Road Traffic Noise Wall Design: Comparison
Please note this is a comparison between Version 3 by Vivi Li and Version 2 by Saša Ahac.

Despite the long-term experience in the application of noise walls, the uncertainty in wall panel service life efficiency is almost equal between panels built from established and new materials, which are—because of the desire to increase the sustainability of noise walls—developing at an ever-faster pace. The presented meta-analysis of data collected during a systematic review of concrete, metal, and wood panels’ acoustic and non-acoustic characteristics, long term performance, and cradle-to-gate sustainability aims to reduce this uncertainty and support the process of noise wall design and management by shifting the emphasis in decision making from construction costs to the long-term sustainability of the road traffic noise mitigation project. The multi-criterial analysis showed that when choosing a panel, preference should be given to those using lightweight concrete materials. 

  • systematic review
  • meta-analysis
  • wall panel
  • material
  • multi-criterial analysis
  • lightweight aggregate
  • cradle-to-grave
Please wait, diff process is still running!

References

  1. European Environment Agency (EEA). Managing Exposure to Noise in Europe. Briefing January 2017. Available online: https://www.eea.europa.eu/publications/managing-exposure-to-noise-in-europe (accessed on 2 May 2020).
  2. Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142.
  3. Zacarías, F.F.; Molina, R.H.; Ancela, J.L.C.; López, S.L.; Ojembarrena, A.A. Noise exposure in preterm infants treated with respiratory support using neonatal helmets. Acta Acust. United Acust. 2013, 99, 590–597.
  4. Hygge, S.; Evans, G.W.; Bullinger, M. A prospective study of some effects of aircraft noise on cognitive performance in schoolchildren. Psychol. Sci. 2002, 13, 469–474.
  5. Lercher, P.; Evans, G.W.; Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environ. Behav. 2003, 35, 725–735.
  6. Chetoni, M.; Ascari, E.; Bianco, F.; Fredianelli, L.; Licitra, G.; Cori, L. Global noise score indicator for classroom evaluation of acoustic performances in LIFE GIOCONDA project. Noise Mapp. 2016, 3, 157–171.
  7. Dratva, J.; Phuleria, H.C.; Foraster, M.; Gaspoz, J.-M.; Keidel, D.; Künzli, N.; Liu, L.-J.S.; Pons, M.; Zemp, E.; Gerbase, M.W.; et al. Transportation noise and blood pressure in a population-based sample of adults. Environ. Health Perspect. 2012, 120, 50–55.
  8. Babisch, W.; Beule, B.; Schust, M.; Kersten, N.; Ising, H. Traffic noise and risk of myocardial infarction. Epidemiology 2005, 16, 33–40.
  9. Babisch, W.; Swart, W.; Houthuijs, D.; Selander, J.; Bluhm, G.; Pershagen, G.; Dimakopoulou, K.; Haralabidis, A.S.; Katsouyanni, K.; Davou, E. Exposure modifiers of the relationships of transportation noise with high blood pressure and noise annoyance. J. Acoust. Soc. Am. 2012, 132, 3788–3808.
  10. Miedema, H.M.E.; Oudshoorn, C.G.M. Annoyance from transportation noise: Relationships with exposure metrics DNL and DENL and their confidence intervals. Environ. Health Perspect. 2001, 109, 409–416.
  11. Licitra, G.; Fredianelli, L.; Petri, D.; Vigotti, M.A. Annoyance evaluation due to overall railway noise and vibration in Pisa urban areas. Sci. Total Environ. 2016, 568, 1315–1325.
  12. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 Relating to the Assessment and Management of Environmental Noise (END). Available online: http://data.europa.eu/eli/dir/2002/49/2020-03-25 (accessed on 2 May 2020).
  13. Dragčević, V.; Lakušić, S.; Ahac, S.; Ahac, M. Contribution to Optimization of Noise Mapping Procedures. GRADEVINAR 2008, 60, 787–795.
  14. Science for Environment Policy—Noise Abatement Approaches, Future Brief 17. Produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol, 2017. Available online: http://ec.europa.eu/science-environment-policy (accessed on 2 May 2020).
  15. Zambon, G.; Roman, H.E.; Smiraglia, M.; Benocci, R. Monitoring and Prediction of Traffic Noise in Large Urban Areas. Appl. Sci. 2018, 8, 251.
