Hydrogen Production in Arctic Region: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 4 by Rita Xu.

The development of markets for low-carbon energy sources requires reconsideration of issues related to extraction and use of oil and gas. Significant reserves of hydrocarbons are concentrated in Arctic territories, e.g., 30% of the world’s undiscovered natural gas reserves and 13% of oil. Associated petroleum gas, natural gas and gas condensate could be able to expand the scope of their applications. Natural gas is the main raw material for the production of hydrogen and ammonia, which are considered promising primary energy resources of the future, the oxidation of which does not release CO2. Complex components contained in associated petroleum gas and gas condensate are valuable chemical raw materials to be used in a wide range of applications. This article presents conceptual Gas-To-Chem solutions for the development of Arctic oil and gas condensate fields, taking into account the current trends to reduce the carbon footprint of products, the formation of commodity exchanges for gas chemistry products, as well as the course towards the creation of hydrogen energy. The concept is based on modern gas chemical technologies with an emphasis on the production of products with high added value and low carbon footprint.

  • hydrogen production
  • methanol production
  • ammonia production
  • storage of hydrogen
  • hydrogen transport
  • development of the Arctic
  • sustainable development
Please wait, diff process is still running!

References

  1. Alekseeva, M.B.; Bogachev, V.F.; Gorenburgov, M.A.; Systemic Diagnostics of the Arctic Industry Development Strategy. J. Min. Inst. 2019, 238, 450-458, 10.31897/PMI.2019.4.450.
  2. Vasiltsov, V.S.; Vasiltsova, V.M.; Strategic Planning of Arctic Shelf Development Using Fractal Theory Tools. J. Min. Inst. 2018, 234, 663-672, 10.31897/PMI.2018.6.663.
  3. Evangelopoulou, S.; De Vita, A.; Zazias, G.; Capros, P.; Energy System Modelling of Carbon-Neutral Hydrogen as an Enabler of Sectoral Integration within a Decarbonization Pathway. Energies 2019, 12, 2551, 10.3390/en12132551.
  4. A Hydrogen Strategy for a Climate Neutral Europe. Available online: https://ec.europa.eu/commission/presscorner/detail/en/FS_20_1296
  5. Energy Strategy of the Russian Federation for the Period Up to 2035. Available online: https://minenergo.gov.ru/node/1026
  6. Eckpunktepapier der Ostdeutschen Kohleländer zur Entwicklung Einer Regionalen Wasserstoffwirtschaft. Available online: https://www.medienservice.sachsen.de/medien/medienobjekte/130485/download
  7. Ilinova, А.А.; Romasheva, N.V.; Stroykov, G.A.; Prospects and social effects of carbon dioxide sequestration and utilization projects. J. Min. Inst. 2020, 244, 493-502, 10.31897/PMI.2020.4.12.
  8. Tcvetkov, P.S.; Cherepovitsyn, A.E.; Fedoseev, S.V.; The Changing Role of CO2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects. Sustainability 2019, 11, 1-19, 10.3390/su11205834.
  9. Melaina, M.W.; Antonia, O.; Penev, M. Blending Hydrogen into Natural Gas Pipeline. Networks: A Review of Key Issues. Technical Report of National Renewable Energy Laboratory: USA 2013. Available online: https://www.nrel.gov/docs/fy13osti/51995.pdf
  10. Litvinenko, V.; The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas. Resources 2020, 9, 59, 10.3390/resources9050059.
  11. Saphin, A.Kh. Production of Hydrogen Plant Sand Construction of Hydrogen Infrastructure in Industrialized Countries. Technical and Investment Indicators of Installation Sand Hydrogen Stations; Issue 2; LLC Prima-Khimmash: St. Petersburg, Russia, 2015; p. 226.
  12. Salikhov, K.M.; Stoyanov, N.D.; Stoyanova, T.V.; Using Optical Activation to Create Hydrogen and Hydrogen-Containing Gas Sensors. Key Eng. Mater. 2020, 854, 87-93, 10.4028/www.scientific.net/kem.854.87.
  13. Parkinson, B.; Tabatabaei, M.; Upham, D.C.; et al.; Hydrogen production using methane: Techno economics of decarbonizing fuels and chemicals. Int. J. Hydrogen Energy 2018, 43, 2540-2555, 10.1016/j.ijhydene.2017.12.081.
