PTMs Role During Virus Infection: Comparison
Please note this is a comparison between Version 1 by Sujatha Sunil and Version 3 by Lily Guo.

Viruses are opportunistic intracellular pathogens that are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for protein's functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.

  • RNA viruses
  • post-translation modification
  • pathogenesis
  • ubiquitination
  • acetylation
  • glycosylation
  • phosphorylation
  • ISGylation
  • ADP ribosylation
  • SUMOylation
  • PTMs
Please wait, diff process is still running!

References

  1. Alexander E. Gorbalenya; Genomics and Evolution of the Nidovirales. Nidoviruses 2014, 1, 15-28, 10.1128/9781555815790.ch2.
  2. Alexander E. Gorbalenya; Luis Enjuanes; John Ziebuhr; Eric J. Snijder; Nidovirales: Evolving the largest RNA virus genome. Virus Research 2006, 117, 17-37, 10.1016/j.virusres.2006.01.017.
  3. Ana L. Santos; Ariel B. Lindner; Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. Oxidative Medicine and Cellular Longevity 2017, 2017, 1-19, 10.1155/2017/5716409.
  4. Anna Rahnefeld; Karin Klingel; Anett Schuermann; Nicola L. Diny; Nadine Althof; Anika Lindner; Philipp Bleienheuft; Konstantinos Savvatis; Dorota Respondek; Elisa Opitz; et al.Lars KetscherMartina SauterUlrike SeifertCarsten TschöpeWolfgang PollerKlaus-Peter KnobelochAntje Voigt Ubiquitin-Like Protein ISG15 (Interferon-Stimulated Gene of 15 kDa) in Host Defense Against Heart Failure in a Mouse Model of Virus-Induced Cardiomyopathy. Circulation 2014, 130, 1589-1600, 10.1161/circulationaha.114.009847.
  5. Tinghong Zhang; Zhen Ye; Xiaohai Yang; Yujie Qin; Yi Hu; Xiaomei Tong; Wenbin Lai; Xin Ye; NEDDylation of PB2 Reduces Its Stability and Blocks the Replication of Influenza A Virus. Scientific Reports 2017, 7, 43691, 10.1038/srep43691.
  6. Preeti Bharaj; Colm Atkins; Priya Luthra; Maria Isabel Giraldo; Brian E. Dawes; Lisa Miorin; Jeffrey R. Johnson; Nevan J. Krogan; Christopher F. Basler; Alexander N. Freiberg; et al.Ricardo Rajsbaum The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication. Journal of Virology 2017, 91, e00833-17, 10.1128/jvi.00833-17.
  7. Helena Ryšlavá; Veronika Doubnerová; Daniel Kavan; Ondřej Vaněk; Effect of posttranslational modifications on enzyme function and assembly. Journal of Proteomics 2013, 92, 80-109, 10.1016/j.jprot.2013.03.025.
  8. Kirby N Swatek; David Komander; Ubiquitin modifications. Cell Research 2016, 26, 399-422, 10.1038/cr.2016.39.
  9. Annemarthe G. Van Der Veen; Hidde L. Ploegh; Ubiquitin-Like Proteins. Annual Review of Biochemistry 2012, 81, 323-357, 10.1146/annurev-biochem-093010-153308.
  10. Doris Popovic; Domagoj Vucic; Ivan Dikic; Ubiquitination in disease pathogenesis and treatment. Nature Medicine 2014, 20, 1242-1253, 10.1038/nm.3739.
  11. Jonathan M. D. Vosper; Gary S. McDowell; Christopher J. Hindley; Christelle S. Fiore-Heriche; Romana Kucerova; Ian Horan; Anna Philpott; Ubiquitylation on Canonical and Non-canonical Sites Targets the Transcription Factor Neurogenin for Ubiquitin-mediated Proteolysis. Journal of Biological Chemistry 2009, 284, 15458-15468, 10.1074/jbc.m809366200.
  12. Cecile M. Pickart; Michael J. Eddins; Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2004, 1695, 55-72, 10.1016/j.bbamcr.2004.09.019.
  13. Kezhen Wang; Chunling Zou; Xiujuan Wang; Chenxiao Huang; Tingting Feng; Wen Pan; Qihan Wu; Penghua Wang; Jianfeng Dai; Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. PLOS Pathogens 2018, 14, e1007287, 10.1371/journal.ppat.1007287.
  14. Adam J Fletcher; Devin E Christensen; Chad Nelson; Choon Ping Tan; Torsten Schaller; Paul J. Lehner; Wesley I Sundquist; Greg J Towers; TRIM 5α requires Ube2W to anchor Lys63‐linked ubiquitin chains and restrict reverse transcription. The EMBO Journal 2015, 34, 2078-2095, 10.15252/embj.201490361.
  15. Abhilash I. Chiramel; Nicholas R. Meyerson; Kristin L. McNally; Rebecca M. Broeckel; Vanessa R. Montoya; Omayra Méndez-Solís; Shelly J. Robertson; Gail L. Sturdevant; Kirk J. Lubick; Vinod Nair; et al.Brian H. YouseffRobin M. IrelandCatharine M. BosioKyusik KimJeremy LubanVanessa M. HirschR. Travis TaylorFadila BouamrSara L. SawyerSonja M. Best TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation. Cell Reports 2019, 27, 3269-3283.e6, 10.1016/j.celrep.2019.05.040.
  16. Qingchen Zhu; Tao Yu; Shucheng Gan; Yan Wang; Yifei Pei; Qifan Zhao; Siyu Pei; Shumeng Hao; Jia Yuan; Jing Xu; et al.Fajian HouXuefeng WuChao PengPing WuJun QinYichuan Xiao TRIM24 facilitates antiviral immunity through mediating K63-linked TRAF3 ubiquitination. Journal of Experimental Medicine 2020, 217, 6, 10.1084/jem.20192083.
  17. Hashim Ali; Miguel Mano; Luca Braga; Asma Naseem; Bruna Marini; Diem My Vu; Chiara Collesi; Germana Meroni; Marina Lusic; Mauro Giacca; et al. Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nature Communications 2019, 10, 1-15, 10.1038/s41467-019-08810-0.
  18. Girish Patil; Mengmeng Zhao; Kun Song; Wenzhuo Hao; Daniel Bouchereau; Lingyan Wang; Shitao Li; TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Influenza A Virus Infection. Journal of Virology 2018, 92, 10, 10.1128/jvi.00905-18.
  19. Masayuki Shirakura; Kyoko Murakami; Tohru Ichimura; Ryosuke Suzuki; Tetsu Shimoji; Kouichirou Fukuda; Katsutoshi Abe; Shigeko Sato; Masayoshi Fukasawa; Yoshio Yamakawa; et al.Masahiro NishijimaKohji MoriishiYoshiharu MatsuuraTakaji WakitaTetsuro SuzukiPeter M. HowleyTatsuo MiyamuraIkuo Shoji E6AP Ubiquitin Ligase Mediates Ubiquitylation and Degradation of Hepatitis C Virus Core Protein. Journal of Virology 2006, 81, 1174-1185, 10.1128/jvi.01684-06.
  20. Sebastian Aguirre; Priya Luthra; Maria T. Sanchez-Aparicio; Ana M. Maestre; Jenish Patel; FrancisE Lamothe; Anthony C. Fredericks; Shashank Tripathi; Tongtong Zhu; Jessica Pintado-Silva; et al.Laurence G. WebbDabeiba Bernal-RubioAlexander SolovyovBenjamin GreenbaumViviana SimonChristopher F. BaslerLubbertus C. F. MulderAdolfo García-SastreAna Fernandez-Sesma Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nature Microbiology 2017, 2, 1-11, 10.1038/nmicrobiol.2017.37.
  21. Sebastian Aguirre; Ana M. Maestre; Sarah Pagni; Jenish R. Patel; Timothy Savage; Delia Gutman; Kevin Maringer; Dabeiba Bernal-Rubio; Reed S. Shabman; Viviana Simon; et al.Juan R. Rodriguez-MadozLubbertus C. F. MulderGlen N. BarberAna Fernandez-Sesma DENV Inhibits Type I IFN Production in Infected Cells by Cleaving Human STING. PLOS Pathogens 2012, 8, e1002934, 10.1371/journal.ppat.1002934.
  22. Girish Patil; Lingling Xu; Yakun Wu; Kun Song; Wenzhuo Hao; Fang Hua; Lingyan Wang; Shitao Li; TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Vesicular Stomatitis Virus Infection. Viruses 2020, 12, 131, 10.3390/v12020131.
  23. Maria I. Giraldo; Oscar Vargas-Cuartas; Juan Carlos Gallego-Gomez; Pei-Yong Shi; Leonardo Padilla; Jhon Carlos Castaño-Osorio; Ricardo Rajsbaum; K48-linked polyubiquitination of dengue virus NS1 protein inhibits its interaction with the viral partner NS4B. Virus Research 2018, 246, 1-11, 10.1016/j.virusres.2017.12.013.