  16. EEA Glossary. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/lden (accessed on 7 December 2020).
  17. Sandberg, U.; Ejsmont, J. Tyre/Road Noise Reference Book; INFORMEX: Kisa, Sweden, 2002.
  18. Licitra, G.; Teti, L.; Cerchiai, M.; Bianco, F. The influence of tyres on the use of the CPX method for evaluating the effectiveness of a noise mitigation action based on low-noise road surfaces. Transp. Res. Part D Transp. Environ. 2017, 55, 217–226.
  19. Bendtsen, H.; Qing, L.; Erwin, K. Acoustic Aging of Asphalt Pavement: A Californian Danish Comparison; Report Number: UCPRC-RP-2010-01; The Danish Road Institute—Road Directorate: Hedehusene, Denmark, 2010.
  20. Licitra, G.; Moro, A.; Teti, L.; Del Pizzo, A.; Bianco, F. Modelling of acoustic ageing of rubberized pavements. Appl. Acoust. 2019, 146, 237–245.
  21. Stančerić, I.; Dragčević, V.; Ahac, S. Toward Environmental Noise Estimation according to the Road Surface Characteristics and Traffic Volume. Tech. Gaz. 2010, 17, 191–197.
  22. Del Pizzo, A.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of texture on tyre road noise spectra in rubberized pavements. Appl. Acoust. 2020, 159, 107080.
  23. Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. Part D Transp. Environ. 2014, 29, 79–87.
  24. Bérengier, M.; Stinson, M.; Daigle, G.; Hamet, J. Porous road pavements: Acoustical characterization and propagation effects. J. Acoust. Soc. Am. 1997, 101, 155.
  25. Praticò, F.G.; Anfosso-Lédée, F. Trends and issues in mitigating traffic noise through quiet pavements. Procedia Soc. Behav. Sci. 2012, 53, 203–212.
  26. Kotzen, B.; English, C. Environmental Noise Barriers: A Guide to Their Acoustic and Visual Design, 2nd ed.; Taylor & Francis: Oxford, UK, 2009.
  27. Fredianelli, L.; Del Pizzo, A.; Licitra, G. Recent developments in sonic crystals as barriers for road traffic noise mitigation. Environments 2019, 6, 14.
  28. Jean, P.; Defrance, J. Sound propagation in rows of cylinders of infinite extent: Application to sonic crystals and thickets along roads. Acta Acust. United Acust. 2015, 101, 474–483.
  29. Godinho, L.; Santos, P.G.; Amado-Mendes, P.; Pereira, A.; Martins, M. Experimental and Numerical Analysis of Sustainable Sonic Crystal Barriers Based on Timber Logs. In Proceedings of the EuroRegio2016, Porto, Portugal, 13–15 June 2016.
  30. Kay, D.H.; Morgan, S.M.; Bodapati, S.N. Evaluation of Service Life of Noise Barrier Walls in Illinois. Final Report No. ITRC FR97-3 for the Project IIB-H1 FY97. Prepared for the Illinois Department of Transportation—Transportation Research Center; 1999. Available online: https://idot.illinois.gov/Assets/uploads/files/Transportation-System/Research/Illinois-Transportation-Research-Center/1999.11.01%20-%20Evaluation%20of%20Service%20Life%20of%20Noise%20Barrier%20Walls%20-%20IIB-H1%20FY97.pdf (accessed on 2 May 2020).
  31. US Department of Transportation, Federal Highway Administration (FHWA) Technology Exchange Program. Quiet Pavements Systems in Europe. Report No. FHWA-PL-05-011; 2005. Available online: https://international.fhwa.dot.gov/pubs/quiet_pav/pl05011.pdf (accessed on 3 May 2020).
  32. Joynt, J.L.R. A Sustainable Approach to Environmental Noise Barrier Design. Ph.D. Thesis, School of Architecture, University of Sheffield, Sheffield, UK, 2005.
  33. Oltean-Dumbrava, C.; Watts, G.; Miah, A. Transport infrastructure: Making more sustainable decisions for noise reduction. J. Clean. Prod. 2013, 42, 58–68.
  34. Oltean-Dumbrava, C.; Watts, G.; Miah, A. Towards a more sustainable surface transport infrastructure: A Case study of applying multi criteria analysis techniques to assess the sustainability of transport noise reducing devices. J. Clean. Prod. 2016, 112, 2922–2934.
