You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Gender Differences in Parkinson’s Disease: Comparison
Please note this is a comparison between Version 3 by Karina Chen and Version 2 by Marco Vacante.

Parkinson’s disease (PD) is a debilitating neurodegenerative disease that is responsible for cognitive impairment, non-motor, and motor symptoms, which has been found to significantly affect health-related quality of life (HRQoL). The gender differences of the health-related quality of life of subjects with Parkinson’s disease have been observed in a number of studies.

  • Parkinson’s disease
  • gender
  • quality of life
Please wait, diff process is still running!

References

  1. Study protocol for the World Health Organization project to develop a Quality of Life assessment instrument (WHOQOL). Qual. Life Res. 1993, 2, 153–159. [CrossRef]
  2. Sosnowski, R.; Kulpa, M.; Ziętalewicz, U.; Wolski, J.K.; Nowakowski, R.; Bakuła, R.; Demkow, T. Basic issues concerning health-related quality of life. Cent. Eur. J. Urol. 2017, 70, 206–211. [Google Scholar] [CrossRef]
  3. Vitale, S.G.; Caruso, S.; Rapisarda, A.M.C.; Valenti, G.; Rossetti, D.; Cianci, S.; Cianci, A. Biocompatible porcine dermis graft to treat severe cystocele: Impact on quality of life and sexuality. Arch. Gynecol. Obstet. 2016, 293, 125–131. [Google Scholar] [CrossRef] [PubMed]
  4. Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 2003, 157, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
  5. Dluzen, D.E.; McDermott, J.L. Gender differences in neurotoxicity of the nigrostriatal dopaminergic system: Implications for Parkinson’s disease. J. Gend. Specif. Med. 2000, 3, 36–42. [Google Scholar] [PubMed]
  6. Cerri, S.; Mus, L.; Blandini, F. Parkinson’s Disease in Women and Men: What’s the Difference? J. Parkinsons Dis 2019, 9, 501–515. [Google Scholar] [CrossRef]
  7. Balzer-Geldsetzer, M.; Klotsche, J.; Landscape Consortium; Dodel, R.; Riedel, O. Quality of life in a German cohort of Parkinson’s patients assessed with three different measures. J. Neurol. 2018, 265, 2713–2722. [Google Scholar] [CrossRef]
  8. Heinzel, S.; Kasten, M.; Behnke, S.; Vollstedt, E.-J.; Klein, C.; Hagenah, J.; Pausch, C.; Heilmann, R.; Brockmann, K.; Suenkel, U.; et al. Age- and sex-related heterogeneity in prodromal Parkinson’s disease. Mov. Disord. 2018, 33, 1025–1027. [Google Scholar] [CrossRef]
  9. Buczak-Stec, E.W.; König, H.-H.; Hajek, A. Impact of Incident Parkinson’s Disease on Satisfaction With Life. Front. Neurol. 2018, 9, 589. [Google Scholar] [CrossRef]
  10. Yoon, J.-E.; Kim, J.S.; Jang, W.; Park, J.; Oh, E.; Youn, J.; Park, S.; Cho, J.W. Gender Differences of Nonmotor Symptoms Affecting Quality of Life in Parkinson Disease. Neurodegener. Dis. 2017, 17, 276–280. [Google Scholar] [CrossRef]
  11. Jenkinson, C.; Fitzpatrick, R.; Peto, V.; Greenhall, R.; Hyman, N. The Parkinson’s Disease Questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score. Age Ageing 1997, 26, 353–357. [Google Scholar] [CrossRef] [PubMed]
  12. Ophey, A.; Eggers, C.; Dano, R.; Timmermann, L.; Kalbe, E. Health-Related Quality of Life Subdomains in Patients with Parkinson’s Disease: The Role of Gender. Parkinsons Dis. 2018, 2018, 6532320. [Google Scholar] [CrossRef] [PubMed]
  13. Caruso, S.; Bandiera, S.; Cavallaro, A.; Cianci, S.; Vitale, S.G.; Rugolo, S. Quality of life and sexual changes after double transobturator tension-free approach to treat severe cystocele. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 151, 106–109. [Google Scholar] [CrossRef] [PubMed]
