MCDM Methods in Water Allocation: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Sintayehu Legesse Gebre.

The water allocation problem is complex and requires a combination of regulations, policies, and mechanisms to support water management to minimize the risk of shortage among competing users. This paper compiles the application of multi-criteria decision-making (MCDM) related to water allocation. In this regard, this paper aims to identify and to discern the pattern, distribution of study regions, water problem classifications, and decision techniques application for a specific water allocation problem. We applied a systematic literature review study from 2000 to 2019 by using four literature databases (Web of Science, Scopus, Science Direct, and Google Scholar). From 109 papers, 49 publications have been identified and information extracted. This study reveals that in the past two decades the application of MCDM in the area of water allocation has increased particularly after 2014. Around 65% and 12% of study papers were conducted in Asia and Europe, respectively. Water shortage, water use management, and water quality were consecutively the most top-ranked discussed water problems. NSGA II (non-dominated sorting genetic algorithm), GA (genetic algorithm), and LP (linear programming) are the more often applied decision methods to solve water allocation problems. The key findings of this study provide guidelines for future research studies.

The water allocation problem is complex and requires a combination of regulations, policies, and mechanisms to support water management to minimize the risk of shortage among competing users. This study compiles the application of multi-criteria decision-making (MCDM) related to water allocation. In this regard, this paper aims to identify and to discern the pattern, distribution of study regions, water problem classifications, and decision techniques application for a specific water allocation problem. We applied a systematic literature review study from 2000 to 2019 by using four literature databases (Web of Science, Scopus, Science Direct, and Google Scholar). From 109 papers, 49 publications have been identified and information extracted. This study reveals that in the past two decades the application of MCDM in the area of water allocation has increased particularly after 2014. Around 65% and 12% of study papers were conducted in Asia and Europe, respectively. Water shortage, water use management, and water quality were consecutively the most top-ranked discussed water problems. NSGA II (non-dominated sorting genetic algorithm), GA (genetic algorithm), and LP (linear programming) are the more often applied decision methods to solve water allocation problems. The key findings of this study provide guidelines for future research studies.

  • database
  • MCDM methods
  • systematic review
  • water allocation
Please wait, diff process is still running!

References

  1. Cassardo, C.; Jones, J.A.A. Managing Water in a Changing World. Water 2011, 3, 618–628.
  2. Du Plessis, A. Freshwater Challenges of South Africa and Its Upper Vaal River: Global Context of Freshwater Resources; Springer International Publishing: New York, NY, YSA, 2017; 164p.
  3. FAO. Water for Sustainable Food and Agriculture Water for Sustainable Food and Agriculture. A Report Produced for the G20 Presidency of Germany; FAO: Rome, Italy, 2017.
  4. WWAP. The United Nations World Water Development Report 2018: Nature–Based Solutions for Water. 2018. Available online: https://doi.org/https://unesdoc.unesco.org/ark:/48223/pf0000261424 (accessed on 18 July 2020).
  5. Kangas, J.; Kangas, A. Multiple criteria decision support in forest management—The approach, methods applied, and experiences gained. For. Ecol. Manag. 2005, 207, 133–143.
  6. Estrella, R.; Cattrysse, D.; Van Orshoven, J. Comparison of Three Ideal Point-Based Multi-Criteria Decision Methods for Afforestation Planning. Forests 2014, 5, 3222–3240.
  7. Veintimilla-Reyes, J.; De Meyer, A.; Cattrysse, D.; Tacuri, E.; Vanegas-Peralta, P.; Cisneros, F.; Van Orshoven, J.; Veintimilla-Reyes, J.; Meyer, D.; Van Orshoven, J. MILP for Optimizing Water Allocation and Reservoir Location: A Case Study for the Machángara River Basin, Ecuador. Water 2019, 11, 1011.
  8. Mardani, A.; Jusoh, A.; Nor, K.M.D.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple criteria decision-making techniques and their applications—A review of the literature from 2000 to 2014. Econ. Res. EkonomskaIstraživanja 2015, 28, 516–571.
  9. Sitorus, F.; Cilliers, J.J.; Brito-Parada, P.R. Multi-criteria decision making for the choice problem in mining and mineral processing: Applications and trends. Expert Syst. Appl. 2019, 121, 393–417.