  35. Oltean-Dumbrava, C.; Miah, A. Assessment and relative sustainability of common types of roadside noise barriers. J. Clean. Prod. 2016, 135, 919–931.
  36. Ohiduzzaman, M.D.; Sirin, O.; Kassem, E.; Rochat, J.L. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 1: Traffic Noise Measurement and Abatement Techniques. Sustainability 2016, 8, 742.
  37. Morgan, S.M.; Kay, D.H. Noise Barrier Material Selection. Transportation Research Record. Paper No. 01-2616. J. Transp. Res. Board 2001.
  38. Conference of European Directors of Roads (CEDR). State of the Art in Managing Road Traffic Noise: Noise Barriers. Technical Report 2017-02. 2017. Available online: https://www.cedr.eu/download/Publications/2017/CEDR-TR2017-02-noise-barriers.pdf (accessed on 14 May 2020).
  39. Brero, G. EU Noise Policy: European Noise Barrier Federation (ENBF) Expectations and Contributes. In Proceedings of the “Noise in Europe” Conference, European Commission, Brussels, Belgium, 24 April 2017; Available online: https://ec.europa.eu/info/events/noise-europe-2017-apr-24_en (accessed on 17 May 2020).
  40. Oltean-Dumbrava, C.A.; Miah, A.; Watts, G.; Brero, G.; Clairbois, J.P.; Padmos, C.; Auerbach, M.; Hans, J.; Schiopu, N. State of the Art Review and Report on the Sustainability of Noise Reducing Devices QUIESST–Deliverable No.6.1 FP7-SST-2008-RTD-1. In European Community’s Seventh Framework Programme; 2010.
  41. Conference of European Directors of Roads (CEDR). Noise Management and Abatement. Report 2010-05. 2010. Available online: https://www.cedr.eu/download/Publications/2010/e%20Road%20noise.pdf (accessed on 10 May 2020).
  42. US Department of Transportation, Federal Highway Administration (FHWA), Office of Planning, Environment, & Realty (HEP). Noise Barriers Inventory. Available online: https://www.fhwa.dot.gov/environment/noise/noise_barriers/inventory/ (accessed on 5 August 2020).
  43. European Committee for Standardization (CEN). CEN/TC 226/WG 6—Noise Reducing Devices, Published Standards. Available online: https://standards.cen.eu/dyn/www/f?p=204:32:0::::FSP_ORG_ID,FSP_LANG_ID:7542,25&cs=1563CAC0058F0284316199F4F140DEE9A (accessed on 10 September 2020).
  44. Clairbois, J.P.; Garai, M. The European Standards for Roads and Railways Noise Barriers: State of the Art 2015. In Proceedings of the 10th European Congress and Exposition on Noise Control Engineering: EuroNoise 2015, Maastricht, The Netherlands, 31 May–3 June 2015; pp. 45–50.
  45. Shahidan, S.; Hannan, N.I.R.R.; Maarof, M.Z.M.; Leman, A.S.; Senin, M.S. A Comprehensive Review on the Effectiveness of Existing Noise Barriers Commonly Used in the Railway Industry. In MATEC Web Conf. Vol. 87, Proceedings of the 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”, Sarawak, Malaysia, 26–28 October 2016; Hasan, A., et al., Eds.; EDP Sciences: Les Ulis, France, 2017.
  46. US Department of Transportation, Federal Highway Administration (FHWA), Office of Planning, Environment, & Realty (HEP). Noise Barrier Design Handbook. Available online: https://www.fhwa.dot.gov/ENVIRonment/noise/noise_barriers/design_construction/design/design03.cfm (accessed on 4 May 2020).
  47. McAvoy, D.S.; Theberge, R. Comparison and Testing of Various Noise Wall Materials; Report No. FHWA/OH-2014/8; The Ohio Department of Transportation, Office of Statewide Planning & Research: Columbus, OH, USA, 2014.
  48. Pigasse, G.; Kragh, J. Optimised Noise Barriers: A State-of-the-Art Report. Report No. 194–2011. Prepared for the Vejdirektoratet—Danish Road Directorate of Ministry of Transport. 2011. Available online: https://www.vejdirektoratet.dk/udgivelse/optimised-noise-barriers (accessed on 5 May 2020).