  14. Caruso, S.; Iraci, M.; Cianci, S.; Vitale, S.G.; Fava, V.; Cianci, A. Effects of long-term treatment with Dienogest on the quality of life and sexual function of women affected by endometriosis-associated pelvic pain. J. Pain Res. 2019, 12, 2371–2378. [Google Scholar] [CrossRef] [PubMed]
  15. Caruso, S.; Cianci, S.; Vitale, S.G.; Fava, V.; Cutello, S.; Cianci, A. Sexual function and quality of life of women adopting the levonorgestrel-releasing intrauterine system (LNG-IUS 13.5 mg) after abortion for unintended pregnancy. Eur. J. Contracept. Reprod. Health Care 2018, 23, 24–31. [Google Scholar] [CrossRef] [PubMed]
  16. Vitale, S.G.; Laganà, A.S.; Noventa, M.; Giampaolino, P.; Zizolfi, B.; Butticè, S.; La Rosa, V.L.; Gullo, G.; Rossetti, D. Transvaginal Bilateral Sacrospinous Fixation after Second Recurrence of Vaginal Vault Prolapse: Efficacy and Impact on Quality of Life and Sexuality. Biomed. Res. Int. 2018, 2018, 5727165. [Google Scholar] [CrossRef] [PubMed]
  17. Gillies, G.E.; Pienaar, I.S.; Vohra, S.; Qamhawi, Z. Sex differences in Parkinson’s disease. Front. Neuroendocrinol. 2014, 35, 370–384. [Google Scholar] [CrossRef]
  18. Cantuti-Castelvetri, I.; Keller-McGandy, C.; Bouzou, B.; Asteris, G.; Clark, T.W.; Frosch, M.P.; Standaert, D.G. Effects of gender on nigral gene expression and parkinson disease. Neurobiol. Dis. 2007, 26, 606–614. [Google Scholar] [CrossRef]
  19. Simunovic, F.; Yi, M.; Wang, Y.; Stephens, R.; Sonntag, K.C. Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS ONE 2010, 5, e8856. [Google Scholar] [CrossRef]
  20. Ji, J.; Bourque, M.; Di Paolo, T.; Dluzen, D.E. Genetic alteration in the dopamine transporter differentially affects male and female nigrostriatal transporter systems. Biochem. Pharmacol. 2009, 78, 1401–1411. [Google Scholar] [CrossRef]
  21. Shih, J.C.; Chen, K.; Ridd, M.J. Monoamine oxidase: From genes to behavior. Annu. Rev. Neurosci. 1999, 22, 197–217. [Google Scholar] [CrossRef] [PubMed]
  22. Kelada, S.N.; Costa-Mallen, P.; Costa, L.G.; Smith-Weller, T.; Franklin, G.M.; Swanson, P.D.; Longstreth, W.T.; Checkoway, H. Gender difference in the interaction of smoking and monoamine oxidase B intron 13 genotype in Parkinson’s disease. Neurotoxicology 2002, 23, 515–519. [Google Scholar] [CrossRef]
  23. Goldwurm, S.; Tunesi, S.; Tesei, S.; Zini, M.; Sironi, F.; Primignani, P.; Magnani, C.; Pezzoli, G. Kin-cohort analysis of LRRK2-G2019S penetrance in Parkinson’s disease. Mov. Disord. 2011, 26, 2144–2145. [Google Scholar] [CrossRef] [PubMed]
  24. Cilia, R.; Siri, C.; Rusconi, D.; Allegra, R.; Ghiglietti, A.; Sacilotto, G.; Zini, M.; Zecchinelli, A.L.; Asselta, R.; Duga, S.; et al. LRRK2 mutations in Parkinson’s disease: Confirmation of a gender effect in the Italian population. Parkinsonism Relat. Disord. 2014, 20, 911–914. [Google Scholar] [CrossRef] [PubMed]
  25. Sayad, M.; Zouambia, M.; Chaouch, M.; Ferrat, F.; Nebbal, M.; Bendini, M.; Lesage, S.; Brice, A.; Brahim Errahmani, M.; Asselah, B. Greater improvement in LRRK2 G2019S patients undergoing Subthalamic Nucleus Deep Brain Stimulation compared to non-mutation carriers. BMC Neurosci. 2016, 17, 6. [Google Scholar] [CrossRef]
  26. San Luciano, M.; Ozelius, L.; Lipton, R.B.; Raymond, D.; Bressman, S.B.; Saunders-Pullman, R. Gender differences in the IL6 -174G>C and ESR2 1730G>A polymorphisms and the risk of Parkinson’s disease. Neurosci. Lett. 2012, 506, 312–316. [Google Scholar] [CrossRef]
  27. Håkansson, A.; Westberg, L.; Nilsson, S.; Buervenich, S.; Carmine, A.; Holmberg, B.; Sydow, O.; Olson, L.; Johnels, B.; Eriksson, E.; et al. Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 133B, 88–92. [Google Scholar] [CrossRef]