  14. Susmozas, A.; Iribarren, D.; Dufour, J.; Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe. Resources 2015, 4, 398-411, 10.3390/resources4020398.
  15. Dahl, P.Y.; Christensen, T.S.; Winter-Madsen, S. Autothermal Reforming Technology for modern large-capacity methanol plants. In Proceedings of the International conference Nitrogen and Syngas, Paris, France, 24–27 February 2014; p. 14.
  16. Dawood, F.; Anda, M.; Shafiullah, G.M.; Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2019, 7, 107-154, 10.1016/j.ijhydene.2019.12.059.
  17. Liu, K.; Song, C.; Subraman, V.; Hydrogen and Syngas Production and Purification Technologies. John Wiley&Sons: Hoboken, NJ, USA 2010, 1, 564, 10.1002/9780470561256.
  18. Machlin, V.A.; Cetaruk, J.R. Modern technologies of producing synthesis gas from natural and associated gas. Sci. Tech. J. Chem. Ind. Today 2010, 3, 6–17.
  19. Indarto, A.; Palguandi, J. Syngas Production, Application and Environmental Impact; Nova Science Publishers: New York, NY, USA, 2013, p. 365.
  20. Zagashvili, U.V.; Levain, A.A.; Kuzmin, A.M.; Aniskevich, Yu.V.; Vasilieva, O.V. Technology of hydrogen production using small transportable units based on high-temperature syngas generators. Sci. Tech. J. Vopr. Mater. Edeniya 2017, 2, 92–109.
  21. Zagashvili, U.V.; Levain, A.A.; Kuzmin, A.M. Principles of design of three-component gas synthesis gas. Oil and gas. LLC Obrakademnauka 2017, 4, 9–16.
  22. Buslaev, G.V. Technology of associated petroleum gas processing at remote Arctic oil and gas facilities to produce synthetic liquid hydrocarbons. In Proceedings of the Plenary report at the XIX International Youth Scientific Conference SeverGeoEcoTech-2018, Ukhta, Russia, 21–23 March 2018.
  23. Abalaev, A.V.; Del Toro Fonseca, D.A.; Lewiner, I.I.; Vyatkin, Y.L. Optimization of the operating mode of shelf reactors with a fixed layer in the process of aromatization of hydrocarbons C5. Scientific service on the Internet: Search for new solutions. In Proceedings of the International Supercomputing Conference, Hamburg, Germany, 17–21 June 2012; pp. 273–277.
  24. Azhazha, V.M.; Tikhonovskiy, M.A. ; Shepelev, A.G. ; Kurilo, Yu.P. ; Ponomarenko, T.A. ; Vinogradov, D.V. Materials for Hydrogen Storage: Analysis of Development Trends Based on Data on Information Flows. Questions of Nuclear Science and Technology. Series: Vacuum, Pure Materials, Superconductors; National Scientific Center, Kharkiv Institute of Physics and Technology: Kharkov, Ukraine, 2006, pp. 145–153. Available online: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2006_1/article_2006_1_145.pdf
  25. Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A.; Dobrotvorskii, M.A.; Kuznetsov, V.G.; Matveeva, O.P.; Titov, S.A.; Voyt, A.P.; Yelets, D.I.; Luminescent properties of aluminum hydride. J. Lumin. 2015, 166, 162-166, 10.1016/j.jlumin.2015.05.023.
  26. Bazhin, V.Y.; Trushnikov, V.E.; Suslov, A.P.; Simulation of partial oxidation of natural gas in a resource-saving reactor mixer. IOP Conf. Ser. Mater. Sci. Eng. 2020, 862, 862, 10.1088/1757-899x/862/3/032076.
  27. Belousova, O.Y.; Kutepov, B.I. Textbook of Aromatization of Hydrocarbons on Pentasyl-Containing Catalysts; Khimiya: Moscow, Russia, 2000; p. 95.
  28. Bilera, I.V. Education of Fine Soot When Receiving the Synthesis Gas under Conditions of Combustion of Methane. In The Gas Chemistry; Volume 3. Billera, I.V., Borisov, A.A., Borunova, A.B., Kolbanoskiy, Yu.A., Korolev, Yu.M., Rossokhin, I.V., Troshin, I.V., Eds.; Metaprocess Ltd.: Saint-Brice-Courcelles, France, 2010; pp. 72–78.