  24. Yong Ran; Jing Zhang; Li-Li Liu; Zhao-Yi Pan; Yuefeng Nie; Hong-Yan Zhang; Yan-Yi Wang; Autoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response. Journal of Molecular Cell Biology 2015, 8, 31-43, 10.1093/jmcb/mjv068.
  25. Marwah Karim; Elise Biquand; Marion Declercq; Yves Jacob; Sylvie Van Der Werf; Caroline Demeret; Nonproteolytic K29-Linked Ubiquitination of the PB2 Replication Protein of Influenza A Viruses by Proviral Cullin 4-Based E3 Ligases. mBio 2020, 11, 8, 10.1128/mbio.00305-20.
  26. Yu-Chen Lin; King-Song Jeng; Michael Ming-Chiao Lai; CNOT4-Mediated Ubiquitination of Influenza A Virus Nucleoprotein Promotes Viral RNA Replication. mBio 2017, 8, e00597-17, 10.1128/mbio.00597-17.
  27. James Kirui; Arindam Mondal; Andrew Mehle; Ubiquitination Upregulates Influenza Virus Polymerase Function. Journal of Virology 2016, 90, 10906-10914, 10.1128/jvi.01829-16.
  28. Sathish Kumar; Rina Barouch-Bentov; Fei Xiao; Stanford Schor; Szuyuan Pu; Elise Biquand; Albert Lu; Brett D. Lindenbach; Yves Jacob; Caroline Demeret; et al.Shirit Einav MARCH8 Ubiquitinates the Hepatitis C Virus Nonstructural 2 Protein and Mediates Viral Envelopment. Cell Reports 2019, 26, 1800-1814.e5, 10.1016/j.celrep.2019.01.075.
  29. Atsushi Okumura; Paula M. Pitha; Ronald N. Harty; ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proceedings of the National Academy of Sciences 2008, 105, 3974-3979, 10.1073/pnas.0710629105.
  30. Fumihiko Okumura; Akiko J. Okumura; Keiji Uematsu; Shigetsugu Hatakeyama; Dong-Er Zhang; Takumi Kamura; Activation of Double-stranded RNA-activated Protein Kinase (PKR) by Interferon-stimulated Gene 15 (ISG15) Modification Down-regulates Protein Translation. Journal of Biological Chemistry 2012, 288, 2839-2847, 10.1074/jbc.m112.401851.
  31. Chen Zhao; Haripriya Sridharan; Ran Chen; Darren P. Baker; Shanshan Wang; Robert M. Krug; Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins. Nature Communications 2016, 7, 12754, 10.1038/ncomms12754.
  32. Meike Kespohl; Clara Bredow; Karin Klingel; Martin Voß; Anna Paeschke; Martin Zickler; Wolfgang Poller; Ziya Kaya; Johannes Eckstein; Henry Fechner; et al.Joachim SprangerMichael FählingEva K. WirthLilliana RadoshevichFabien TheryFrancis ImpensNikolaus BerndtKlaus-Peter KnobelochAntje Beling Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming.. Science Advances 2020, 6, eaay1109, 10.1126/sciadv.aay1109.
  33. Yang Du; Tianhao Duan; Yanchun Feng; Qingxiang Liu; Meng Lin; Jun Cui; Rong-Fu Wang; LRRC25 inhibits type I IFN signaling by targeting ISG15‐associated RIG‐I for autophagic degradation. The EMBO Journal 2017, 37, 351-366, 10.15252/embj.201796781.
  34. Matthew B Frieman; Kiira Ratia; Robert E. Johnston; Andrew D. Mesecar; Ralph S. Baric; Severe Acute Respiratory Syndrome Coronavirus Papain-Like Protease Ubiquitin-Like Domain and Catalytic Domain Regulate Antagonism of IRF3 and NF-κB Signaling. Journal of Virology 2009, 83, 6689-6705, 10.1128/jvi.02220-08.
  35. Annette Flotho; Frauke Melchior; Sumoylation: A Regulatory Protein Modification in Health and Disease. Annual Review of Biochemistry 2013, 82, 357-385, 10.1146/annurev-biochem-061909-093311.
  36. Van G. Wilson; Introduction to Sumoylation. Neurotransmitter Interactions and Cognitive Function 2017, 963, 1-12, 10.1007/978-3-319-50044-7_1.
  37. Roger D. Everett; Chris Boutell; Benjamin G. Hale; Interplay between viruses and host sumoylation pathways. Nature Reviews Microbiology 2013, 11, 400-411, 10.1038/nrmicro3015.
  38. Cagan Gurer; Lionel Berthoux; Jeremy Luban; Covalent Modification of Human Immunodeficiency Virus Type 1 p6 by SUMO-1. Journal of Virology 2005, 79, 910-917, 10.1128/jvi.79.2.910-917.2005.
  39. Alessia Zamborlini; Audrey Coiffic; Guillaume Beauclair; Olivier Delelis; Joris Paris; Yashuiro Koh; Fabian Magne; Marie-Lou Giron; Joelle Tobaly-Tapiero; Eric Deprez; et al.Stephane EmilianiAlan EngelmanHugues De ThéAli Saïb Impairment of Human Immunodeficiency Virus Type-1 Integrase SUMOylation Correlates with an Early Replication Defect. Journal of Biological Chemistry 2011, 286, 21013-21022, 10.1074/jbc.m110.189274.
  40. Patricia Domingues; Filip Golebiowski; Michael H. Tatham; Antonio M. Lopes; Aislynn Taggart; Ronald T. Hay; Benjamin G. Hale; Global Reprogramming of Host SUMOylation during Influenza Virus Infection. Cell Reports 2015, 13, 1467-1480, 10.1016/j.celrep.2015.10.001.
  41. Zhiqiang Mi; Jihuan Fu; Yanbao Xiong; Hong Tang; SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein & Cell 2010, 1, 275-283, 10.1007/s13238-010-0030-1.
  42. Tsung-Hsien Chang; Toru Kubota; Mayumi Matsuoka; Steven Jones; Steven B. Bradfute; Mike Bray; Keiko Ozato; Ebola Zaire Virus Blocks Type I Interferon Production by Exploiting the Host SUMO Modification Machinery. PLOS Pathogens 2009, 5, e1000493-e1000493, 10.1371/journal.ppat.1000493.
  43. Zheng Fan; Yue Zhuo; Xinyu Tan; Zhi Zhou; Jiangang Yuan; Boqin Qiang; Jinghua Yan; Xiaozhong Peng; George F. Gao; SARS‐CoV nucleocapsid protein binds to hUbc9, a ubiquitin conjugating enzyme of the sumoylation system. Journal of Medical Virology 2006, 78, 1365-1373, 10.1002/jmv.20707.
  44. Chung-Yi Wu; King-Song Jeng; Michael M.-C. Lai; The SUMOylation of Matrix Protein M1 Modulates the Assembly and Morphogenesis of Influenza A Virus. Journal of Virology 2011, 85, 6618-6628, 10.1128/jvi.02401-10.
  45. Qinglin Han; Chong Chang; L. Li; Christoph Klenk; Jinke Cheng; Yixin Chen; Ningshao Xia; Yuelong Shu; Z. Chen; Gülsah Gabriel; et al.Bing SunXu Ke Sumoylation of Influenza A Virus Nucleoprotein Is Essential for Intracellular Trafficking and Virus Growth. Journal of Virology 2014, 88, 9379-9390, 10.1128/jvi.00509-14.
  46. Santiago Vidal; Ahmed El Motiam; Rocío Seoane; Viktorija Preitakaite; Yanis Hichem Bouzaher; Sergio Gómez-Medina; Carmen San Martín; Dolores Rodríguez; María Teresa Rejas; Maite Baz-Martínez; et al.Rosa BarrioJames D. SutherlandManuel S. RodríguezCesar Muñoz-FontelaCarmen Rivas Regulation of the Ebola Virus VP24 Protein by SUMO. Journal of Virology 2019, 94, 6, 10.1128/jvi.01687-19.
  47. St. Patrick Reid; Lawrence W. Leung; Amy L. Hartman; Osvaldo Martinez; Megan L. Shaw; Caroline Carbonnelle; Viktor E. Volchkov; Stuart T. Nichol; Christopher F. Basler; Ebola Virus VP24 Binds Karyopherin α1 and Blocks STAT1 Nuclear Accumulation. Journal of Virology 2006, 80, 5156-5167, 10.1128/jvi.02349-05.
  48. Jonas N. Conde; William R. Schutt; Megan Mladinich; Sook-Young Sohn; Patrick Hearing; Erich R. Mackow; NS5 Sumoylation Directs Nuclear Responses That Permit Zika Virus To Persistently Infect Human Brain Microvascular Endothelial Cells8. Journal of Virology 2020, 94, 8, 10.1128/jvi.01086-20.