  10. Leake, C.; Malczewski, J. GIS and Multicriteria Decision Analysis; Wiley: New York, NY, USA, 2000; Volume 51.
  11. Zimmermann, H.-J.; Gutsche, L. Multi-Criteria Analysis; Springer: Berlin/Heidelberg, Germany, 1991.
  12. Churchman, C.W.; Ackoff, R.L. An Approximate Measure of Value. J. Oper. Res. Soc. Am. 1954, 2, 172–187.
  13. Pokehar, S.D.; Ramachandran, M. Application of multi-criteria decision making to Sustainable Energy Planning. Renew. Sustain. Energy 2004, 8, 365–381.
  14. Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
  15. Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain. Energy Rev. 2016, 55, 885–898.
  16. Tzeng, G.H.; Huang, J.J. Multiple Attribute Decision Making: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2011; 335p.
  17. Brans, J.P.; Vincke, P. A Preference Ranging Organization Method. The PROMETHEE Method for MCDM. Manag. Sci. 1985, 31, 647–656.
  18. Rouyendegh, B.D.; Erol, S. Selecting the Best Project Using the Fuzzy ELECTRE Method. Math. Probl. Eng. 2012, 2012, 1–12.
  19. Hwang, C.L.; Kwangsun, Y. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981.
  20. Chen, J.; Wang, J.; Baležentis, T.; Zagurskaitė, F.; Streimikiene, D.; Makutėnienė, D. Multicriteria Approach towards the Sustainable Selection of a Teahouse Location with Sensitivity Analysis. Sustainability 2018, 10, 2926.
  21. De Meyer, A.; Cattrysse, D.; Rasinmäki, J.; Van Orshoven, J. Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renew. Sustain. Energy Rev. 2014, 31, 657–670.
  22. Belton, V.; Stewart, T.J. Multiple Criteria Decision Analysis: An Integrated Approach; Kluwer Academic Publications: Boston, MA, USA, 2002.
  23. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6, 182–197.
  24. Castillo-Villar, K.K. Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future. Energies 2014, 7, 7640–7672.
  25. FAO. Coping with Water Scarcity an Action Framework for Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; Volume 38, Available online: https://doi.org/http://www.fao.org/docrep/016/i3015e/i3015e.pdf (accessed on 24 March 2020).
  26. Mekonnen, M.M.; Hoekstra, Y.A. Four Billion People Facing Severe Water Scarcity. Am. Assoc. Adv. Sci. 2016, 2, 1–7.
  27. Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water Futures and Solution. Water Futures and Solution—Fast Track Initiative (Final Report); IIASA Working Paper WP-16-006; IASA: Laxenburg, Austria, 2016.
  28. Uen, T.-S.; Chang, F.-J.; Zhou, Y.; Tsai, W.-P. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Sci. Total. Environ. 2018, 633, 341–351.
  29. Zhang, C.; Li, Y.; Chu, J.; Fu, G.; Tang, R.; Qi, W. Use of Many-Objective Visual Analytics to Analyze Water Supply Objective Trade-Offs with Water Transfer. J. Water Resour. Plan. Manag. 2017, 143, 05017006.
  30. Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction. Hydrol. Earth Syst. Sci. 2015, 19, 3557–3570.
  31. Xu, Q.; Song, W.; Zhang, Y. Forecast and optimal allocation of production, living and ecology water consumption in Zhangye, China. Phys. Chem. Earth, Parts ABC 2016, 96, 16–25.
  32. Hu, Z.; Wei, C.; Yao, L.; Li, L.; Li, C. A multi-objective optimization model with conditional value-at-risk constraints for water allocation equality. J. Hydrol. 2016, 542, 330–342.
  33. Lai, C. A Multi-objective Optimal Water Strategy Using Time Series Analysis and Improved Genetic Algorithm. J. Inf. Comput. Sci. 2015, 12, 2229–2239.
  34. Fowe, T.; Nouiri, I.; Ibrahim, B.; Karambiri, H.; Paturel, J.E. OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems. Water Resour. Manag. 2015, 29, 3841–3861.
  35. Niu, G.; Li, Y.P.; Huang, G.H.; Liu, J.; Fan, Y.R. Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties. Agric. Water Manag. 2016, 166, 53–69.
  36. Wang, J.; Cheng, G.D.; Gao, Y.G.; Long, A.H.; Xu, Z.M.; Li, X.; Chen, H.; Barker, T. Optimal Water Resource Allocation in Arid and Semi-Arid Areas. Water Resour. Manag. 2007, 22, 239–258.
  37. Grafton, R.Q.; Chu, H.L.; Stewardson, M.; Kompas, T. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia. Water Resour. Res. 2011, 47, 1–13.