  29. Cooper, H.; Donnis, B.B.L. Aromatic saturation of distillates: an overview. Appl. Catal. A Gen. 1996, 137, 203–223.
  30. Abanades, A.; Ruiz, E.; Ferruelo, E.M.; et al.; Experimental analysis of direct thermal methane cracking. Int. J. Hydrogen Energy 2011, 36, 12877–12886, 10.1016/j.ijhydene.2011.07.081.
  31. Abbas, H.F.; Wan Daud, W.M.A.; Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 2010, 35, 1160–1190, 10.1016/j.ijhydene.2009.11.036.
  32. Amin, A.M.; Croiset, E.; Epling, W.; Review of methane catalytic cracking for hydrogen production. Int. J. Hydrogen Energy 2011, 36, 2904–2935, 10.1016/j.ijhydene.2010.11.035.
  33. Bode, A.; Anderlohr, C.; Bernnat, J.; Flick, F.; Glenk, F.; Klingler, D.; Kolios, G.; Scheiff, F.; Wechsung, A.; Hensmann, M.; et al. Feste und fluide Produkte ausGas – FfPaG Schlussbericht BMBF: Germany, 2018.
  34. Geißler, T.; Plevan, M.; Abánades, A.; Heinzel, A.; Mehravaran, K.; Rathnam, R.; Rubbia, C.; Salmieri, D.; Stoppel, L.; Stuckrad, S.; et al.et al. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Int. J. Hydrogen Energy 2015, 40, 14134–14146, 10.1016/j.ijhydene.2015.08.102.
  35. Moliner, R.; Suelves, I.; Lazaro, M.; Moreno, O.; Thermocatalytic decomposition of methane over activated carbons: Influence of textural properties and surface chemistry. Int. J. Hydrogen Energy 2005, 30, 293-300, 10.1016/j.ijhydene.2004.03.035.
  36. Muradov, N.; Chen, Z.; Smith, F.; Fossil hydrogen with reduced CO2 emission: Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles. Int. J. Hydrogen Energy 2005, 30, 1149–1158, 10.1016/j.ijhydene.2005.04.005.
  37. Muradov, N.; Smith, F.; Huang, C.; T.-Raissi, A.; Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions. Catal. Today 2006, 116, 281-288, 10.1016/j.cattod.2006.05.070.
  38. Plevan, M.; Geißler, T.; Abanades, A.; Mehravaran, K.; Rathnam, R.; Rubbia, C.; Salmieri, D.; Stoppel, L.; Stückrad, S.; Wetzel, T.; et al. Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis. Int. J. Hydrogen Energy 2015, 40, 8020–8033, 10.1016/j.ijhydene.2015.04.062.
  39. Schultz, I.; Agar, D.W.; Decarbonization of fossil energy via methane pyrolysis using two reactor concepts: Fluid wall flow reactor and molten metal capillary reactor. Int. J. Hydrogen Energy 2015, 40, 11422–11427, 10.1016/j.ijhydene.2015.03.126.
  40. Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W.; The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci Rep. 2020, 10, 1-13, 10.1038/s41598-020-59481-7.
  41. Ostadi, M.; Paso, K.G.; Rodriguez-Fabia, S.; Oi, L.E.; Manenti, F.; Hillestad, M.; Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies 2020, 13, 4859, 10.3390/en13184859.
  42. Olivier, P.; Bourasseau, C.; Bouamama, P.; Low-temperature electrolysis system modelling: A review. Renew. Sustain. Energy Rev. 2017, 78, 280–300, 10.1016/j.rser.2017.03.099.
  43. Luo, Y.; Qing, Z.; Shaowei, S.; Brian, McE.; Dezhi, W.; Chunzheng, W.; Zhaojun, Q.; Jiming, B.; Ying, Y.; Shuo, C.; et al.Zhifeng, R. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 1-10, 10.1038/s41467-019-13092-7.
  44. Zhu, C.; Liu, C.; Fu, Y.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z.; Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B Environ. 2019, 242, 178-185, 10.1016/j.apcatb.2018.09.096.