  49. Guangqing Yu; Xing Liu; Jinhua Tang; Chenxi Xu; Gang Ouyang; Wuhan Xiao; Neddylation Facilitates the Antiviral Response in Zebrafish. Frontiers in Immunology 2019, 10, 1432, 10.3389/fimmu.2019.01432.
  50. Radoslav I Enchev; Brenda A. Schulman; Peter Matthias; Protein neddylation: beyond cullin–RING ligases. Nature Reviews Molecular Cell Biology 2014, 16, 30-44, 10.1038/nrm3919.
  51. David J. Stanley; Koen Bartholomeeusen; David C. Crosby; Dong-Young Kim; Eunju Kwon; Linda Yen; Nathalie Caretta Cartozo; Ming Li; Stefanie Jäger; Jeremy Mason-Herr; et al.Fumiaki HayashiShigeyuki YokoyamaNevan J. KroganReuben S. HarrisBoris Matija PeterlinJohn D. Gross Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G. PLOS Pathogens 2012, 8, e1003085, 10.1371/journal.ppat.1003085.
  52. Tsai-Ling Liao; Chung-Yi Wu; Wen-Chi Su; King-Song Jeng; Michael M C Lai; Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. The EMBO Journal 2010, 29, 3879-3890, 10.1038/emboj.2010.250.
  53. Ting Pan; Zheng Song; Liyang Wu; Guangyan Liu; Xiancai Ma; Zhilin Peng; Mo Zhou; Liting Liang; Bingfeng Liu; Jun Liu; et al.Junsong ZhangXuanhong ZhangRyan HuangJiacong ZhaoYonghong LiXuemei LingYuewen LuoXiaoping TangWeiping CaiKai DengLinghua LiHui Zhang USP49 potently stabilizes APOBEC3G protein by removing ubiquitin and inhibits HIV-1 replication. eLife 2019, 8, 0, 10.7554/elife.48318.
  54. Ayaka Okada; Yasumasa Iwatani; APOBEC3G-Mediated G-to-A Hypermutation of the HIV-1 Genome: The Missing Link in Antiviral Molecular Mechanisms. Frontiers in Microbiology 2016, 7, 2027, 10.3389/fmicb.2016.02027.
  55. Christina M. Ulane; Alex Kentsis; Cristian D. Cruz; Jean-Patrick Parisien; Kristi L. Schneider; Curt M. Horvath; Composition and Assembly of STAT-Targeting Ubiquitin Ligase Complexes: Paramyxovirus V Protein Carboxyl Terminus Is an Oligomerization Domain. Journal of Virology 2005, 79, 10180-10189, 10.1128/jvi.79.16.10180-10189.2005.
  56. Takayuki Hishiki; Qi’En Han; Kei-Ichiro Arimoto; Kunitada Shimotohno; Tatsuhiko Igarashi; Subhash G. Vasudevan; Youichi Suzuki; Naoki Yamamoto; Interferon-mediated ISG15 conjugation restricts dengue virus 2 replication. Biochemical and Biophysical Research Communications 2014, 448, 95-100, 10.1016/j.bbrc.2014.04.081.
  57. Chen Zhao; Tien-Ying Hsiang; Rei-Lin Kuo; Robert M. Krug; ISG15 conjugation system targets the viral NS1 protein in influenza A virus–infected cells. Proceedings of the National Academy of Sciences 2010, 107, 2253-2258, 10.1073/pnas.0909144107.
  58. Florine E.M. Scholte; Marko Zivcec; John V. Dzimianski; Michelle K. Deaton; Jessica R. Spengler; Stephen R. Welch; Stuart T. Nichol; Scott D. Pegan; Christina F. Spiropoulou; Eric Bergeron; et al. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease. Cell Reports 2017, 20, 2396-2407, 10.1016/j.celrep.2017.08.040.
  59. Takayuki Abe; Nanae Minami; Rheza Gandi Bawono; Chieko Matsui; Lin Deng; Takasuke Fukuhara; Yoshiharu Matsuura; Ikuo Shoji; ISGylation of Hepatitis C Virus NS5A Protein Promotes Viral RNA Replication via Recruitment of Cyclophilin A. Journal of Virology 2020, 94, 0, 10.1128/jvi.00532-20.
  60. Nora Schmidt; Patricia Domingues; Filip Golebiowski; Corinna Patzina; Michael H. Tatham; Ronald T. Hay; Benjamin G. Hale; An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proceedings of the National Academy of Sciences 2019, 116, 17399-17408, 10.1073/pnas.1907031116.
  61. Shu-Chuan Chen; Luan-Yin Chang; Yi-Wei Wang; Yi-Chun Chen; Kuo-Feng Weng; Shin-Ru Shih; Hsiu-Ming Shih; Sumoylation-promoted Enterovirus 71 3C Degradation Correlates with a Reduction in Viral Replication and Cell Apoptosis*. Journal of Biological Chemistry 2011, 286, 31373-31384, 10.1074/jbc.m111.254896.
  62. Yan Liu; Zhenhua Zheng; Bo Shu; Jin Meng; Yuan Zhang; Caishang Zheng; Xianliang Ke; Peng Gong; Qinxue Hu; Hanzhong Wang; et al. SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication. Journal of Virology 2016, 90, 10472-10485, 10.1128/jvi.01756-16.
  63. Xiancai Ma; Tao Yang; Yuewen Luo; Liyang Wu; Yawen Jiang; Zheng Song; Ting Pan; Bingfeng Liu; Guangyan Liu; Jun Liu; et al.Fei YuZhangping HeWanying ZhangJinyu YangLiting LiangYuanjun GuanXu ZhangLinghua LiWeiping CaiXiaoping TangSong GaoKai DengHui Zhang TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 2019, 8, 0, 10.7554/elife.42426.
  64. Chien-Hung Liu; Ligang Zhou; Guifang Chen; Robert M. Krug; Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. Proceedings of the National Academy of Sciences 2015, 112, 14048-14053, 10.1073/pnas.1509745112.
  65. Chuan Xia; Jennifer J. Wolf; Chuankai Sun; Mengqiong Xu; Caleb J. Studstill; Jun Chen; Hanh Ngo; Hua Zhu; B. Hahm; PARP1 Enhances Influenza A Virus Propagation by Facilitating Degradation of Host Type I Interferon Receptor. Journal of Virology 2020, 94, 0, 10.1128/jvi.01572-19.
  66. Hao-Sen Chiang; Helene Minyi Liu; The Molecular Basis of Viral Inhibition of IRF- and STAT-Dependent Immune Responses. Frontiers in Immunology 2019, 9, 3086, 10.3389/fimmu.2018.03086.
  67. Annie Bibeau-Poirier; Simon-Pierre Gravel; Jean-François Clément; Sébastien Rolland; Geneviève Rodier; Philippe Coulombe; John Hiscott; Nathalie Grandvaux; Sylvain Meloche; Marc J. Servant; et al. Involvement of the IκB Kinase (IKK)-Related Kinases Tank-Binding Kinase 1/IKKi and Cullin-Based Ubiquitin Ligases in IFN Regulatory Factor-3 Degradation. The Journal of Immunology 2006, 177, 5059-5067, 10.4049/jimmunol.177.8.5059.
  68. Henning Hofmann; Thomas D. Norton; Megan L. Schultz; Sylvie B. Polsky; Nicole Sunseri; Nathaniel R. Landau; Inhibition of CUL4A Neddylation Causes a Reversible Block to SAMHD1-Mediated Restriction of HIV-1. Journal of Virology 2013, 87, 11741-11750, 10.1128/jvi.02002-13.
  69. Haiwei Sun; Wei Yao; Kai Wang; Yingjuan Qian; Antonio Tricoli; Yong-Sam Jung; Inhibition of neddylation pathway represses influenza virus replication and pro-inflammatory responses. Virology 2018, 514, 230-239, 10.1016/j.virol.2017.11.004.
  70. Robert G. Spiro; Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002, 12, 43R-56R, 10.1093/glycob/12.4.43r.
  71. Ieva Bagdonaite; Hans H Wandall; Global aspects of viral glycosylation. Glycobiology 2018, 28, 443-467, 10.1093/glycob/cwy021.
  72. David J. Vigerust; Virginia L. Shepherd; Virus glycosylation: role in virulence and immune interactions. Trends in Microbiology 2007, 15, 211-218, 10.1016/j.tim.2007.03.003.
  73. Yasunori Watanabe; Thomas A. Bowden; Ian A. Wilson; Max Crispin; Exploitation of glycosylation in enveloped virus pathobiology. Biochimica et Biophysica Acta (BBA) - General Subjects 2019, 1863, 1480-1497, 10.1016/j.bbagen.2019.05.012.
