Wood-based pellets in Southeastern US: Comparison
Please note this is a comparison between Version 2 by Lily Guo and Version 1 by Keith Kline.

Effects of pellet production on selected Sustainability Development Goals (SDGs) are evaluated using industry information, available energy consumption data, and published research findings. Challenges associated with identifying relevant SDG goals and targets for this particular bioenergy supply chain and potential deleterious impacts are discussed. We find that production of woody pellets in the SE US and shipments to displace coal for energy in Europe generate positive effects on affordable and clean energy (SDG 7), decent work and economic growth (SDG 8), industry innovation and infrastructure (SDG 9), responsible consumption and production (SDG 12), and life on land (SDG 15). Primary strengths of the pellet supply chain in the SE US are the provisioning of employment in depressed rural areas and the displacement of fossil fuels. Weaknesses are associated with potential impacts on air, water, and biodiversity that arise if the resource base and harvest activities are improperly managed. The SE US pellet supply chain provides an opportunity for transition to low-carbon industries and innovations while incentivizing better resource management.

  • bioenergy
  • forests
  • pellets
  • sustainability SDGs
Please wait, diff process is still running!

References

  1. O’Connell, B.M.; LaPoint, E.B.; Turner, J.A.; Ridley, T.; Pugh, S.A.; Wilson, A.M.; Waddell, K.L.; Conkling, B.L. The Forest Inventory and Analysis Database: Database Description and User Guide Version 6.0.1 for Phase 2; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2014; 748p. Available online: https://www.fia.fs.fed.us/library/database-documentation/historic/ver6/FIADB_user%20guide_6-0_p2_5-6-2014.pdf (accessed on 14 December 2020).
  2. Mann, C.C. 1491: New Revelations of the Americas Before Columbus; Knopf: New York, NY, USA, 2005.
  3. Delcourt, H.R.; Delcourt, P.A. Pre-Columbian Native American use of fire on Southern Appalachian landscapes. Conserv. Biol. 1997, 11, 1010–1014.
  4. Cowell, M.C. Historical change in vegetation and disturbance on the Georgia Piedmont. Am. Midl. Nat. 1998, 140, 78–89.
  5. Flatley, W.T.; Lafon, C.W.; Grossino-Mayer, H.D.; LaForest, L.B. Fire history, related to climate and land use in three southern Appalachian landscapes in the eastern United States. Ecol. Adapt. 2013, 23, 1250–1266, doi:10.1890/12-1752.1.
  6. Klein Goldewijk, K.; Beusen, A.; Doelman, J.; Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953.
  7. Oswalt, S.N.; Smith, W.B.; Miles, P.D.; Pugh, S.A. Forest resources of the United States, 2017. A technical document supporting the Forest Service 2020 RPA Assessment (WO-97) 2019. Available online: https://www.fs.usda.gov/treesearch/pubs/57903 (accessed on 19 December 2020).
  8. Hurtt, G.C.; Frolking, S.; Fearon, M.G.; Moore, B.; Shevliakova, E.; Malyshev, S.; Pacala, S.W.; Houghton, R.A. The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood harvest activity, and resulting secondary lands. Glob. Change Biol. 2006, 12, 1208–1229.
  9. Schweizer, P.E.; Matlack, G.R. Factors driving land use change and forest distribution on the coastal plain of Mississippi, USA. Landsc. Urban Plan. 2014, 121, 55–64.
  10. Gragson, T.L.; Bolstad, P.V. Land use legacies and the future of Southern Appalachia. Soc. Nat. Res. 2006, 19, 175–190, doi:10.1080/08941920500394857.
  11. Wear, D.N.; Greis, J.G. The southern forest futures project: Technical Report SRS-178. USDA-Forest Service, Southern Research Station: Asheville, NC, USA, 2012; p. 552. Available online: https://www.srs.fs.usda.gov/pubs/42526 (accessed on 19 December 2020).