  45. Hung, W.-H.; Xue, B.-Y.; Lin, T.-M.; Lu, S.-Y.; Tsao, I.-Y.; A highly active selenized nickel-iron electrode with layered double hydroxide for electrocatalytic water splitting in saline electrolyte. Mater. Today Energy 2021, 19, 100575, 10.1016/j.mtener.2020.100575.
  46. Jamesh, M.I.; Harb, M.; Recent advances on hydrogen production through seawater electrolysis. Mater. Sci. Energy Technol. 2020, 3, 780-807, 10.1016/j.mset.2020.09.005.
  47. Materials of SKOLKOVO Energy Centre, Moscow School of Management SKOLKOVO. Available online: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Hydrogen-ecomy_Eng.pdf
  48. Buyanov, S. Prospects for the construction of ships for Russian shipowners. In Current State and Development Prospects of the Russian Market of Bunkering .Services Materials of All-Russian Forum «Current state and development prospects of the Russian bunkering services market»; Moscow, Russia, 2019. Available online: http://cniimf.ru/press-tsentr/news/870/
  49. Litvinenko, V.S.; Tsvetkov, P.S.; Dvoynikov, M.V.; Buslaev, G.V.; Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. J. Min. Inst. 2020, 244, 421-431, 10.31897/PMI.2020.4.421.
  50. Anhydrous Liquefied Ammonia. Specifications; Russian Government Standard GOST 6221-90. Standartinform: Moscow, 2011. Available online: http://www.gostrf.com/normadata/1/4294823/4294823189.pdf
  51. Production of Ammonia, Mineral Fertilizers and Inorganic Acids. Information and Technical Directory (ITD) 2019. Available online: http://docs.cntd.ru/document/564068887
  52. Samuel, S.A.; Vincenzo, L.; Xiaoti, C.; Na, L.; Jimin, Zh.; Simon, L.S.; Søren, H.J.; Mads, P.N.; Søren, K.K.; A Review of The Methanol Economy: The Fuel Cell Route. Energies 2020, 13, 1-32, 10.3390/en13030596.
  53. Yurieva, T.M.; Plyasova, L.; Makarova, O.; Krieger, T.; Mechanisms for hydrogenation of acetone to isopropanol and of carbon oxides to methanol over copper-containing oxide catalysts. J. Mol. Catal. A Chem. 1996, 113, 455-468, 10.1016/s1381-1169(96)00272-5.
  54. Chen, W.H.; Chen, C.Y.; Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Appl. Energy 2020, 258, 114078, 10.1016/j.apenergy.2019.114078.
  55. Angell, V.W.; Graham, H.J.; Post, G.J.; Case History: Ice Island Drilling Application and Well Considerations in Alaskan Beaufort Sea. Soc. Pet. Eng. 1990, 1, 1, 10.2118/19947-MS.
  56. Bolotov, V.A.; Cheremisina, O.V.; Ponomareva, M.A.; Alferova, D.A.; Prospects for the use of the sorbent for purification of gases from sulfur-containing components on the basis of manganese ore. Key Eng. Mater. 2020, 836, 13-18, 10.4028/www.scientific.net/KEM.836.13.
  57. Vyatkin, Y.L.; Lishchiner, I.I.; Sinitsyn, S.A.; Kuz’min, A.M. Perspective directions of chemical processing of hydrocarbon raw materials. Neftegaz.RU. 2020, 4, 114–118.
  58. Rusman, N.A.A.; Dahari, M.A.; Review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrog. Energy 2016, 1, 12108-12126, 10.1016/j.ijhydene.2016.05.244.
  59. Tarasov, B.P. Problems and prospects of creating materials for hydrogen storage in a bound state. Int. Sci. J. Altern. Energy Ecol. 2006, 2, 11–17.
  60. Tarasov, B.P.; Burnasheva, V.V.; Lototsky, M.V.; Yartys, V.A. Methods of hydrogen storage and the possibility of using metallohydrides. Int. Sci. J. Altern. Energy Ecol. 2005, 12, 14–37.
  61. Tarasov, B.P.; Lototsky, M.V.; Yartys, V.A. The Problem of hydrogen storage and prospects for using hydrides for hydrogen storage. Russ. Chem. J. 2006, 6, 34–48.