  28. Moon, H.E.; Paek, S.H. Mitochondrial Dysfunction in Parkinson’s Disease. Exp. Neurobiol. 2015, 24, 103–116. [Google Scholar] [CrossRef]
  29. Weiduschat, N.; Kaufmann, P.; Mao, X.; Engelstad, K.M.; Hinton, V.; DiMauro, S.; De Vivo, D.; Shungu, D. Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers. Neurology 2014, 82, 798–805. [Google Scholar] [CrossRef]
  30. Shephard, F.; Greville-Heygate, O.; Liddell, S.; Emes, R.; Chakrabarti, L. Analysis of Mitochondrial haemoglobin in Parkinson’s disease brain. Mitochondrion 2016, 29, 45–52. [Google Scholar] [CrossRef]
  31. Yang, W.; Li, X.; Li, X.; Li, X.; Yu, S. Neuronal hemoglobin in mitochondria is reduced by forming a complex with α-synuclein in aging monkey brains. Oncotarget 2016, 7, 7441–7454. [Google Scholar] [CrossRef] [PubMed]
  32. Silaidos, C.; Pilatus, U.; Grewal, R.; Matura, S.; Lienerth, B.; Pantel, J.; Eckert, G.P. Sex-associated differences in mitochondrial function in human peripheral blood mononuclear cells (PBMCs) and brain. Biol. Sex. Differ. 2018, 9, 34. [Google Scholar] [CrossRef] [PubMed]
  33. Chiabrando, D.; Fiorito, V.; Petrillo, S.; Tolosano, E. Unraveling the Role of Heme in Neurodegeneration. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
  34. Borsche, M.; Pereira, S.L.; Klein, C.; Grünewald, A. Mitochondria and Parkinson’s Disease: Clinical, Molecular, and Translational Aspects. J. Parkinsons Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
  35. Radad, K.; Rausch, W.-D.; Gille, G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 2006, 49, 379–386. [Google Scholar] [CrossRef] [PubMed]
  36. Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019, 18, e13031. [Google Scholar] [CrossRef]
  37. Mitra, S.; Chakrabarti, N.; Dutta, S.S.; Ray, S.; Bhattacharya, P.; Sinha, P.; Bhattacharyya, A. Gender-specific brain regional variation of neurons, endogenous estrogen, neuroinflammation and glial cells during rotenone-induced mouse model of Parkinson’s disease. Neuroscience 2015, 292, 46–70. [Google Scholar] [CrossRef]
  38. Kalampokini, S.; Becker, A.; Fassbender, K.; Lyros, E.; Unger, M.M. Nonpharmacological Modulation of Chronic Inflammation in Parkinson’s Disease: Role of Diet Interventions. Available online: https://www.hindawi.com/journals/pd/2019/7535472/ (accessed on 3 November 2020).
  39. Travagli, R.A.; Browning, K.N.; Camilleri, M. Parkinson disease and the gut: New insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 673–685. [Google Scholar] [CrossRef]
  40. Klingelhoefer, L.; Reichmann, H. Pathogenesis of Parkinson disease--the gut-brain axis and environmental factors. Nat. Rev. Neurol. 2015, 11, 625–636. [Google Scholar] [CrossRef]
  41. Haaxma, C.A.; Bloem, B.R.; Borm, G.F.; Oyen, W.J.G.; Leenders, K.L.; Eshuis, S.; Booij, J.; Dluzen, D.E.; Horstink, M.W.I.M. Gender differences in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 819–824. [Google Scholar] [CrossRef]
  42. Lavalaye, J.; Booij, J.; Reneman, L.; Habraken, J.B.; van Royen, E.A. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur. J. Nucl. Med. 2000, 27, 867–869. [Google Scholar] [CrossRef] [PubMed]
  43. Mozley, L.H.; Gur, R.C.; Mozley, P.D.; Gur, R.E. Striatal dopamine transporters and cognitive functioning in healthy men and women. Am. J. Psychiatry 2001, 158, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
  44. Munro, C.A.; McCaul, M.E.; Wong, D.F.; Oswald, L.M.; Zhou, Y.; Brasic, J.; Kuwabara, H.; Kumar, A.; Alexander, M.; Ye, W.; et al. Sex differences in striatal dopamine release in healthy adults. Biol. Psychiatry 2006, 59, 966–974. [Google Scholar] [CrossRef] [PubMed]
  45. Scott, B.; Borgman, A.; Engler, H.; Johnels, B.; Aquilonius, S.M. Gender differences in Parkinson’s disease symptom profile. Acta Neurol. Scand. 2000, 102, 37–43. [Google Scholar] [CrossRef]