  49. de la Red Bellvis, E.J. Noise Barriers in Railways—A View on the State of Art. In Proceedings of the RailSpain Congress, Zaragoza, Spain, 14–16 June 2011.
  50. Boothby, T.E.; Burroughs, C.B.; Bernecker, C.A.; Manbeck, H.B.; Ritter, M.A.; Grgurevich, S.; Cegelka, S.; Hillbrich Lee, P.D. Design of Wood Highway Sound Barriers. Research Paper FPL−RP−596. Prepared for the United States Department of Agriculture (USDA), Forest Service. 2001. Available online: https://www.fpl.fs.fed.us/documnts/fplrp/fplrp596/fplrp596.pdf (accessed on 10 May 2020).
  51. Ernst, D.; Biton, L.; Reichenbacher, S.; Zgola, M.; Adkins, C. Guidelines for Selection and Approval of Noise Barrier Products. Final Report, Prepared for the National Cooperative Highway Research Program (NCHRP) Project 25-25, Task 40, Transportation Research Board. 2008. Available online: http://onlinepubs.trb.org/onlinepubs/archive/notesdocs/25-25(40)_fr.pdf (accessed on 10 May 2020).
  52. Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011—Laying Down Harmonised Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02011R0305-20140616 (accessed on 10 May 2020).
  53. Clairbois, J.P.; de Roo, F.; Garai, M.; Conter, M.; Defrance, J.; Oltean-Dumbrava, C.A.; Durso, C. QUIESST Guidebook to Noise Reducing Devices Optimisation. Report No. FP7-SST-2008-RTD-1. Prepared for the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement n°SCP8-GA-2009-233730. 2012. Available online: https://repository.tudelft.nl/view/tno/uuid%3A16f7a829-5f5c-4523-ab35-1d6cce015cb1 (accessed on 10 June 2020).
  54. Attanasio, A.; Largo, A.; Larraza Alvarez, I.; Sonzogni, F.; Balaceanu, L. Sustainable aggregates from secondary materials for innovative lightweight concrete products. HERON 2015, 60, 5–26.
  55. Visser, J.; Couto, S.; Gupta, A.; Larraza Alvarez, I.; Chozas Ligero, V.; Sotto Mayor, T.; Vinai, R.; Pipilikaki, P.; Largo, A.; Attanasio, A.; et al. Sustainable concrete: Design and testing. HERON 2015, 60, 59–92.
  56. van Gijlswijk, R.N.; Pascale, S.; de Vos, S.E.; Urbano, G. Carbon footprint of concrete based on secondary materials. HERON 2015, 60, 113–140.
  57. Mushunje, K.; Otieno, M.; Ballim, Y. A review of Waste Tyre Rubber as an Alternative Concrete Consituent Material. In MATEC Web of Conferences vol 199, Proceedings of the 5th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018), Cape Town, South Africa, 19–21 November 2018; Alexander, M.G., Beushausen, H., Dehn, F., Moyo, P., Eds.; EDP Sciences: Les Ulis, France, 2018.
  58. Park, S.W.; Seo, D.S.; Lee, J. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio. Cem. Concr. Res. 2005, 35, 1846–1854.
  59. Neithalath, N.; Marolf, A.; Weiss, J.; Olek, J. Modeling the influence of pore structure on the acoustic absorption of enhanced porosity concrete. J. Adv. Concr. Technol. 2005, 3, 29–40.
  60. Cianfrini, C.; Corcione, M.; Fontana, L. Experimental verification of the acoustic performance of diffusive roadside noise barriers. Appl. Acoust. 2007, 68, 1357–1372.
  61. Kim, H.K.; Lee, H.K. Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl. Acoust. 2010, 71, 607–615.
  62. Zhao, C.; Wang, P.; Wang, L.; Liu, D. Reducing Railway Noise with Porous Sound-Absorbing Concrete Slabs. Adv. Mater. Sci. Eng. 2014, 206549.
  63. Carbajo, J.; Esquerdo-Lloret, T.V.; Ramisa, J.; Nadal-Gisbert, A.V.; Denia, F.D. Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Mater. Construcc. 2015, 65, e072.
  64. Wang, P.; Zhao, C. Study on reducing railway noise by porous concrete sound-absorbing panel. Mater. Res. Innov. 2015, 19, S5-1156–S5-1160.
  65. Zhang, B.; Poon, C.S. Sound insulation properties of rubberized lightweight aggregate concrete. J. Clean. Prod. 2018, 172, 3176–3185.