  12. Wear, D.N.; Gries, J.G. Southern forest resource assessment. Gen. Technical Report SRS–53. U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2002; 635p.
  13. Wear, D.N.; Carter, D.R.; Prestemon, J. The U.S. South’s Timber Sector in 2005: A prospective analysis of recent change. General Technical Report SRS-99, USDA Forest Service Southern Research Station: Ashville, NC, USA, 2012; 44p. Available online: https://www.srs.fs.usda.gov/sustain/report/pdf/gtr-srs-99.pdf (accessed on 19 December 2020).
  14. Sun, X.; Zhang, D.; Butler, B.J. Timberland ownerships and reforestation in the Southern United States. For. Sci. 2015, 61, 336–343.
  15. Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Forest disturbances and climate change. BioScience 2001, 51, 723–734.
  16. United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development (adopted on 25 September 2015) A/RES/70/1 2015. Available online: https://www.refworld.org/docid/5 7b6e3e44.html (accessed on 16 November 2020).
  17. United Nations. The Sustainable Development Goals Report 2019 Database 2019. Available online: https://unstats.un.org/sdgs/indicators/database/ (accessed on 31 May 2020).
  18. United Nations. SDG Indicators. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development. 2020. Available online: https://unstats.un.org/sdgs/indic ators/indicators-list/ (accessed on 18 November 2020).
  19. United Nations. SDG #15, Why It Matters—Life on Land, Facts and Figures. Available online: https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/07/15_Why-It-Matters-2020.pdf (accessed on 16 November 2020).
  20. International Energy Agency. Uneven Progress on Achieving Access to Sustainable Energy for All, 2017. Available online: https://www.iea.org/newsroom/news/2017/april/uneven-progress-on-achieving-access-to-sustainable-energy-for-all.html (accessed on 31 May 2020).
  21. Eggers, J.; Melin, Y.; Lundström, J.; Bergström, D.; Öhman, K. Management strategies for wood fuel harvesting—Trade-offs with biodiversity and forest ecosystem services. Sustainability 2020, 12, 4089, doi:10.3390/su12104089.
  22. Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group 3 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014.
  23. Efroymson, R.A.; Dale, V.H.; Bielicki, J.; McBride, A.; Smith, R.; Parish, E.; Schweizer, P.; Kline, K.L.; Shaw, D. Environmental indicators of biofuel sustainability: What about context? Environ. Manag. 2013, 51, 291–306, doi:10.1007/s00267-012-9983-6.
  24. Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaij, A.; et al. Bioenergy and climate change mitigation: An assessment. Glob. Change Biol. Bioenergy 2015, 7, 916–944.
  25. IEA Bioenergy Technology Collaboration Programme. Inter-Task Projects for 2019–2022 Triennium, 2020. Available online: https://www.ieabioenergy.com/blog/task/inter-task-projects/ (accessed on 16 November 2020).
  26. Berndes, G.; Cowie, A.; Pelkmans, L. IEA Bioenergy Bulletin: The Use of Forest Biomass for Climate Change Mitigation: Dispelling Some Misconceptions, 2020. Available online: https://www.ieabioenergy.com/wp-content/uploads/2020/08/The-use-of-biomass-for-climate-change-mitigation-dispelling-some-misconceptions-August-2020-Rev1.pdf (accessed on 17 November 2020).
  27. Matthews, R.; Hogan, G.; Mackie, E. Carbon Impacts of Biomass Consumed in the EU: Supplementary Analysis and Interpretation for the European Climate Foundation, 2018. Available online: https://www.drax.com/wp-content/uploads/2019/10/CIB-Summary-report-for-ECF-v10.5-May-20181.pdf (accessed on 17 November 2020).
  28. Jonker, J.G.G.; Junginger, M.; Faaij, A. Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States. Glob. Change Biol. Bioenergy 2014, 6, 371–389.