  46. Hariz, G.-M.; Lindberg, M.; Hariz, M.I.; Bergenheim, A.T. Gender differences in disability and health-related quality of life in patients with Parkinson’s disease treated with stereotactic surgery. Acta Neurol. Scand. 2003, 108, 28–37. [Google Scholar] [CrossRef]
  47. Accolla, E.; Caputo, E.; Cogiamanian, F.; Tamma, F.; Mrakic-Sposta, S.; Marceglia, S.; Egidi, M.; Rampini, P.; Locatelli, M.; Priori, A. Gender differences in patients with Parkinson’s disease treated with subthalamic deep brain stimulation. Mov. Disord. 2007, 22, 1150–1156. [Google Scholar] [CrossRef]
  48. Baba, Y.; Putzke, J.D.; Whaley, N.R.; Wszolek, Z.K.; Uitti, R.J. Gender and the Parkinson’s disease phenotype. J. Neurol. 2005, 252, 1201–1205. [Google Scholar] [CrossRef]
  49. Yoritaka, A.; Ohizumi, H.; Tanaka, S.; Hattori, N. Parkinson’s disease with and without REM sleep behaviour disorder: Are there any clinical differences? Eur. Neurol. 2009, 61, 164–170. [Google Scholar] [CrossRef]
  50. Liu, J.; Liang, M.; Ma, G.; Liu, X.; Cheng, N.; Cao, D.; Yu, C.; Du, S.; Miao, Q.; Zhang, C. Surgical treatment for intravenous-cardiac leiomyomatosis. Eur. J. Cardiothorac. Surg. 2018, 54, 483–490. [Google Scholar] [CrossRef]
  51. Fernandez, H.H.; Lapane, K.L.; Ott, B.R.; Friedman, J.H. Gender differences in the frequency and treatment of behavior problems in Parkinson’s disease. SAGE Study Group. Systematic Assessment and Geriatric drug use via Epidemiology. Mov. Disord. 2000, 15, 490–496. [Google Scholar] [CrossRef]
  52. Soh, S.-E.; Morris, M.E.; McGinley, J.L. Determinants of health-related quality of life in Parkinson’s disease: A systematic review. Parkinsonism Relat. Disord. 2011, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
  53. Simpson, J.; Lekwuwa, G.; Crawford, T. Predictors of quality of life in people with Parkinson’s disease: Evidence for both domain specific and general relationships. Disabil. Rehabil. 2014, 36, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
  54. Wu, Y.; Guo, X.Y.; Wei, Q.Q.; Song, W.; Chen, K.; Cao, B.; Ou, R.W.; Zhao, B.; Shang, H.F. Determinants of the quality of life in Parkinson’s disease: Results of a cohort study from Southwest China. J. Neurol. Sci. 2014, 340, 144–149. [Google Scholar] [CrossRef] [PubMed]
  55. Hely, M.A.; Reid, W.G.J.; Adena, M.A.; Halliday, G.M.; Morris, J.G.L. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Mov. Disord. 2008, 23, 837–844. [Google Scholar] [CrossRef]
  56. Leroi, I.; McDonald, K.; Pantula, H.; Harbishettar, V. Cognitive impairment in Parkinson disease: Impact on quality of life, disability, and caregiver burden. J. Geriatr. Psychiatry Neurol. 2012, 25, 208–214. [Google Scholar] [CrossRef]
  57. Bronnick, K.; Ehrt, U.; Emre, M.; De Deyn, P.P.; Wesnes, K.; Tekin, S.; Aarsland, D. Attentional deficits affect activities of daily living in dementia-associated with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2006, 77, 1136–1142. [Google Scholar] [CrossRef]
  58. Hurt, C.S.; Landau, S.; Burn, D.J.; Hindle, J.V.; Samuel, M.; Wilson, K.; Brown, R.G. PROMS-PD Study Group Cognition, coping, and outcome in Parkinson’s disease. Int. Psychogeriatr. 2012, 24, 1656–1663. [Google Scholar] [CrossRef]
  59. Lawson, R.A.; Yarnall, A.J.; Duncan, G.W.; Breen, D.P.; Khoo, T.K.; Williams-Gray, C.H.; Barker, R.A.; Collerton, D.; Taylor, J.-P.; Burn, D.J. Cognitive decline and quality of life in incident Parkinson’s disease: The role of attention. Parkinsonism Relat. Disord. 2016, 27, 47–53. [Google Scholar] [CrossRef]