  74. Paula E. Magnelli; Alicia M. Bielik; Ellen P Guthrie; Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. Journal of Visualized Experiments 2011, 10, e3749-e3749, 10.3791/3749.
  75. Kelley W. Moremen; Michael Tiemeyer; Alison V. Nairn; Vertebrate protein glycosylation: diversity, synthesis and function. Nature Reviews Molecular Cell Biology 2012, 13, 448-462, 10.1038/nrm3383.
  76. Justine D Mintern; Jose A. Villadangos; Antigen-presenting cells look within during influenza infection. Nature Medicine 2015, 21, 1123-1125, 10.1038/nm.3971.
  77. Nadine Evan Montfoort; Evelyn Evan Der Aa; Andrea M Woltman; Understanding MHC Class I Presentation of Viral Antigens by Human Dendritic Cells as a Basis for Rational Design of Therapeutic Vaccines. Frontiers in Immunology 2014, 5, 182, 10.3389/fimmu.2014.00182.
  78. Edward B Irvine; Galit Alter; Understanding the role of antibody glycosylation through the lens of severe viral and bacterial diseases. Glycobiology 2020, 30, 241-253, 10.1093/glycob/cwaa018.
  79. Giuseppe Lofano; Matthew J. Gorman; Ashraf Siddig Yousif; Wen-Han Yu; Julie M. Fox; Anne-Sophie Dugast; Margaret E. Ackerman; Todd J. Suscovich; Joshua A. Weiner; Dan H. Barouch; et al.Hendrik StreeckSusan LittleDavey M. SmithDouglas D. RichmanDouglas A. LauffenburgerBruce D WalkerMichael S. DiamondGalit Alter Antigen-specific antibody Fc glycosylation enhances humoral immunity via the recruitment of complement. Science Immunology 2018, 3, eaat7796, 10.1126/sciimmunol.aat7796.
  80. Valerie J. Kinchen; Muhammad N. Zahid; Andrew I. Flyak; Mary G. Soliman; Gerald H. Learn; Shuyi Wang; Edgar Davidson; Benjamin J. Doranz; Stuart C. Ray; Andrea L. Cox; et al.James E. CrowePamela J. BjorkmanGeorge M. ShawJustin R. Bailey Broadly Neutralizing Antibody Mediated Clearance of Human Hepatitis C Virus Infection. Cell Host & Microbe 2018, 24, 717-730.e5, 10.1016/j.chom.2018.10.012.
  81. Matthew Zirui Tay; Kevin Wiehe; Justin Pollara; Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Frontiers in Immunology 2019, 10, 332, 10.3389/fimmu.2019.00332.
  82. J. S. M. Peiris; J. S. Porterfield; Antibody-mediated enhancement of Flavivirus replication in macrophage-like cell lines. Nature 1979, 282, 509-511, 10.1038/282509a0.
  83. Wanwisa Dejnirattisai; Piyada Supasa; Wiyada Wongwiwat; Alexander Rouvinski; Giovanna Barba-Spaeth; Thaneeya Duangchinda; Anavaj Sakuntabhai; Van-Mai Cao-Lormeau; Thaneeya Duangchinda Prida Malasit; Alexander Rouvinski Giovanna Barba-Spaeth Felix A Rey; et al.Juthathip MongkolsapayaWanwisa Dejnirattisai Piyada Supasa Wiyada Wongwiwat Juthathip Mongkolsapaya Gavin R Screaton Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nature Immunology 2016, 17, 1102-1108, 10.1038/ni.3515.
  84. W. K. Eddie Ip; Kwok Hung Chan; Helen K. W. Law; Gloria H. W. Tso; Eric K. P. Kong; Wilfred H. S. Wong; Yuk Fai To; Raymond W. H. Yung; Eudora Y. Chow; Ka Leung Au; et al.Eric Y. T. ChanWilina LimJens C. JenseniusMalcolm W. TurnerJ. S. Malik PeirisYu Lung Lau Mannose-Binding Lectin in Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Infectious Diseases 2005, 191, 1697-1704, 10.1086/429631.
  85. Panisadee Avirutnan; Richard E. Hauhart; Mary A. Marovich; Peter Garred; John P. Atkinson; Michael S. Diamond; Complement-Mediated Neutralization of Dengue Virus Requires Mannose-Binding Lectin. mBio 2011, 2, 0, 10.1128/mbio.00276-11.
  86. William B. Klimstra; Elizabeth M. Nangle; M. Shane Smith; Andrew D. Yurochko; Kate D. Ryman; DC-SIGN and L-SIGN Can Act as Attachment Receptors for Alphaviruses and Distinguish between Mosquito Cell- and Mammalian Cell-Derived Viruses. Journal of Virology 2003, 77, 12022-12032, 10.1128/jvi.77.22.12022-12032.2003.
  87. Elena Pokidysheva; Ying Zhang; Anthony J. Battisti; Carol M. Bator-Kelly; Paul R. Chipman; Chuan Xiao; G. Glenn Gregorio; Wayne A. Hendrickson; Richard J Kuhn; Michael G. Rossmann; et al. Cryo-EM Reconstruction of Dengue Virus in Complex with the Carbohydrate Recognition Domain of DC-SIGN. Cell 2006, 124, 485-493, 10.1016/j.cell.2005.11.042.
  88. Balaji Manicassamy; Jizhen Wang; Haiqing Jiang; Lijun Rong; Comprehensive Analysis of Ebola Virus GP1 in Viral Entry. Journal of Virology 2005, 79, 4793-4805, 10.1128/jvi.79.8.4793-4805.2005.
  89. Olivier Reynard; Malgorzata Borowiak; Valentina A. Volchkova; Sebastien Delpeut; Mathieu Mateo; Viktor E. Volchkov; Ebolavirus Glycoprotein GP Masks both Its Own Epitopes and the Presence of Cellular Surface Proteins. Journal of Virology 2009, 83, 9596-9601, 10.1128/jvi.00784-09.
  90. Jason S. McLellan; William C. Ray; Mark E. Peeples; Structure and Function of Respiratory Syncytial Virus Surface Glycoproteins. Current Topics in Microbiology and Immunology 2013, 372, 83-104, 10.1007/978-3-642-38919-1_4.
  91. J. Li; R. Bhuvanakantham; J. Howe; M.-L. Ng; The glycosylation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes. Journal of General Virology 2006, 87, 613-622, 10.1099/vir.0.81320-0.
  92. Changqing Yu; Sunan Li; Xianfeng Zhang; İlyas Khan; Iqbal Ahmad; Yulong Zhou; Shuo Li; Jing Shi; Yu Wang; Yong-Hui Zheng; et al. MARCH8 Inhibits Ebola Virus Glycoprotein, Human Immunodeficiency Virus Type 1 Envelope Glycoprotein, and Avian Influenza Virus H5N1 Hemagglutinin Maturation. mBio 2020, 11, 0, 10.1128/mbio.01882-20.
  93. Derek L. Carbaugh; Ralph Baric; Helen M. LaZear; Envelope Protein Glycosylation Mediates Zika Virus Pathogenesis. Journal of Virology 2019, 93, 0, 10.1128/jvi.00113-19.
  94. Dongming Zhao; Libin Liang; Shuai Wang; Tomomi Nakao; Yanbing Li; Liling Liu; Yuntao Guan; Satoshi Fukuyama; Zhigao Bu; Yoshihiro Kawaoka; et al.Hualan Chen Glycosylation of the Hemagglutinin Protein of H5N1 Influenza Virus Increases Its Virulence in Mice by Exacerbating the Host Immune Response. Journal of Virology 2017, 91, 0, 10.1128/jvi.02215-16.
  95. Michelle A. Nelson; Lara J. Herrero; Jason A. L. Jeffery; Marion Hoehn; Penny A. Rudd; Aroon Supramaniam; Brian H. Kay; Peter A. Ryan; Suresh Mahalingam; Role of envelope N-linked glycosylation in Ross River virus virulence and transmission. Journal of General Virology 2016, 97, 1094-1106, 10.1099/jgv.0.000412.
  96. Marie Flamand; Françoise Megret; Magali Mathieu; Jean Lepault; Félix A. Rey; Vincent Deubel; Dengue Virus Type 1 Nonstructural Glycoprotein NS1 Is Secreted from Mammalian Cells as a Soluble Hexamer in a Glycosylation-Dependent Fashion. Journal of Virology 1999, 73, 6104-6110, 10.1128/jvi.73.7.6104-6110.1999.
  97. Somchai Thiemmeca; Chamaiporn Tamdet; Nuntaya Punyadee; Tanapan Prommool; Adisak Songjaeng; Sansanee Noisakran; Chunya Puttikhunt; John P. Atkinson; Michael S. Diamond; Alongkot Ponlawat; et al.Panisadee Avirutnan Secreted NS1 Protects Dengue Virus from Mannose-Binding Lectin–Mediated Neutralization. The Journal of Immunology 2016, 197, 4053-4065, 10.4049/jimmunol.1600323.