  38. Elmahdi, A.; McFarlane, D.J. A decision support system for sustainable groundwater management. Case study: Gnangara sustainability strategy—Western Australia. Water Resour. Manag. V 2009, 125, 327–339.
  39. Roozbahani, R.; Abbasi, B.; Schreider, S.; Ardakani, A. A Multi-objective Approach for Transboundary River Water Allocation. Water Resour. Manag. 2014, 28, 5447–5463.
  40. Roozbahani, R.; Abbasi, B.; Schreider, S. Optimal allocation of water to competing stakeholders in a shared watershed. Ann. Oper. Res. 2015, 229, 657–676.
  41. Song, W.-Z.; Yuan, Y.; Jiang, Y.-Z.; Lei, X.-H.; Shu, D.-C. Rule-based water resource allocation in the Central Guizhou Province, China. Ecol. Eng. 2016, 87, 194–202.
  42. Cai, Y.P.; Huang, G.H.; Wang, X.; Li, G.C.; Tan, Q. An inexact programming approach for supporting ecologically sustainable water supply with the consideration of uncertain water demand by ecosystems. Stoch. Environ. Res. Risk Assess. 2011, 25, 721–735.
  43. Shang, S.H. A general multi-objective programming model for minimum ecological flow or water level of inland water bodies. J. Arid. Land 2015, 7, 166–176.
  44. Alamanos, A.; Mylopoulos, N.; Loukas, A.; Gaitanaros, D. An Integrated Multicriteria Analysis Tool for Evaluating Water Resource Management Strategies. Water 2018, 10, 1795.
  45. Lee, M.; Yu, C.-Y.; Chiang, P.-C.; Hou, C.-H. Water–Energy Nexus for Multi-Criteria Decision Making in Water Resource Management: A Case Study of Choshui River Basin in Taiwan. Water 2018, 10, 1740.
  46. Cambrainha, G.M.; Fontana, M.E. A multi-criteria decision making approach to balance water supply-demand strategies in water supply systems. Production 2018, 28.
  47. Loucks, D.P.; Van, B.E. Water Resources Planning and Management: An Overview. In Water Resource Systems Planning and Management; Springer: Cham, Switzerland, 2017.
  48. Duncan, A.E.; De Vries, N.; Nyarko, K.B. The effectiveness of water resources management in Pra Basin. Hydrol. Res. 2019, 21, 787–805.
  49. OECD. Water Resources Allocation: Sharing Risks and Opportunities. Water Intell. Online 2015, 14.
  50. Amprako, J.L. Water for a Sustainable World; UNESCO: Paris, France, 2015.
  51. Hurford, A.P.; Huskova, I.; Harou, J.J. Using many-objective trade-off analysis to help dams promote economic development, protect the poor and enhance ecological health. Environ. Sci. Policy 2014, 38, 72–86.
  52. Dai, L.; Zhang, P.; Wang, Y.; Jiang, D.; Dai, H.; Mao, J.; Wang, M. Multi-objective optimization of cascade reservoirs using NSGA-II: A case study of the Three Gorges-Gezhouba cascade reservoirs in the middle Yangtze River, China. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 814–835.
  53. Hajiabadi, R.; Zarghami, M. Multi-Objective Reservoir Operation with Sediment Flushing; Case Study of Sefidrud Reservoir. Water Resour. Manag. 2014, 28, 5357–5376.
  54. Lewis, A.; Randall, M. Solving multi-objective water management problems using evolutionary computation. J. Environ. Manag. 2017, 204, 179–188.
  55. Martin, D.M.; Powell, S.J.; Webb, J.A.; Nichols, S.J.; Poff, N.L. An Objective Method to Prioritize Socio-Environmental Water Management Tradeoffs Using Multi-Criteria Decision Analysis. River Res. Appl. 2016, 33, 586–596.
  56. Yan, D.; Ludwig, F.; Huang, H.Q.; Werners, S.E. Many-objective robust decision making for water allocation under climate change. Sci. Total. Environ. 2017, 607–608, 294–303.
  57. Li, C.; Cai, Y.; Qian, J. A multi-stage fuzzy stochastic programming method for water resources management with the consideration of ecological water demand. Ecol. Indic. 2018, 95, 930–938.