  60. Cereda, E.; Cilia, R.; Klersy, C.; Siri, C.; Pozzi, B.; Reali, E.; Colombo, A.; Zecchinelli, A.L.; Mariani, C.B.; Tesei, S.; et al. Dementia in Parkinson’s disease: Is male gender a risk factor? Parkinsonism Relat. Disord. 2016, 26, 67–72. [Google Scholar] [CrossRef] [PubMed]
  61. Chiara, P.; Roberta, Z.; Elena, S.; Brigida, M.; Ilaria, B.; Claudio, P. Cognitive function in Parkinson’s disease: The influence of gender. Basal Ganglia 2013, 3, 131–135. [Google Scholar] [CrossRef]
  62. Cropley, V.L.; Fujita, M.; Bara-Jimenez, W.; Brown, A.K.; Zhang, X.-Y.; Sangare, J.; Herscovitch, P.; Pike, V.W.; Hallett, M.; Nathan, P.J.; et al. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res. 2008, 163, 171–182. [Google Scholar] [CrossRef] [PubMed]
  63. Sawamoto, N.; Honda, M.; Hanakawa, T.; Aso, T.; Inoue, M.; Toyoda, H.; Ishizu, K.; Fukuyama, H.; Shibasaki, H. Cognitive slowing in Parkinson disease is accompanied by hypofunctioning of the striatum. Neurology 2007, 68, 1062–1068. [Google Scholar] [CrossRef]
  64. Sawamoto, N.; Piccini, P.; Hotton, G.; Pavese, N.; Thielemans, K.; Brooks, D.J. Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain 2008, 131, 1294–1302. [Google Scholar] [CrossRef]
  65. Shin, J.C.; Ivry, R.B. Spatial and temporal sequence learning in patients with Parkinson’s disease or cerebellar lesions. J. Cogn. Neurosci. 2003, 15, 1232–1243. [Google Scholar] [CrossRef]
  66. Smith, J.G.; McDowall, J. The implicit sequence learning deficit in patients with Parkinson’s disease: A matter of impaired sequence integration? Neuropsychologia 2006, 44, 275–288. [Google Scholar] [CrossRef]
  67. Cotelli, M.; Borroni, B.; Manenti, R.; Zanetti, M.; Arévalo, A.; Cappa, S.F.; Padovani, A. Action and object naming in Parkinson’s disease without dementia. Eur. J. Neurol. 2007, 14, 632–637. [Google Scholar] [CrossRef]
  68. Crevits, L.; Vandierendonck, A.; Stuyven, E.; Verschaete, S.; Wildenbeest, J. Effect of intention and visual fixation disengagement on prosaccades in Parkinson’s disease patients. Neuropsychologia 2004, 42, 624–632. [Google Scholar] [CrossRef]
  69. Kawai, Y.; Suenaga, M.; Takeda, A.; Ito, M.; Watanabe, H.; Tanaka, F.; Kato, K.; Fukatsu, H.; Naganawa, S.; Kato, T.; et al. Cognitive impairments in multiple system atrophy: MSA-C vs MSA-P. Neurology 2008, 70, 1390–1396. [Google Scholar] [CrossRef]
  70. Rowe, J.B.; Hughes, L.; Ghosh, B.C.P.; Eckstein, D.; Williams-Gray, C.H.; Fallon, S.; Barker, R.A.; Owen, A.M. Parkinson’s disease and dopaminergic therapy--differential effects on movement, reward and cognition. Brain 2008, 131, 2094–2105. [Google Scholar] [CrossRef] [PubMed]
  71. Hodgson, T.L.; Tiesman, B.; Owen, A.M.; Kennard, C. Abnormal gaze strategies during problem solving in Parkinson’s disease. Neuropsychologia 2002, 40, 411–422. [Google Scholar] [CrossRef]
  72. Lewis, S.J.G.; Dove, A.; Robbins, T.W.; Barker, R.A.; Owen, A.M. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J. Neurosci. 2003, 23, 6351–6356. [Google Scholar] [CrossRef] [PubMed]
  73. York, M.K.; Dulay, M.; Macias, A.; Levin, H.S.; Grossman, R.; Simpson, R.; Jankovic, J. Cognitive declines following bilateral subthalamic nucleus deep brain stimulation for the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2008, 79, 789–795. [Google Scholar] [CrossRef]
  74. Davidsdottir, S.; Wagenaar, R.; Young, D.; Cronin-Golomb, A. Impact of optic flow perception and egocentric coordinates on veering in Parkinson’s disease. Brain 2008, 131, 2882–2893. [Google Scholar] [CrossRef]
  75. Schendan, H.E.; Amick, M.M.; Cronin-Golomb, A. Role of a lateralized parietal-basal ganglia circuit in hierarchical pattern perception: Evidence from Parkinson’s disease. Behav. Neurosci. 2009, 123, 125–136. [Google Scholar] [CrossRef]