  29. Rolls, W.; Forster, P.M. Quantifying forest growth uncertainty on carbon payback times in a simple biomass carbon model. Environ. Res. Commun. 2020, 2, 045001, doi:10.1088/2515-7620/ab7ff3.
  30. USDA Forest Inventory Analysis Timber Products Output Studies, TPO Interactive Reporting Tool. Available online: https://www.fia.fs.fed.us/program-features/tpo/ (accessed on 16 November 2020).
  31. Brandeis, C.; Abt, K.L. Roundwood use by southern wood pellet mills: Findings from Timber Product Output mill surveys. J. For. 2019, 117, 427–434, doi:10.1093/jofore/fvz042.
  32. National Association of State Foresters. Protecting Water Quality through State For. Best Management Practices; National Association of State Foresters: Washington, DC, USA, 2015. Available online: http://www.stateforesters.org/sites/default/files/issues-and-policies-document-attachments/Protecting_Water_ Quality_through_State_For._BMPs_FINAL.pdf (accessed on 18 November 2020).
  33. Anderson, P.; Powell, K. Dirty deception: How the wood biomass industry skirts the Clean Air Act. Reports sponsored by the Environmental Integrity Project (April 26) 2018. Available online: https://www.enviro nmentalintegrity.org/wp-content/uploads/2017/02/Biomass-Report.pdf (accessed on 17 November 2020).
  34. Schelhas, J.; Hitchner, S.; Brosius, J.P. Envisioning and implementing wood-based bioenergy systems in the southern United States: Imaginaries in everyday talk. Energy Res. Soc. Sci. 2018, 35, 182–192, doi:10.1016/j.erss.2017.10.042.
  35. Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon sequestration, biomass energy, or both? Sci. Adv. 2020, 6, doi:10.1126/sciadv.aay6792.
  36. International Labour Organization. Guidelines for a Just Transition towards Environmentally Sustainable Economies and Societies for All, 2015. Available online: https://www.ilo.org/global/topics/green-jobs/publications/WCMS_432859/lang--en/index.htm (accessed on 18 November 2020).
  37. Dahal, R.P.; Aguilar, F.X.; McGarvey, R.G.; Becker, D.; Abt, K.L. Localized economic contributions to renewable wood-based biopower generation. Energy Econ. 2020, 91, doi:10.1016/j.eneco.2020.104913.
  38. Henderson, J.E.; Joshi, O.; Parajuli, R.; Hubbard, W.G. A regional assessment of wood resource sustainability and potential economic impact of the wood pellet market in the U.S. south. Biomass Bioenergy 2017, 105, 421–427, doi:10.1016/j.biombioe.2017.08.003.
  39. Aguilar, F.X.; Mirzaee, A.; McGarvey, R.G.; Shifley, S.R.; Burtraw, D. Expansion of US wood pellet industry points to positive trends but the need for continued monitoring. Sci. Rep. 2020, 10, 18607, doi:10.1038/s41598-020-75403-z.
  40. Olesen, A.S.; Kittler, B.; Price, W.; Aguilar, F.X. Environmental Implications of Increased Reliance of the EU on Biomass from the South East US. European Commission Report ENV.B.1/ETU/2014/0043; Publications Office of the European Union: Brussels, Belgium, 2016, doi:10.2779/30897.
  41. Duden, A.S.; Verweij, P.A.; Junginger, H.M.; Abt, R.C.; Henderson, J.D.; Dale, V.H.; Kline, K.L.; Karssenberg, D.; Verstegen, J.A.; Faaij, A.P.C; et al. Modeling the impacts of wood pellet demand on forest dynamics in southeastern United States. Biofuels Bioprod. Biorefin. 2017, doi:10.1002/bbb.1803.
  42. Abt, K.L.; Abt, R.C.; Galik, C.S.; Skog, K.E. Effect of Policies on Pellet Production and Forests in the US South; USDA Forest Service Southern Research Station: Asheville, NC, USA, 2014.