  58. Li, Y.; Cui, Q.; Li, C.; Wang, X.; Cai, Y.; Cui, G.; Yang, Z. An improved multi-objective optimization model for supporting reservoir operation of China’s South-to-North Water Diversion Project. Sci. Total. Environ. 2017, 575, 970–981.
  59. Dhaubanjar, S.; Davidsen, C.; Bauer-Gottwein, P. Multi-Objective Optimization for Analysis of Changing Trade-Offs in the Nepalese Water–Energy–Food Nexus with Hydropower Development. Water 2017, 9, 162.
  60. Wang, M.; Tang, D.; Bai, Y.; Xia, Z. A compound cloud model for harmoniousness assessment of water allocation. Environ. Earth Sci. 2016, 75.
  61. Li, M.; Guo, P.; Ren, C. Water Resources Management Models Based on Two-Level Linear Fractional Programming Method under Uncertainty. J. Water Resour. Plan. Manag. 2015, 141, 05015001.
  62. Rousta, B.A.; Araghinejad, S. Development of a Multi Criteria Decision Making Tool for a Water Resources Decision Support System. Water Resour. Manag. 2015, 29, 5713–5727.
  63. Wijenayake, W.M.H.K.; Amarasinghe, U.S.; De Silva, S.S. Application of a multiple-criteria decision making approach for selecting non-perennial reservoirs for culture-based fishery development: Case study from Sri Lanka. Aquacultur 2016, 459, 26–35.
  64. UNCED. Agenda 21, Chapter 18. Protection of the Quality and Supply of Freshwater Resources: Application of Integrated Approaches to the Development, Management and Use of Water Resources. United Nations Conference on Environment and Development; United Nations: Rio de Janeiro, Brazil, 1992.
  65. Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173.
  66. Chapman, D.V. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC Press: Boca Raton, FL, USA, 1996.
  67. Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani-Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. Water Pollution: Effects, Prevention, and Climatic Impact. In Water Challenges of an Urbanizing World; IntechOpen: Rijeka, Crotia, 2018.
  68. Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20.
  69. Wen, Y.; Schoups, G.; Van De Giesen, N. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Sci. Rep. 2017, 7, 43289.
  70. Dunca, A.-M. Water Pollution and Water Quality Assessment of Major Transboundary Rivers from Banat (Romania). J. Chem. 2018, 2018, 9073763.
  71. Martin-Ortega, J.; Berbel, J. Using multi-criteria analysis to explore non-market monetary values of water quality changes in the context of the Water Framework Directive. Sci. Total. Environ. 2010, 408, 3990–3997.
  72. Li, Y.; Lin, C.; Wang, Y.; Gao, X.; Xie, T.; Hai, R.; Wang, X.; Zhang, X. Multi-criteria evaluation method for site selection of industrial wastewater discharge in coastal regions. J. Clean. Prod. 2017, 161, 1143–1152.
  73. Raei, E.; Nikoo, M.R.; Pourshahabi, S. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory. J. Hydrol. 2017, 551, 407–422.
  74. Zmijewski, N.; Wörman, A. Trade-Offs between Phosphorous Discharge and Hydropower Production Using Reservoir Regulation. J. Water Resour. Plan. Manag. 2017, 143, 04017052.
  75. Pérez, C.J.; Vega-Rodríguez, M.A.; Reder, K.; Flörke, M. A Multi-Objective Artificial Bee Colony-based optimization approach to design water quality monitoring networks in river basins. J. Clean. Prod. 2017, 166, 579–589.
  76. Karterakis, S.M.; Karatzas, G.P.; Nikolos, I.K.; Papadopoulou, M.P. Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. J. Hydrol. 2007, 342, 270–282.
  77. Regneri, M.; Klepiszewski, K.; Ostrowski, M.; Vanrolleghem, P.A. Fuzzy Decision Making for Multi-Criteria Optimization in Integrated Wastewater System Management. In Proceedings of the 6th International Conference on Sewer Processes and Networks, Gold Coast, Australia, 7–10 November 2010.
  78. Meng, C.; Wang, X.; Li, Y. An Optimization Model for Water Management Based on Water Resources and Environmental Carrying Capacities: A Case Study of the Yinma River Basin, Northeast China. Water 2018, 10, 565.
  79. Costanza, R.; De Groot, R.; Sutton, P.C.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158.
  80. UNEP. Global Environment Outlook. GEO 4 Environment for Development. United Nations Environment Programme; Progress Press Ltd.: Valletta, Malta, 2014; Volume 9.