  98. Karen P. Coss; Snezana Vasiljevic; Laura K. Pritchard; Stefanie A. Krumm; Molly Glaze; Sharon Madzorera; Penny L. Moore; Max Crispin; Katie Doores; HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual. Journal of Virology 2016, 90, 11132-11144, 10.1128/jvi.01542-16.
  99. P.J. Klasse; Gabriel Ozorowski; Rogier W. Sanders; P J Klasse; Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens?. Cell Host & Microbe 2020, 27, 507-518, 10.1016/j.chom.2020.03.018.
  100. Kshitij Wagh; Edward F. Kreider; Yingying Li; Hannah J. Barbian; Gerald H. Learn; Elena Giorgi; Peter T. Hraber; Timothy G. Decker; Andrew G. Smith; Marcos V. Gondim; et al.Lindsey GillisJamie WandzilakGwo-Yu ChuangReda RawiFangping CaiPierre PellegrinoIan WilliamsJulie OverbaughFeng GaoPeter D. KwongBarton F. HaynesGeorge M. ShawPersephone BorrowMichael S. SeamanBeatrice H. HahnBette T. Korber Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Reports 2018, 25, 893-908.e7, 10.1016/j.celrep.2018.09.087.
  101. Michael S. Cohen; Paul Chang; Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nature Chemical Biology 2018, 14, 236-243, 10.1038/nchembio.2568.
  102. Michael O. Hottiger; Paul O Hassa; Bernhard Lüscher; Herwig Schüler; Friedrich Koch-Nolte; Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends in Biochemical Sciences 2010, 35, 208-219, 10.1016/j.tibs.2009.12.003.
  103. Matthew E. Grunewald; Anthony R. Fehr; Jeremiah Athmer; Stanley Perlman; The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 2018, 517, 62-68, 10.1016/j.virol.2017.11.020.
  104. Péter Bai; Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. Molecular Cell 2015, 58, 947-958, 10.1016/j.molcel.2015.01.034.
  105. Anthony R. Fehr; Sasha A. Singh; Catherine M. Kerr; Shin Mukai; Hideyuki Higashi; Masanori Aikawa; The impact of PARPs and ADP-ribosylation on inflammation and host–pathogen interactions. Genes & Development 2020, 34, 341-359, 10.1101/gad.334425.119.
  106. Svetlana Atasheva; Maryna Akhrymuk; Elena I. Frolova; Ilya Frolov; New PARP Gene with an Anti-Alphavirus Function. Journal of Virology 2012, 86, 8147-8160, 10.1128/jvi.00733-12.
  107. Denisse A. Gutiérrez; Luis Valdes; Ché Serguera; Manuel Llano; Poly(ADP-ribose) polymerase-1 silences retroviruses independently of viral DNA integration or heterochromatin formation.. Journal of General Virology 2016, 97, 1686-1692, 10.1099/jgv.0.000466.
  108. Murilo T. D. Bueno; Daniel Reyes; Luis Valdes; Adarsh Saheba; Eduardo Urias; Crystal Mendoza; Oliver I. Fregoso; Manuel Llano; Poly(ADP-Ribose) Polymerase 1 Promotes Transcriptional Repression of Integrated Retroviruses. Journal of Virology 2012, 87, 2496-2507, 10.1128/jvi.01668-12.
  109. Lili Li; Hui Zhao; Ping Liu; Chunfeng Li; Natalie Quanquin; Xue Ji; Nina Sun; Peishuang Du; Cheng-Feng Qin; Ning Lu; et al.Genhong Cheng PARP12suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins. Science Signaling 2018, 11, eaas9332, 10.1126/scisignal.aas9332.
  110. Yiping Zhu; Guifang Chen; Fengxiang Lv; Xinlu Wang; Xin Ji; Yihui Xu; Jing Sun; L. Wu; Yong-Tang Zheng; Guangxia Gao; et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proceedings of the National Academy of Sciences 2011, 108, 15834-15839, 10.1073/pnas.1101676108.
  111. Julie A. Kerns; Michael Emerman; Harmit S. Malik; Positive Selection and Increased Antiviral Activity Associated with the PARP-Containing Isoform of Human Zinc-Finger Antiviral Protein. PLOS Genetics 2008, 4, e21, 10.1371/journal.pgen.0040021.
  112. Johannes Schwerk; Frank W. Soveg; Andrew P. Ryan; Kerri R. Thomas; Lauren D. Hatfield; Snehal Ozarkar; Adriana Forero; Alison M. Kell; Justin A. Roby; Lomon So; et al.Jennifer L. HydeMichael GaleMatthew D DaughertyRam Savan RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nature Immunology 2019, 20, 1610-1620, 10.1038/s41590-019-0527-6.
  113. Tingting Guo; Yibo Zuo; Liping Qian; Jin Liu; Yukang Yuan; Kailin Xu; Ying Miao; Qian Feng; Xiangjie Chen; Lincong Jin; et al.Liting ZhangChunsheng DongSidong XiongHui Zheng ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase β-TrCP. Nature Microbiology 2019, 4, 1872-1884, 10.1038/s41564-019-0428-3.
  114. Hélène Malet; Bruno Coutard; Saïd Jamal; Hélène Dutartre; Nicolas Papageorgiou; Maarit Neuvonen; Tero Ahola; Naomi Forrester; Ernest A. Gould; Daniel Lafitte; et al.Francois FerronJulien LescarAlexander E. GorbalenyaXavier De LamballerieBruno CanardBenjamin J. BurwitzChad J. PendleyJustin M. GreeneAnn M. DetmerJennifer J. LhostJulie A. KarlShari M. PiaskowskiRichard A. RudersdorfLyle T. WallaceBenjamin N. BimberJohn T. LoffredoDaryl G. CoxWilfried BardetWilliam HildebrandRoger W. WisemanShelby L. O'connorDavid H. O'connor The Crystal Structures of Chikungunya and Venezuelan Equine Encephalitis Virus nsP3 Macro Domains Define a Conserved Adenosine Binding Pocket. Journal of Virology 2009, 83, 6534-6545, 10.1128/jvi.00189-09.
  115. Mohammad K. Parvez; The hepatitis E virus ORF1 ‘X-domain’ residues form a putative macrodomain protein/Appr-1″-pase catalytic-site, critical for viral RNA replication. Gene 2015, 566, 47-53, 10.1016/j.gene.2015.04.026.
  116. Matthew E. Grunewald; Yating Chen; Chad V. Kuny; Takashi Maejima; Robert Lease; Dana Ferraris; Masanori Aikawa; Christopher S. Sullivan; Stanley Perlman; Anthony R. Fehr; et al. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLOS Pathogens 2019, 15, e1007756, 10.1371/journal.ppat.1007756.
  117. Hyo Chol Ha; Krishna Juluri; Yan Zhou; Steve Leung; Monika Hermankova; Solomon H. Snyder; Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration. Proceedings of the National Academy of Sciences 2001, 98, 3364-3368, 10.1073/pnas.051633498.
  118. Changqing Li; Yannick Debing; Gytis Jankevicius; Johan Neyts; Ivan Ahel; Bruno Coutard; Bruno Canard; Viral Macro Domains Reverse Protein ADP-Ribosylation. Journal of Virology 2016, 90, 8478-8486, 10.1128/jvi.00705-16.
  119. Rachy Abraham; Debra Hauer; Robert Lyle McPherson; Age Utt; Ilsa T. Kirby; Michael S. Cohen; Andres Merits; Anthony K L Leung; Diane E. Griffin; ADP-ribosyl–binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. Proceedings of the National Academy of Sciences 2018, 115, E10457-E10466, 10.1073/pnas.1812130115.
  120. Anthony R. Fehr; Gytis Jankevicius; Ivan Ahel; Stanley Perlman; Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends in Microbiology 2018, 26, 598-610, 10.1016/j.tim.2017.11.011.
  121. Hong Jiang; Xiaoyu Zhang; Xiao Chen; Pornpun Aramsangtienchai; Zhen Tong; Hening Lin; Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chemical Reviews 2017, 118, 919-988, 10.1021/acs.chemrev.6b00750.
  122. Sharon L. Swierczynski; Perry J. Blackshear; Myristoylation-dependent and Electrostatic Interactions Exert Independent Effects on the Membrane Association of the Myristoylated Alanine-rich Protein Kinase C Substrate Protein in Intact Cells. Journal of Biological Chemistry 1996, 271, 23424-23430, 10.1074/jbc.271.38.23424.
  123. Y. Kuroda; N. Suzuki; T. Kataoka; The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase. Science 1993, 259, 683-686, 10.1126/science.8430318.