  66. Rajaonarison, E.F.; Gacoin, A.; Razafindrabe, B.H.N.; Rasamison, V.E. Acoustical properties of lightweight concrete from scoria. Int. J. Curr. Res. 2018, 10, 73667–73674.
  67. Owens, P.L.; Newman, J.B. Lightweight aggregate manufacture. In Advanced Concrete Technology; Newman, J., Choo, B.S., Eds.; Elsevier: Springfield, MO, USA, 2003; pp. 1–12.
  68. Mohammed, J.H.; Hamad, A.J. A classification of lightweight concrete: Materials, properties and application review. Int. J. Adv. Eng. Appl. 2014, 7, 52–57.
  69. Kumar, J.D.C.; Arunakanthi, E. The Use of Light Weight Aggregates for Precast Concrete Structural Members. Int. J. Appl. Eng. Res. 2018, 13, 7779–7787.
  70. Lakušić, S. How to Obtain EU Project without an EU Partner—Example of RUCONBAR Project From the EU Program CIP ECO-Innovation. In Planning, Design, Construction and Renewal in the Civil Engineering, Proceedings of the INDIS 2012, Novi Sad, Serbia, 28–30 November 2012; Radonjanin, V., Folić, R., Lađinović, Đ., Eds.; Faculty of Technical Sciences, Department of Civil Engineering and Geodesy: Novi Sad, Serbia, 2012; pp. 2–15.
  71. Lakušić, S.; Bjegović, D.; Haladin, I.; Baričević, A.; Serdar, M. RUCONBAR—Innovative noise protection solution made of recycled waste tyres. Mech. Transp. Commun. 2011, 3, X-76.
  72. Serdar, M.; Baričević, A.; Lakušić, S.; Bjegović, D. Special purpose concrete products from waste tyre recyclates. Gradevinar 2013, 65, 793–801.
  73. Jedidi, M.; Boulila, A.; Benjeddou, O.; Soussi, C. Crumb Rubber Effect on Acoustic Properties of Self-Consolidating Concrete. Int. J. Therm. Environ. Eng. 2014, 8, 69–76.
  74. Holmes, N.; Browne, A.; Montague, C. Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 2014, 73, 195–204.
  75. Boarder, R.F.W.; Owens, P.L.; Khatib, J.M. The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete. In Sustainability of Construction Materials, 2nd ed.; Khatib, J.M., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 209–244.
  76. Rashad, A.M. Lightweight expanded clay aggregate as a building material—An overview. Constr. Build. Mater. 2018, 170, 757–775.
  77. Coatanlem, P.; Jauberthie, R.; Rendell, F. Lightweight wood chipping concrete durability. Constr. Build. Mater. 2006, 20, 776–781.
  78. Macchi, N.; Zwicky, D. Wood-Based Concrete for Composite Building Construction with Timber. In Proceedings of the Concrete Innovation Conference, Oslo, Norway, 11–13 June 2014.
  79. Vo, L.T.T.; Navard, P. Treatments of plant biomass for cementitious building materials—A review. Constr. Build. Mater. 2016, 121, 161–176.
  80. Mangi, S.A.; Jamaluddin, N.B.; Siddiqui, Z.; Memon, S.A.; Ibrahim, M.H.B.W. Utilization of Sawdust in Concrete Masonry Blocks: A Review. Mehran Univ. Res. J. Eng. Technol. 2019, 38, 487–494.
  81. Corti, A.; Lombardi, L. End life tyres: Alternative final disposal processes compared by LCA. Energy 2004, 29, 2089–2108.
  82. RUCONBAR. Available online: http://www.ruconbar.com/rcnb/wp-content/uploads/2014/06/RUCONBAR_brochure_A4_EN_web.pdf (accessed on 10 November 2020).
  83. LIADUR. Available online: https://www.liadur.cz/cz/vyuzivane-stavebni-materialy-pro-stavbu-protihlukovych-sten-liadur (accessed on 10 November 2020).
  84. RIEDER. Available online: http://www.rieder.cz/produkty/protihlukove-steny-faseton/faseton-absorber.php (accessed on 10 November 2020).
  85. Sgarbossa, A.; Boschiero, M.; Pierobon, F.; Cavalli, R.; Zanetti, M. Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains. Forests 2020, 11, 1127.
More