  76. Amick, M.M.; Schendan, H.E.; Ganis, G.; Cronin-Golomb, A. Frontostriatal circuits are necessary for visuomotor transformation: Mental rotation in Parkinson’s disease. Neuropsychologia 2006, 44, 339–349. [Google Scholar] [CrossRef]
  77. Cronin-Golomb, A. Parkinson’s disease as a disconnection syndrome. Neuropsychol. Rev. 2010, 20, 191–208. [Google Scholar] [CrossRef]
  78. Nagano-Saito, A.; Kato, T.; Arahata, Y.; Washimi, Y.; Nakamura, A.; Abe, Y.; Yamada, T.; Iwai, K.; Hatano, K.; Kawasumi, Y.; et al. Cognitive- and motor-related regions in Parkinson’s disease: FDOPA and FDG PET studies. Neuroimage 2004, 22, 553–561. [Google Scholar] [CrossRef]
  79. Riedel, O.; Klotsche, J.; Spottke, A.; Deuschl, G.; Förstl, H.; Henn, F.; Heuser, I.; Oertel, W.; Reichmann, H.; Riederer, P.; et al. Cognitive impairment in 873 patients with idiopathic Parkinson’s disease. Results from the German Study on Epidemiology of Parkinson’s Disease with Dementia (GEPAD). J. Neurol. 2008, 255, 255–264. [Google Scholar] [CrossRef]
  80. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
  81. Kalbe, E.; Calabrese, P.; Kohn, N.; Hilker, R.; Riedel, O.; Wittchen, H.-U.; Dodel, R.; Otto, J.; Ebersbach, G.; Kessler, J. Screening for cognitive deficits in Parkinson’s disease with the Parkinson neuropsychometric dementia assessment (PANDA) instrument. Parkinsonism Relat. Disord. 2008, 14, 93–101. [Google Scholar] [CrossRef] [PubMed]
  82. Locascio, J.J.; Corkin, S.; Growdon, J.H. Relation between clinical characteristics of Parkinson’s disease and cognitive decline. J. Clin. Exp. Neuropsychol. 2003, 25, 94–109. [Google Scholar] [CrossRef] [PubMed]
  83. Clark, U.S.; Neargarder, S.; Cronin-Golomb, A. Specific Impairments in the Recognition of Emotional Facial Expressions in Parkinson’s Disease. Neuropsychologia 2008, 46, 2300–2309. [Google Scholar] [CrossRef]
  84. Davidsdottir, S.; Cronin-Golomb, A.; Lee, A. Visual and spatial symptoms in Parkinson’s disease. Vis. Res. 2005, 45, 1285–1296. [Google Scholar] [CrossRef]
  85. Maulik, U.; Uversky, V.N.; Sen, S. A Statistical Approach to Detect Intrinsically Disordered Proteins Associated with Uterine Leiomyoma. Protein Pept. Lett. 2018, 25, 483–491. [Google Scholar] [CrossRef]
  86. Cronin-Golomb, A.; Braun, A.E. Visuospatial dysfunction and problem solving in Parkinson’s disease. Neuropsychology 1997, 11, 44–52. [Google Scholar] [CrossRef]
  87. Laricchiuta, P.; Russo, V.; Costagliola, A.; Piegari, G.; Capasso, M.; Silvestre, P.; Martano, M.; Paciello, O. Histological and immunohistochemical characterisation of uterine adenocarcinoma in an Asian elephant (Elephas Maximus). Folia Morphol. (Warsz) 2018, 77, 771–774. [Google Scholar] [CrossRef]
  88. Solla, P.; Cannas, A.; Ibba, F.C.; Loi, F.; Corona, M.; Orofino, G.; Marrosu, M.G.; Marrosu, F. Gender differences in motor and non-motor symptoms among Sardinian patients with Parkinson’s disease. J. Neurol. Sci. 2012, 323, 33–39. [Google Scholar] [CrossRef]
  89. Picillo, M.; Palladino, R.; Moccia, M.; Erro, R.; Amboni, M.; Vitale, C.; Barone, P.; Pellecchia, M.T. Gender and non motor fluctuations in Parkinson’s disease: A prospective study. Parkinsonism Relat. Disord. 2016, 27, 89–92. [Google Scholar] [CrossRef] [PubMed]
  90. Lubomski, M.; Louise Rushworth, R.; Lee, W.; Bertram, K.L.; Williams, D.R. Sex differences in Parkinson’s disease. J. Clin. Neurosci. 2014, 21, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