  81. Brussard, P.F.; Reed, J.M.; Tracy, C.R. Ecosystem management: What is it really? Landsc. Urban Plan. 1998, 40, 9–20.
  82. UNEP. Wetlands and Ecosystem Services World Wetlands Day; CBD Press Brief: Montreal, QC, Canada, 2015.
  83. Xepapadeas, A. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Kumar, P., Ed.; Earthscan: London, UK; Washington, DC, USA, 2011; ISBN 978-1-84971-212-5.
  84. Yang, W. A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China’s Yellow River Delta. Ecol. Model. 2011, 222, 261–267.
  85. Akhbari, M.; Grigg, N.S. Water Management Trade-offs between Agriculture and the Environment: A Multi objective Approach and Application. J. Irrig. Drain. Eng. 2014, 140, 05014005.
  86. Cioffi, F.; Gallerano, F. Multi-objective analysis of dam release flows in rivers downstream from hydropower reservoirs. Appl. Math. Model. 2012, 36, 2868–2889.
  87. Haimes, Y. On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization. IEEE Trans. Syst. Man Cybern. 1971, 1, 296–297.
  88. Lee, C.-S. Multi-objective game-theory models for conflict analysis in reservoir watershed management. Chemosphere 2012, 87, 608–613.
  89. Carraro, C.; Marchiori, C.; Sgobbi, A. Negotiating on water: Insights from non-cooperative bargaining theory. Environ. Dev. Econ. 2007, 12, 329–349.
  90. Xu, X.; Bin, L.; Pan, C.; Ding, A.; Chen, D. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits. Water 2014, 6, 796–812.
  91. USAID. Overarching Guide: Incorporating Climate Change Adaptation in Infrastructure Planning and Design. In Executive Summary; USAID: Washington, DC, USA, 2015.
  92. De Brito, M.M.; Evers, M. Multi–Criteria Decision–Making for Flood Risk Management: A Survey of the Current State of the Art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033.
  93. Jia, B.; Simonovic, S.P.; Zhong, P.; Yu, Z. A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System. Water Resour. Manag. 2016, 30, 3363–3387.
  94. Amorocho-Daza, H.; Cabrales, S.; Santos, R.; Saldarriaga, J. A New Multi-Criteria Decision Analysis Methodology for the Selection of New Water Supply Infrastructure. Water 2019, 11, 805.
  95. World Health Organization. Combating Waterborne Disease at the Household Level; WHO: Geneva, Switherland, 2007.
  96. Yang, J.-S.; Chung, E.-S.; Kim, S.U.; Kim, T.W. Prioritization of water management under climate change and urbanization using multi-criteria decision making methods. Hydrol. Earth Syst. Sci. 2012, 16, 801–814.
  97. Chung, E.-S.; Lee, K.S. Identification of Spatial Ranking of Hydrological Vulnerability Using Multi-Criteria Decision Making Techniques: Case Study of Korea. Water Resour. Manag. 2009, 23, 2395–2416.
  98. Chung, E.-S.; Lee, K.S. Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques. J. Environ. Manag. 2009, 90, 1502–1511.
  99. Pourmand, E.; Mahjouri, N. A fuzzy multi-stakeholder multi-criteria methodology for water allocation and reuse in metropolitan areas. Environ. Monit. Assess. 2018, 190, 444.
  100. Ke, W.; Lei, Y.; Sha, J.; Zhang, G.; Yan, J.; Lin, X.; Pan, X. Dynamic simulation of water resource management focused on water allocation and water reclamation in Chinese mining cities. Hydrol. Res. 2016, 18, 844–861.
  101. IPCC 2014. Climate Change, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. 2014. Available online: https://www.eea.europa.eu/data-and-maps/indicators/vector-borne-diseases-1/ipcc-2014-climate-change-2014 (accessed on 24 March 2020).
  102. De Almeida, A.T.; Cavalcante, C.A.V.; Alencar, M.H.; Ferreira, R.J.P.; De Almeida-Filho, A.T.; Garcez, T.V. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis; Springer: Cham, Switzeland, 2015.
  103. Men, B.; Wu, Z.; Li, Y.; Liu, H. Reservoir Operation Policy based on Joint Hedging Rules. Water 2019, 11, 419.
  104. Veintimilla-Reyes, J.; De Meyer, A.; Cattrysse, D.; Van Orshoven, J. A linear programming approach to optimise the management of water in dammed river systems for meeting demands and preventing floods. Water Supply 2017, 18, 713–722.
More
ScholarVision Creations