pests and Diseases in Cotton by Long Short Term Memory Network. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 11–16.
  43. Jawade, P.; Chaugule, D.; Patil, D.; Shinde, H. Disease Prediction of Mango Crop Using Machine Learning and IoT. In International Conference on E-Business and Telecommunications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 254–260.
  44. Patil, S.S.; Thorat, S.A. Early detection of grapes diseases using machine learning and IoT. In Proceedings of the 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), Mysore, India, 12–13 August 2016; pp. 1–5.
  45. Toroitich, P.K.; Orero, J. Real-time monitoring model for early detection of crop diseases. In Pan African Conference on Science, Computing and Telecommunications (PACT); Strathmore University: Nairobi, Kenya, 2017.
  46. Malicdem, A.R.; Fernandez, P.L. Rice blast disease forecasting for northern Philippines. WSEAS Trans. Inf. Sci. Appl. 2015, 12, 120–129.
  47. Gu, Y.; Yoo, S.; Park, C.; Kim, Y.; Park, S.; Kim, J.; Lim, J. BLITE-SVR: New forecasting model for late blight on potato using support-vector regression. Comput. Electron. Agric. 2016, 130, 169–176.
  48. Kim, Y.; Roh, J.H.; Kim, H.Y. Early forecasting of Rice blast disease using long short-term memory recurrent neural networks. Sustainability 2018, 10, 34.
  49. Gibert, K.; Sànchez–Marrè, M.; Izquierdo, J. A survey on pre-processing techniques: Relevant issues in the context of environmental data mining. AI Commun. 2016, 29, 627–663.
  50. Sharma, P.; Singh, B.; Singh, R. Prediction of Potato Late Blight Disease Based Upon Weather Parameters Using Artificial Neural Network Approach. In Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–13.
  51. Singh, B.; Singh, R.; Bisen, T.; Kharayat, S. Disease Manifestation Prediction from Weather Data Using Extreme Learning Machine. In Proceedings of the 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), Nainital, India, 24–25 February 2018; pp. 1–6.
  52. Ghaffari, R.; Zhang, F.; Iliescu, D.; Hines, E.; Leeson, M.; Napier, R.; Clarkson, J. Early detection of diseases in tomato crops: An Electronic Nose and intelligent systems approach. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010.
  53. de Oliveira Aparecido, L.E.; de Souza Rolim, G.; da Silva Cabral De Moraes, J.R.; Costa, C.T.S.; de Souza, P.S. Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases. Int. J. Biometeorol. 2020, 64, 671–688.
  54. Ardila, C.E.C.; Ramirez, L.A.; Ortiz, F.A.P. Spectral analysis for the early detection of anthracnose in fruits of Sugar Mango (Mangifera indica). Comput. Electron. Agric. 2020, 173, 105357.
  55. Hsieh, J.Y.; Huang, W.; Yang, H.T.; Lin, C.C.; Fan, Y.C.; Chen, H. Building the Rice Blast Disease Prediction Model based on Machine Learning and Neural Networks; Technical Report; EasyChair: Manchester, UK, 2019.
  56. Bhatia, A.; Chug, A.; Singh, A.P. Hybrid SVM-LR Classifier for Powdery Mildew Disease Prediction in Tomato Plant. In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020.
  57. Bhatia, A.; Chug, A.; Singh, A.P. Application of extreme learning machine in plant disease prediction for highly imbalanced dataset. J. Stat. Manag. Syst. 2020, 23, 1059–1068.
  58. Berger, R. Description and application of some general models for plant disease epidemics. Plant Dis. Epidemiol. 1989, 2, 125–149.
  59. Bhagawati, R.; Bhagawati, K.; Singh, A.; Nongthombam, R.; Sarmah, R.; Bhagawati, G. Artificial neural network assisted weather based plant disease forecasting system. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 4168–4173.
  60. Katsantonis, D.; Kadoglidou, K.; Dramalis, C.; Puigdollers, P. Rice blast forecasting models and their practical value: A review. Phytopathol. Mediterr. 2017, 56, 187–216.
  61. University of Caifornia and Resources. California PestCast: Disease Model Database. Available online: http://ipm.ucanr.edu/DISEASE/DATABASE/diseasemodeldatabase.htm (accessed on 11 January 2021).
  62. Nettleton, D.F.; Katsantonis, D.; Kalaitzidis, A.; Sarafijanovic-Djukic, N.; Puigdollers, P.; Confalonieri, R. Predicting rice blast disease: Machine learning versus process-based models. BMC Bioinform. 2019, 20.
  63. Ahmadi, P.; Muharam, F.M.; Ahmad, K.; Mansor, S.; Seman, I.A. Early Detection of Ganoderma Basal Stem Rot of Oil Palms Using Artificial Neural Network Spectral Analysis. Plant Dis. 2017, 101, 1009–1016.
  64. Yeh, Y.H.; Chung, W.C.; Liao, J.Y.; Chung, C.L.; Kuo, Y.F.; Lin, T.T. Strawberry foliar anthracnose assessment by hyperspectral imaging. Comput. Electron. Agric. 2016, 122, 1–9.
  65. Rumpf, T.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; Dehne, H.W.; Plümer, L. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010, 74, 91–99.
  66. Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers. Sci. Rep. 2017, 7.
  67. Zhang, J.; Pu, R.; Yuan, L.; Huang, W.; Nie, C.; Yang, G. Integrating Remotely Sensed and Meteorological Observations to Forecast Wheat Powdery Mildew at a Regional Scale. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4328–4339.
  68. Zhao, J.; Xu, C.; Xu, J.; Huang, L.; Zhang, D.; Liang, D. Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale. Australas. Plant Pathol. 2018, 47, 53–61.
  69. Kaur, K.; Kaur, M. Prediction of plant disease from weather forecasting using data mining. Int. J. Future Revolut. Comput. Sci. Commun. Eng. 2018, 4, 685–688.
  70. Badnakhe, M.R.; Durbha, S.S.; Jagarlapudi, A.; Gade, R.M. Evaluation of Citrus Gummosis disease dynamics and predictions with weather and inversion based leaf optical model. Comput. Electron. Agric. 2018, 155, 130–141.
  71. Lu, W.; Newlands, N.K.; Carisse, O.; Atkinson, D.E.; Cannon, A.J. Disease Risk Forecasting with Bayesian Learning Networks: Application to Grape Powdery Mildew (Erysiphe necator) in Vineyards. Agronomy 2020, 10, 622.
  72. Wang, H.; Zhang, S.; Shao, Y.; Zhang, Y. Plant Disease Forecasting Based on Wavelet Transformation and Support Vector Machine. Int. J. Res. Agric. Sci. 2018, 5, 90–94.
  73. Yang, X.; Nie, C.; Zhang, J.; Feng, H.; Yang, G. A Bayesian Network Model for Yellow Rust Forecasting in Winter Wheat. In International Conference on Computer and Computing Technologies in Agriculture (CCTA); Springer: Berlin/Heidelberg, Germany, 2017; Volume 545, pp. 65–75.
More
ScholarVision Creations