  91. Szewczyk-Krolikowski, K.; Tomlinson, P.; Nithi, K.; Wade-Martins, R.; Talbot, K.; Ben-Shlomo, Y.; Hu, M.T.M. The influence of age and gender on motor and non-motor features of early Parkinson’s disease: Initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort. Parkinsonism Relat. Disord. 2014, 20, 99–105. [Google Scholar] [CrossRef] [PubMed]
  92. Navarta-Sánchez, M.V.; Senosiain García, J.M.; Riverol, M.; Ursúa Sesma, M.E.; Díaz de Cerio Ayesa, S.; Anaut Bravo, S.; Caparrós Civera, N.; Portillo, M.C. Factors influencing psychosocial adjustment and quality of life in Parkinson patients and informal caregivers. Qual. Life Res. 2016, 25, 1959–1968. [Google Scholar] [CrossRef]
  93. Jiang, J.; He, M.; Hu, X.; Ni, C.; Yang, L. Deep sequencing reveals the molecular pathology characteristics between primary uterine leiomyoma and pulmonary benign metastasizing leiomyoma. Clin. Transl. Oncol. 2018, 20, 1080–1086. [Google Scholar] [CrossRef]
  94. Pontone, G.M.; Bakker, C.C.; Chen, S.; Mari, Z.; Marsh, L.; Rabins, P.V.; Williams, J.R.; Bassett, S.S. The longitudinal impact of depression on disability in Parkinson disease. Int. J. Geriatr. Psychiatry 2016, 31, 458–465. [Google Scholar] [CrossRef]
  95. Balestrino, R.; Martinez-Martin, P. Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson’s disease. J. Neurol. Sci. 2017, 373, 173–178. [Google Scholar] [CrossRef]
  96. Dowding, C.H.; Shenton, C.L.; Salek, S.S. A review of the health-related quality of life and economic impact of Parkinson’s disease. Drugs Aging 2006, 23, 693–721. [Google Scholar] [CrossRef]
  97. Weissman, M.M.; Bland, R.; Joyce, P.R.; Newman, S.; Wells, J.E.; Wittchen, H.U. Sex differences in rates of depression: Cross-national perspectives. J. Affect. Disord. 1993, 29, 77–84. [Google Scholar] [CrossRef]
  98. Martinez-Martin, P.; Rodriguez-Blazquez, C.; Kurtis, M.M.; Chaudhuri, K.R. NMSS Validation Group The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov. Disord. 2011, 26, 399–406. [Google Scholar] [CrossRef] [PubMed]
  99. Guo, X.; Song, W.; Chen, K.; Chen, X.; Zheng, Z.; Cao, B.; Huang, R.; Zhao, B.; Wu, Y.; Shang, H.-F. Gender and onset age-related features of non-motor symptoms of patients with Parkinson’s disease—a study from Southwest China. Parkinsonism Relat. Disord. 2013, 19, 961–965. [Google Scholar] [CrossRef]
  100. Picillo, M.; Erro, R.; Amboni, M.; Longo, K.; Vitale, C.; Moccia, M.; Pierro, A.; Scannapieco, S.; Santangelo, G.; Spina, E.; et al. Gender differences in non-motor symptoms in early Parkinson’s disease: A 2-years follow-up study on previously untreated patients. Parkinsonism Relat. Disord. 2014, 20, 850–854. [Google Scholar] [CrossRef]
  101. Palmeri, R.; Lo Buono, V.; Bonanno, L.; Sorbera, C.; Cimino, V.; Bramanti, P.; Di Lorenzo, G.; Marino, S. Potential predictors of quality of life in Parkinson’s Disease: Sleep and mood disorders. J. Clin. Neurosci. 2019, 70, 113–117. [Google Scholar] [CrossRef]
  102. Dos Santos, A.B.; Kohlmeier, K.A.; Barreto, G.E. Are sleep disturbances preclinical markers of Parkinson’s disease? Neurochem. Res. 2015, 40, 421–427. [Google Scholar] [CrossRef]
  103. Dos Santos, A.B.; Barreto, G.E.; Kohlmeier, K.A. Treatment of sleeping disorders should be considered in clinical management of Parkinson’s disease. Front. Aging Neurosci. 2014, 6, 273. [Google Scholar] [CrossRef]
  104. Bjørnarå, K.A.; Dietrichs, E.; Toft, M. REM sleep behavior disorder in Parkinson’s disease--is there a gender difference? Parkinsonism Relat. Disord. 2013, 19, 120–122. [Google Scholar] [CrossRef]
  105. Postuma, R.B.; Gagnon, J.F.; Vendette, M.; Fantini, M.L.; Massicotte-Marquez, J.; Montplaisir, J. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology 2009, 72, 1296–1300. [Google Scholar] [CrossRef]