  43. Nepal, P.; Abt, K.L.; Skog, K.E.; Prestemon, J.P.; Abt, R.C. Projected market competition for wood biomass between traditional products and energy: A simulated interaction of US regional, national, and global forest product markets. For. Sci. 2018, 65, 14–26, doi:10.1093/forsci/fxy031.
  44. Kline, K.L.; Dale, V.H. Protecting biodiversity through forest management: Lessons learned and strategies for success. Int. J. Environ. Sci. Nat. Res. 2020, 26, 556194, doi:10.19080/IJESNR.2020.26.556194.
  45. Dezember, R. Man who steered timber subsidy program calls it his biggest regret. The Wall Street Journal 2018. Available online: https://www.wsj.com/articles/man-who-steered-timber-subsidy-program-calls-it-his-biggest-regret-1539946801 (accessed on 19 December 2020).
  46. King, J.S.; Ceulemans, R.; Albaugh, J.M.; Dillen, S.Y.; Domec, J.C.; Fichot, R.; Fischer, M.; Leggett, Z.; Sucre, E.; Trnka, M.; et al. The challenge of lignocellulosic bioenergy in a water-limited world. BioScience 2013, 63, 102–117.
  47. Gagnon, B.; Kline, K.L. Personal communications in regular meetings of the WB2-SDG Inter-Task case study team, May–November, 2020. Updates will be available online: https://www.ieabioenergy.com/blog/task/inter-task-projects/ (accessed on 14 January 2021).
  48. Kline, K.L.; Parish, E.S.; Dale, V.H. The importance of reference conditions in assessing effects of bioenergy wood pellets produced in the southeastern United States. In World Biomass 2018–2019, DCM Productions: York, UK 2018; pp. 82–87. Available online: http://dcm-productions.co.uk/world-biomass-2018-2019/ (accessed on 17 November 2020).
  49. Koponen, K.; Soimakallio, S.; Kline, K.L.; Cowie, A.; Brandão, M. Quantifying the climate effects of bioenergy—Choice of reference system. Renew. Sustain. Energy Rev. 2018, 81, 2271–2280, doi:10.1016/j.rser.2017.05.
  50. Norman, S.P.; Hargrove, W.W.; Spruce, J.P.; Christie, W.M.; Schroeder, S.W. Highlights of Satellite-Based Forest Change Recognition and Tracking Using the for Warn System. Gen. Tech. Rep. SRS-GTR-180. USDA-Forest Service, Southern Research Station: Asheville, NC, USA 2012; 30p. Available online: http://www.srs.fs.usda.gov/pubs/44239 (accessed on 31 May 2020).
  51. Butler, S.M.; Butler, B.J.; Markowski-Lindsay, M. Family forest owner characteristics shaped by life cycle, cohort, and period effects. Small Scale For. 2017, 16, 1–18.
  52. Varner, J.M.; Gordon, D.R.; Putz, E.; Hiers, J.K. Restoring fire to long-unburned Pinus palustris ecosystems:
  53. Dale, V.H.; Parish, E.; Kline, K.L.; Tobin, E. How is wood-based pellet production affecting forest conditions in the southeastern United States? For. Ecol. Manag. 2017, 396, 143–149, doi:10.1016/j.foreco.2017.03.022.
  54. Parish, E.S.; Dale, V.H.; Tobin, E.; Kline, K.L. Dataset of timberland variables used to assess forest conditions in two Southeastern United States’ fuelsheds. Data Brief 2017, 13, 278–290, doi:10.1016/j.dib.2017.05.048.
  55. Dale, V.H.; Kline, K.L.; Parish, E.S.; Eichler, S.E. Engaging stakeholders to assess landscape sustainability. Landsc. Ecol. 2019, 34, 1199–1218, doi:10.1007/s10980-019-00848-1.
  56. Enviva Forest Conservation Fund. Available online: https://envivaforestfund.org/ (accessed on 18 November 2020).
More
Video Production Service