  62. McKay, M. Hydrogen Compounds of Metals; Mir: Moscow, Russia, 1968; p. 244.
  63. York, A.P.E.; Xiao, T.; Green, M.L.H.; Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal. 2003, 22, 345-358, 10.1023/A:1023552709642.
  64. Schlapbach, L.; Hydrogen as a fuel and its storage for mobility and transport. MRS Bull. 2002, 1, 675-679, 10.1557/mrs2002.220.
  65. Kalashnikov, J.A. Physical Chemistry of Substances at High Pressures; Higher School: Moscow, Russia, 1987; p. 237.
  66. Hydride Hydrogen Storage System. Available online: https://lektsia.com/2x8693.html
  67. Landrum, L.; Holland, M.M.; Extremes become routine in an emerging new Arctic. Nat. Clim. Chang. 2020, 10, 1108–1115, 10.1038/s41558-020-0892-z.
  68. Fateev, V.N.; Alekseeva, O.К.; Korobtsev, S.V.; Seregina, E.A.; Fateeva, T.V.; Grigoriev, A.S.; Aliev, A.S.; Problems of hydrogen accumulation and hydrogen storage. Kimya Problemleri Baku: Aliyev Akif Shihanoglu 2018, 4, 453–483, 10.1134/S1070363207040329.
  69. Liu, C.; Li, F.; Ma, L.-P.; Cheng, H.-M.; Advanced materials for energy storage. Adv. Mater. 2010, 22, 28-62, 10.1002/adma.200903328.
  70. Kornev, A.V.; Barkan, M.S. Prospects for the use of associated gas of oil development as energy product. Int. J. Energy Econ. Policy 2017, 7, 374–383.
  71. Kozʼmenko, S.Y.; Masloboev, V.A.; Matviishin, D.A.; Justification of Economic Benefits of Arctic LNG Transportation by Sea. J. Min. Inst. 2018, 233, 554–560, 10.31897/PMI.2018.5.554.
  72. Buslaev, G.; Morenov, V.; Konyaev, Y.; Kraslawski, A.; Reduction of carbon footprint of the production and field transport of high-viscosity oils in the Arctic region. Chem. Eng. Process. Process. Intensif. 2020, 1, 108189, 10.1016/j.cep.2020.108189.
  73. Morenov, V.A.; Leusheva, Е.L.; Buslaev, G.V.; Gudmestad, O.T.; System of comprehensive energy-efficient utilization of associated petroleum gas with reduced carbon footprint in the field conditions. Energies 2020, 13, 1-14, 10.3390/en13184921.
  74. Bode, A.; Agar, D.W.; Buker, K.; Göke, V.; Hensmann, M.; Janhsen, U.; Klingler, D.; Schlichting, J.; Schunk, S.A. Research cooperation develops innovative technology for environmentally sustainable syngas production from carbon dioxide and hydrogen. In Proceedings of the 20th World Hydrogen Energy Conference, Gwangju, Korea, 15–20 June 2014.
  75. Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F.D., Qin, G.-K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, V.B., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK/New York, NY, USA, 2013.
  76. Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide; Global CCS Institute: Melbourne, Australia, 2011.
  77. Kirsanova, N.Y.; Lenkovets, O.M.; Nikulina, A.Y. The Role and Future Outlook for Renewable Energy in the Arctic Zone of Russian Federation. Eur. Res. Stud. J. 2018, 21, 356–368.
  78. Wang, M.; Li, J.; Chen, L.; Lu, Y.; Miniature NH3 cracker based on microfibrous entrapped Ni-CeO2/Al2O3 catalyst monolith for portable fuel cell power supplies. Int. J. Hydrogen Energy 2019, 34, 1710–1716, 10.1016/j.ijhydene.2008.11.103.
  79. Mukhovikova, N.K.; Nepomnyakschikh, Y.V. Preparation of Formaldehyde by Oxidative Dehydration of Methanol. In Proceedings of the XI All-Russian Scientific-Practical Conference of Young Scientists «YOUNG RUSSIA», Moscow, Russia, 2–4 October 2019. Available online: http://science.kuzstu.ru/wp-content/Events/Conference/RM/2019/RM19/pages/Articles/70207.pdf
More
ScholarVision Creations