  124. Justyna Sobocińska; Paula Roszczenko-Jasińska; Anna Ciesielska; Katarzyna Kwiatkowska; Protein Palmitoylation and Its Role in Bacterial and Viral Infections. Frontiers in Immunology 2018, 8, 0, 10.3389/fimmu.2017.02003.
  125. Cheryl A. Keller; Xu Yuan; Patrizia Panzanelli; Michelle L. Martin; Melissa J Alldred; Marco Sassoè-Pognetto; Bernhard Lüscher; The gamma 2 Subunit of GABAA Receptors Is a Substrate for Palmitoylation by GODZ. The Journal of Neuroscience 2004, 24, 5881-5891, 10.1523/jneurosci.1037-04.2004.
  126. M. F. Schmidt; M. Bracha; M. J. Schlesinger; Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins.. Proceedings of the National Academy of Sciences 1979, 76, 1687-1691, 10.1073/pnas.76.4.1687.
  127. Michael F.G. Schmidt; Milton J. Schlesinger; Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of post-translational modification of the viral glycoprotein. Cell 1979, 17, 813-819, 10.1016/0092-8674(79)90321-0.
  128. Julie Claudinon; Pauline Gonnord; Emilie Beslard; Marta Marchetti; Keith Mitchell; Cédric Boularan; Ludger Johannes; Pierre Eid; Christophe Lamaze; Palmitoylation of Interferon-α (IFN-α) Receptor Subunit IFNAR1 Is Required for the Activation of Stat1 and Stat2 by IFN-α. Journal of Biological Chemistry 2009, 284, 24328-24340, 10.1074/jbc.m109.021915.
  129. Charles C. Bailey; Guocai Zhong; I-Chueh Huang; Michael Farzan; IFITM-Family Proteins: The Cell's First Line of Antiviral Defense. Annual Review of Virology 2014, 1, 261-283, 10.1146/annurev-virology-031413-085537.
  130. Jocelyn C. Hach; Temet McMichael; Nicholas M. Chesarino; Jacob S. Yount; Palmitoylation on Conserved and Nonconserved Cysteines of Murine IFITM1 Regulates Its Stability and Anti-Influenza A Virus Activity. Journal of Virology 2013, 87, 9923-9927, 10.1128/jvi.00621-13.
  131. Jacob S Yount; Bruno Moltedo; Yu-Ying Yang; Guillaume Charron; Thomas M Moran; Carolina B López; Howard C. Hang; Palmitoylome profiling reveals S-palmitoylation–dependent antiviral activity of IFITM3. Nature Chemical Biology 2010, 6, 610-614, 10.1038/nchembio.405.
  132. Michael L. Grantham; Wai-Hong Wu; Erin N. Lalime; Maria E. Lorenzo; Sabra L. Klein; Andrew Pekosz; Palmitoylation of the Influenza A Virus M2 Protein Is Not Required for Virus Replication In Vitro but Contributes to Virus Virulence. Journal of Virology 2009, 83, 8655-8661, 10.1128/jvi.01129-09.
  133. Itay Rousso; Mark B. Mixon; Benjamin K. Chen; Peter S. Kim; Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proceedings of the National Academy of Sciences 2000, 97, 13523-13525, 10.1073/pnas.240459697.
  134. Jolene Ramsey; Emily C. Renzi; Randy J. Arnold; Jonathan C. Trinidad; Suchetana Mukhopadhyay; Palmitoylation of Sindbis Virus TF Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions. Journal of Virology 2016, 91, 0, 10.1128/jvi.02000-16.
  135. Corrin E. McBride; Carolyn E. Machamer; Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell–cell fusion but not interaction with M protein. Virology 2010, 405, 139-148, 10.1016/j.virol.2010.05.031.
  136. Michael Veit; Palmitoylation of virus proteins. Biology of the Cell 2012, 104, 493-515, 10.1111/boc.201200006.
  137. Ming-Jhan Wu; Saravanabalaji Shanmugam; Christoph Welsch; MinKyung Yi; Palmitoylation of Hepatitis C Virus NS2 Regulates Its Subcellular Localization and NS2-NS3 Autocleavage. Journal of Virology 2019, 94, 0, 10.1128/jvi.00906-19.
  138. Jérôme Gouttenoire; Angela Pollán; Laurence Abrami; Noémie Oechslin; Johann Mauron; Maxime Matter; Joël Oppliger; Dagmara Szkolnicka; Viet Loan Dao Thi; F. Gisou Van Der Goot; et al.Darius Moradpour Palmitoylation mediates membrane association of hepatitis E virus ORF3 protein and is required for infectious particle secretion. PLOS Pathogens 2018, 14, e1007471, 10.1371/journal.ppat.1007471.
  139. William Bakhache; Aymeric Neyret; Eric Bernard; Andres Merits; Laurence Briant; Palmitoylated Cysteines in Chikungunya Virus nsP1 Are Critical for Targeting to Cholesterol-Rich Plasma Membrane Microdomains with Functional Consequences for Viral Genome Replication. Journal of Virology 2020, 94, 0, 10.1128/jvi.02183-19.
  140. Sebastian Maurer-Stroh; Frank Eisenhaber; Myristoylation of viral and bacterial proteins. Trends in Microbiology 2004, 12, 178-185, 10.1016/j.tim.2004.02.006.
  141. Thomas Strecker; Anna Maisa; Stephane Daffis; Robert Eichler; Oliver Lenz; Wolfgang Garten; The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virology Journal 2006, 3, 93-93, 10.1186/1743-422X-3-93.
  142. San Suwanmanee; Yuvadee Mahakhunkijcharoen; Sumate Ampawong; Pornsawan Leaungwutiwong; Dorothée Missé; Natthanej Luplertlop; Inhibition ofN‐myristoyltransferase1 affects dengue virus replication. MicrobiologyOpen 2019, 8, e00831, 10.1002/mbo3.831.
  143. San Suwanmanee; Yuvadee Mahakhunkijcharoen; Sumate Ampawong; Pornsawan Leaungwutiwong; Dorothée Missé; Natthanej Luplertlop; Inhibition of N‐myristoyltransferase1 affects dengue virus replication. MicrobiologyOpen 2019, 8, e00831, 10.1002/mbo3.831.
  144. Irena Corbic Ramljak; Julia Stanger; Antonio Real-Hohn; Dominik Dreier; Laurin Wimmer; Monika Redlberger-Fritz; Wolfgang Fischl; Karin Klingel; Marko D. Mihovilovic; Dieter Blaas; et al.Heinrich Kowalski Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity. PLOS Pathogens 2018, 14, e1007203, 10.1371/journal.ppat.1007203.
  145. Lauren O'neil; Kathryn Andenoro; Isabella Pagano; Laura Carroll; Leah Langer; Zachary Dell; Davina Perera; Bradley W. Treece; Frank Heinrich; Mathias Lösche; et al.John F. NagleStephanie Tristram-Nagle HIV-1 matrix-31 membrane binding peptide interacts differently with membranes containing PS vs. PI(4,5)P2. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858, 3071-3081, 10.1016/j.bbamem.2016.09.010.
  146. Jiaming Cao; Meng Qu; Hongtao Liu; Xuan Wan; Fang Li; Ali Hou; Yan Zhou; Bo Sun; Linjun Cai; Weiheng Su; et al.Chunlai Jiang Myristoylation of EV71 VP4 is Essential for Infectivity and Interaction with Membrane Structure. Virologica Sinica 2020, 35, 599-613, 10.1007/s12250-020-00226-1.
  147. H G Kräusslich; C Hölscher; Q Reuer; J Harber; E Wimmer; Myristoylation of the poliovirus polyprotein is required for proteolytic processing of the capsid and for viral infectivity.. Journal of Virology 1990, 64, 2433-2436, 10.1128/jvi.64.5.2433-2436.1990.
  148. Fang L. Zhang; Patrick J. Casey; Protein Prenylation: Molecular Mechanisms and Functional Consequences. Annual Review of Biochemistry 1996, 65, 241-269, 10.1146/annurev.bi.65.070196.001325.
  149. Matthew J. Bick; John-William N. Carroll; Guangxia Gao; Stephen P. Goff; Charles M. Rice; Margaret R. Macdonald; Expression of the Zinc-Finger Antiviral Protein Inhibits Alphavirus Replication. Journal of Virology 2003, 77, 11555-11562, 10.1128/jvi.77.21.11555-11562.2003.
  150. Chunfu Wang; Michael Gale; Brian C. Keller; Hua Huang; Michael S. Brown; Joseph L. Goldstein; Jin Ye; Identification of FBL2 As a Geranylgeranylated Cellular Protein Required for Hepatitis C Virus RNA Replication. Molecular Cell 2005, 18, 425-434, 10.1016/j.molcel.2005.04.004.
  151. James C. Otto; Patrick J. Casey; The Hepatitis Delta Virus Large Antigen Is Farnesylated Both in Vitro and in Animal Cells. Journal of Biological Chemistry 1996, 271, 4569-4572, 10.1074/jbc.271.9.4569.
  152. C Z Lee; P J Chen; Ding-Shinn Chen; Large hepatitis delta antigen in packaging and replication inhibition: role of the carboxyl-terminal 19 amino acids and amino-terminal sequences.. Journal of Virology 1995, 69, 5332-5336, 10.1128/jvi.69.9.5332-5336.1995.
  153. Shigao Yang; Alfred T. Harding; Catherine Sweeney; David Miao; Gregory Swan; Connie Zhou; Zhaozhao Jiang; Katherine A. Fitzgerald; Gianna Hammer; Martin O. Bergo; et al.Heather K. KrohD. Borden LacyChunxiang SunMichael GlogauerLoretta G. QueNicholas S. HeatonZhaozhao Jiang Celia E Foster Annie S Li Xiaoman Zhang Ruth M Gavin Sorcha D Forde Gail Germain Susan Carpenter Neal Silverman Katherine A Fitzgerald Douglas T Golenbock Donghai Wang Control of antiviral innate immune response by protein geranylgeranylation. Science Advances 2019, 5, eaav7999, 10.1126/sciadv.aav7999.
  154. Fuxiao Xin; Predrag Radivojac; Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics 2012, 28, 2905-2913, 10.1093/bioinformatics/bts541.
  155. Fatima Ardito; Michele Giuliani; Donatella Perrone; Giuseppe Troiano; L. Lo Muzio; The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). International Journal of Molecular Medicine 2017, 40, 271-280, 10.3892/ijmm.2017.3036.
  156. Juan Liu; Cheng Qian; Xuetao Cao; Post-Translational Modification Control of Innate Immunity. Immunity 2016, 45, 15-30, 10.1016/j.immuni.2016.06.020.
  157. Weinan Zheng; Shuaishuai Cao; Can Chen; Jing Li; Shuang Zhang; Jingwen Jiang; Yange Niu; Wenhui Fan; Yun Li; Yuhai Bi; et al.George F. GaoLei SunWenjun Liu Threonine 80 phosphorylation of non-structural protein 1 regulates the replication of influenza A virus by reducing the binding affinity with RIG-I. Cellular Microbiology 2016, 19, e12643, 10.1111/cmi.12643.
  158. Oscar A. Tarazona; Olivier Pourquié; Exploring the Influence of Cell Metabolism on Cell Fate through Protein Post-translational Modifications. Developmental Cell 2020, 54, 282-292, 10.1016/j.devcel.2020.06.035.
  159. C S Rubin; O M Rosen; Protein Phosphorylation. Annual Review of Biochemistry 1975, 44, 831-887, 10.1146/annurev.bi.44.070175.004151.
  160. Forrest Keck; Pouya Ataey; Moushimi Amaya; Charles L. Bailey; Aarthi Narayanan; Phosphorylation of Single Stranded RNA Virus Proteins and Potential for Novel Therapeutic Strategies. Viruses 2015, 7, 5257-5273, 10.3390/v7102872.
  161. Kate M. Franz; William J. Neidermyer; Yee-Joo Tan; Sean P. J. Whelan; Jonathan C. Kagan; STING-dependent translation inhibition restricts RNA virus replication. Proceedings of the National Academy of Sciences 2018, 115, E2058-E2067, 10.1073/pnas.1716937115.
  162. Yang Li; Heather L. Wilson; Endre Kiss-Toth; Regulating STING in health and disease. Journal of Inflammation 2017, 14, 1-21, 10.1186/s12950-017-0159-2.
  163. Zhe Ma; Blossom Damania; The cGAS-STING Defense Pathway and Its Counteraction by Viruses. Cell Host & Microbe 2016, 19, 150-158, 10.1016/j.chom.2016.01.010.
  164. Omer Abid Kathum; Tobias Schräder; Darisuren Anhlan; Carolin Nordhoff; Swantje Liedmann; Amit Pande; Alexander Mellmann; Christina Ehrhardt; Viktor Wixler; Stephan Ludwig; et al. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity. Cellular Microbiology 2016, 18, 784-791, 10.1111/cmi.12559.
  165. Lok Man J. Law; Jason C. Everitt; Martin D. Beatch; Charles F. B. Holmes; Tom C. Hobman; Phosphorylation of Rubella Virus Capsid Regulates Its RNA Binding Activity and Virus Replication. Journal of Virology 2003, 77, 1764-71, 10.1128/jvi.77.3.1764-1771.2003.
  166. Helena Vihinen; Juhani Saarinen; Phosphorylation Site Analysis of Semliki Forest Virus Nonstructural Protein 3. Journal of Biological Chemistry 2000, 275, 27775-27783, 10.1074/jbc.m002195200.
  167. Bastian Thaa; Roberta Biasiotto; Kai Eng; Maarit Neuvonen; Benjamin Götte; Lara Rheinemann; Margit Mutso; Age Utt; Finny Varghese; Giuseppe Balistreri; et al.Andres MeritsTero AholaGerald M. McInerney Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization. Journal of Virology 2015, 89, 11420-11437, 10.1128/jvi.01579-15.
  168. Lin Zhu; Ting Gao; Weihong Yang; Yaoning Liu; Xuan Liu; Yong Hu; Yanwen Jin; Ping Li; Ke Xu; Gang Zou; et al.Lei ZhaoRuiyuan CaoWu ZhongXianzhu XiaCheng Cao Ebola virus replication is regulated by the phosphorylation of viral protein VP35.. Biochemical and Biophysical Research Communications 2020, 521, 687-692, 10.1016/j.bbrc.2019.10.147.
  169. Christopher M. Ziegler; Philip Eisenhauer; Inessa Manuelyan; Marion E. Weir; Emily A. Bruce; Bryan A. Ballif; Jason W. Botten; Host-Driven Phosphorylation Appears to Regulate the Budding Activity of the Lassa Virus Matrix Protein. Pathogens 2018, 7, 97, 10.3390/pathogens7040097.
  170. Michela Mazzon; Meleri Jones; Andrew Davidson; Benjamin Chain; Michael Jacobs; Dengue Virus NS5 Inhibits Interferon‐α Signaling by Blocking Signal Transducer and Activator of Transcription 2 Phosphorylation. The Journal of Infectious Diseases 2009, 200, 1261-1270, 10.1086/605847.
  171. Juliet Morrison; Maudry Laurent-Rolle; Ana M. Maestre; Ricardo Rajsbaum; Giuseppe Pisanelli; Viviana Simon; Lubbertus C. F. Mulder; Ana Fernandez-Sesma; Adolfo García-Sastre; Dengue Virus Co-opts UBR4 to Degrade STAT2 and Antagonize Type I Interferon Signaling. PLOS Pathogens 2013, 9, e1003265, 10.1371/journal.ppat.1003265.
  172. Stephanie Thurmond; Boxiao Wang; Jikui Song; Rong Hai; Suppression of Type I Interferon Signaling by Flavivirus NS5. Viruses 2018, 10, 712, 10.3390/v10120712.
  173. Yingchun Zeng; Linbai Ye; Shengli Zhu; Hong Zheng; Peng Zhao; Weijia Cai; Liya Su; Yinglong She; Zhenghui Wu; The nucleocapsid protein of SARS-associated coronavirus inhibits B23 phosphorylation. Biochemical and Biophysical Research Communications 2008, 369, 287-291, 10.1016/j.bbrc.2008.01.096.
  174. Jingfang Mu; Yaohui Fang; Qi Yang; Ting Shu; An Wang; Muhan Huang; Liang Jin; Fei Deng; Yang Qiu; Xi Zhou; et al. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discovery 2020, 6, 1-4, 10.1038/s41421-020-00208-3.
  175. Milan Surjit; Ravinder Kumar; Rabi N. Mishra; Malireddy K. Reddy; Vincent T. K. Chow; Sunil K. Lal; The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein Is Phosphorylated and Localizes in the Cytoplasm by 14-3-3-Mediated Translocation. Journal of Virology 2005, 79, 11476-11486, 10.1128/jvi.79.17.11476-11486.2005.
  176. Edward M. Kennedy; David G. Courtney; Kevin Tsai; Bryan R. Cullen; Viral Epitranscriptomics. Journal of Virology 2017, 91, e02263-16, 10.1128/jvi.02263-16.
  177. Laura Marcos-Villar; Juan Díaz-Colunga; Juan Sandoval; Noelia Zamarreño; Sara Landeras-Bueno; Manel Esteller; Ana Falcón; Amelia Nieto; Epigenetic control of influenza virus: role of H3K79 methylation in interferon-induced antiviral response. Scientific Reports 2018, 8, 1-13, 10.1038/s41598-018-19370-6.
  178. Zheng Zhang; Bryan C. Nikolai; Leah A. Gates; Sung Yun Jung; Edward B. Siwak; Zhang Zheng; Andrew P. Rice; Bert W. O’Malley; Qin Feng; Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Research 2017, 45, 9348-9360, 10.1093/nar/gkx550.
  179. Ying Liu; Yinghua Niu; Lu Li; Khalid A. Timani; Victor L. He; Chris Sanburns; Jiafeng Xie; Johnny J. He; Tat expression led to increased histone 3 tri-methylation at lysine 27 and contributed to HIV latency in astrocytes through regulation of MeCP2 and Ezh2 expression. Journal of NeuroVirology 2019, 25, 508-519, 10.1007/s13365-019-00751-0.
  180. Rachel Van Duyne; Rebecca Easley; Weilin Wu; Reem Berro; Caitlin Pedati; Zachary Klase; Kylene Kehn-Hall; Elizabeth K Flynn; David E. Symer; Fatah Kashanchi; et al. Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 2008, 5, 40-13, 10.1186/1742-4690-5-40.
  181. Naoki Sakane; Hye-Sook Kwon; Sara Pagans; Katrin Kaehlcke; Yasuhiro Mizusawa; Masafumi Kamada; Kara G. Lassen; Jonathan Chan; Warner C. Greene; Martina Schnoelzer; et al.Melanie Ott Activation of HIV Transcription by the Viral Tat Protein Requires a Demethylation Step Mediated by Lysine-specific Demethylase 1 (LSD1/KDM1). PLOS Pathogens 2011, 7, e1002184, 10.1371/journal.ppat.1002184.
  182. Jiaoyu Shan; Binbin Zhao; Zhao Shan; Jia Nie; Rong Deng; Rui Xiong; Andy Tsun; Weiqi Pan; Hanzhi Zhao; Ling Chen; et al.Ying JinZhikang QianKaWing LuiRui LiangDan LiBing SunDimitri LavilletteXu KeBin Li Histone demethylase LSD1 restricts influenza A virus infection by erasing IFITM3-K88 monomethylation. PLOS Pathogens 2017, 13, e1006773, 10.1371/journal.ppat.1006773.
  183. Laura A. Murray; Ashton N. Combs; Pranav Rekapalli; Ileana M. Cristea; Methods for characterizing protein acetylation during viral infection.. Methods in Enzymology 2019, 626, 587-620, 10.1016/bs.mie.2019.06.030.
  184. Matloob Husain; Chen-Yi Cheung; Histone Deacetylase 6 Inhibits Influenza A Virus Release by Downregulating the Trafficking of Viral Components to the Plasma Membrane via Its Substrate, Acetylated Microtubules. Journal of Virology 2014, 88, 11229-11239, 10.1128/jvi.00727-14.
  185. Dai Hatakeyama; Masaki Shoji; Seiya Yamayoshi; Rina Yoh; Naho Ohmi; Shiori Takenaka; Ayaka Saitoh; Yumie Arakaki; Aki Masuda; Tsugunori Komatsu; et al.Rina NaganoMasahiro NakanoTakeshi NodaYoshihiro KawaokaTakashi Kuzuhara Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. Journal of Biological Chemistry 2018, 293, 7126-7138, 10.1074/jbc.ra117.001683.
  186. Cesar Muñoz-Fontela; Dolores González; Laura Marcos-Villar; Michela Campagna; Pedro Gallego; José González-Santamaría; Daniel Herranz; Wei Gu; Manuel Serrano; Stuart A. Aaronson; et al.Carmen Rivas Acetylation is indispensable for p53 antiviral activity. Cell Cycle 2011, 10, 3701-3705, 10.4161/cc.10.21.17899.
  187. Samuel A Williams; Lin-Feng Chen; Hakju Kwon; Carmen M Ruiz-Jarabo; Eric Verdin; Warner C. Greene; NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. The EMBO Journal 2005, 25, 139-149, 10.1038/sj.emboj.7600900.
  188. Su Jin Choi; Hyun‐Cheol Lee; Jae‐Hoon Kim; Song Yi Park; Tae‐Hwan Kim; Woon‐Kyu Lee; Duk‐Jae Jang; Ji‐Eun Yoon; Young‐Il Choi; Seihwan Kim; et al.JinYeul MaChul‐Joong KimTso‐Pang YaoJae U JungJoo‐Yong LeeJong‐Soo Lee HDAC 6 regulates cellular viral RNA sensing by deacetylation of RIG ‐I. The EMBO Journal 2016, 35, 429-442, 10.15252/embj.201592586.
  189. Huan Chen; Yingjuan Qian; Xin Chen; Zhiyang Ruan; Yuetian Ye; Hongjun Chen; Lorne A. Babiuk; Yong-Sam Jung; Jianjun Dai; HDAC6 Restricts Influenza A Virus by Deacetylation of the RNA Polymerase PA Subunit. Journal of Virology 2018, 93, 0, 10.1128/jvi.01896-18.
  190. Jingjiao Ma; Rujuan Wu; GuanLong Xu; Yuqiang Cheng; Zhaofei Wang; Hengan Wang; Yaxian Yan; Jinxiang Li; Jianhe Sun; Acetylation at K108 of the NS1 protein is important for the replication and virulence of influenza virus.. Veterinary Research 2020, 51, 20-10, 10.1186/s13567-020-00747-3.
  191. Sebastian Giese; Kevin Ciminski; Hardin Bolte; Étori Aguiar Moreira; Seema Lakdawala; Zehan Hu; Quinnlan David; Larissa Kolesnikova; Veronika Götz; Yongxu Zhao; et al.Jörn DengjelY. Eugene ChinXu KeMartin Schwemmle Role of influenza A virus NP acetylation on viral growth and replication. Nature Communications 2017, 8, 1-11, 10.1038/s41467-017-01112-3.
  192. Jie Zan; Song Liu; Dong-Nan Sun; Kai-Kun Mo; Yan Yan; Juan Liu; Bo-Li Hu; Jin-Yan Gu; Min Liao; Ji-Yong Zhou; et al. Rabies Virus Infection Induces Microtubule Depolymerization to Facilitate Viral RNA Synthesis by Upregulating HDAC6. Frontiers in Cellular and Infection Microbiology 2017, 7, 146, 10.3389/fcimb.2017.00146.
  193. Qi Yang; Jielin Tang; Rongjuan Pei; Xiaoxiao Gao; Jing Guo; Chonghui Xu; Yun Wang; Qian Wang; Chunchen Wu; Yuan Zhou; et al.Xue HuHe ZhaoYanyi WangXinwen ChenJizheng Chen Host HDAC4 regulates the antiviral response by inhibiting the phosphorylation of IRF3. Journal of Molecular Cell Biology 2018, 11, 158-169, 10.1093/jmcb/mjy035.
  194. Catherine Eichwald; Francesca Arnoldi; Andrea S. Laimbacher; Elisabeth M. Schraner; Cornel Fraefel; Peter Wild; Oscar R. Burrone; Mathias Ackermann; Rotavirus Viroplasm Fusion and Perinuclear Localization Are Dynamic Processes Requiring Stabilized Microtubules. PLoS ONE 2012, 7, e47947, 10.1371/journal.pone.0047947.
  195. John S. L. Parker; Teresa J. Broering; Jonghwa Kim; Darren E. Higgins; Max L. Nibert; Reovirus Core Protein μ2 Determines the Filamentous Morphology of Viral Inclusion Bodies by Interacting with and Stabilizing Microtubules. Journal of Virology 2002, 76, 4483-4496, 10.1128/jvi.76.9.4483-4496.2002.
  196. Qiuqin Feng; Zhonglan Su; Shiyu Song; Hui Xu; Bin Zhang; Long Yi; Man Tian; Hongwei Wang; Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation. International Journal of Molecular Medicine 2016, 38, 812-822, 10.3892/ijmm.2016.2691.
  197. Chien-Yi Lu; Yi-Chih Chang; Chun-Hung Hua; Chieh Chuang; Su-Hua Huang; Szu-Hao Kung; Mann-Jen Hour; Cheng-Wen Lin; Tubacin, an HDAC6 Selective Inhibitor, Reduces the Replication of the Japanese Encephalitis Virus via the Decrease of Viral RNA Synthesis. International Journal of Molecular Sciences 2017, 18, 954, 10.3390/ijms18050954.
  198. H G Kräusslich; C Hölscher; Q Reuer; J Harber; E Wimmer; Myristoylation of the poliovirus polyprotein is required for proteolytic processing of the capsid and for viral infectivity.. Journal of Virology 1990, 64, 2433-2436, 10.1128/jvi.64.5.2433-2436.1990.
More
ScholarVision Creations