  106. Stacy, M.A.; Murck, H.; Kroenke, K. Responsiveness of motor and nonmotor symptoms of Parkinson disease to dopaminergic therapy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 57–61. [Google Scholar] [CrossRef] [PubMed]
  107. Colombo, D.; Abbruzzese, G.; Antonini, A.; Barone, P.; Bellia, G.; Franconi, F.; Simoni, L.; Attar, M.; Zagni, E.; Haggiag, S.; et al. The “gender factor” in wearing-off among patients with Parkinson’s disease: A post hoc analysis of DEEP study. Sci. World J. 2015, 2015, 787451. [Google Scholar] [CrossRef]
  108. Chandran, S.; Krishnan, S.; Rao, R.M.; Sarma, S.G.; Sarma, P.S.; Kishore, A. Gender influence on selection and outcome of deep brain stimulation for Parkinson’s disease. Ann. Indian Acad. Neurol. 2014, 17, 66–70. [Google Scholar] [CrossRef] [PubMed]
  109. Picillo, M.; Nicoletti, A.; Fetoni, V.; Garavaglia, B.; Barone, P.; Pellecchia, M.T. The relevance of gender in Parkinson’s disease: A review. J. Neurol. 2017, 264, 1583–1607. [Google Scholar] [CrossRef] [PubMed]
  110. Cianci, A.; Colacurci, N.; Paoletti, A.M.; Perino, A.; Cicinelli, E.; Maffei, S.; Di Martino, M.; Daguati, R.; Stomati, M.; Pilloni, M.; et al. Soy isoflavones, inulin, calcium, and vitamin D3 in post-menopausal hot flushes: An observational study. Clin. Exp. Obstet. Gynecol. 2015, 42, 743–745. [Google Scholar]
  111. Vitale, S.G.; Caruso, S.; Rapisarda, A.M.C.; Cianci, S.; Cianci, A. Isoflavones, calcium, vitamin D and inulin improve quality of life, sexual function, body composition and metabolic parameters in menopausal women: Result from a prospective, randomized, placebo-controlled, parallel-group study. Przegla̜d Menopauzalny 2018, 17, 32–38. [Google Scholar] [CrossRef]
  112. Parkinson Study Group POETRY Investigators A randomized pilot trial of estrogen replacement therapy in post-menopausal women with Parkinson’s disease. Parkinsonism Relat. Disord. 2011, 17, 757–760. [CrossRef]
  113. Song, Y.-J.; Li, S.-R.; Li, X.-W.; Chen, X.; Wei, Z.-X.; Liu, Q.-S.; Cheng, Y. The Effect of Estrogen Replacement Therapy on Alzheimer’s Disease and Parkinson’s Disease in Postmenopausal Women: A Meta-Analysis. Front. Neurosci. 2020, 14, 157. [Google Scholar] [CrossRef]
  114. Wu, M.; Li, M.; Yuan, J.; Liang, S.; Chen, Z.; Ye, M.; Ryan, P.M.; Clark, C.; Tan, S.C.; Rahmani, J.; et al. Postmenopausal hormone therapy and Alzheimer’s disease, dementia, and Parkinson’s disease: A systematic review and time-response meta-analysis. Pharmacol. Res. 2020, 155, 104693. [Google Scholar] [CrossRef]
  115. Sethi, K.D. The impact of levodopa on quality of life in patients with Parkinson disease. Neurologist 2010, 16, 76–83. [Google Scholar] [CrossRef]
  116. Martinez-Martin, P.; Rodriguez-Blazquez, C.; Forjaz, M.J.; Kurtis, M.M. Impact of Pharmacotherapy on Quality of Life in Patients with Parkinson’s Disease. CNS Drugs 2015, 29, 397–413. [Google Scholar] [CrossRef] [PubMed]
  117. Vegeto, E.; Benedusi, V.; Maggi, A. Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases. Front. Neuroendocrinol. 2008, 29, 507–519. [Google Scholar] [CrossRef] [PubMed]
  118. Berganzo, K.; Tijero, B.; González-Eizaguirre, A.; Somme, J.; Lezcano, E.; Gabilondo, I.; Fernandez, M.; Zarranz, J.J.; Gómez-Esteban, J.C. Motor and non-motor symptoms of Parkinson’s disease and their impact on quality of life and on different clinical subgroups. Neurología 2016, 31, 585–591. [Google Scholar] [CrossRef] [PubMed]
  119. Liu, W.-M.; Lin, R.-J.; Yu, R.-L.; Tai, C.-H.; Lin, C.-H.; Wu, R.-M. The impact of nonmotor symptoms on quality of life in patients with Parkinson’s disease in Taiwan. Neuropsychiatr. Dis. Treat. 2015, 11, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
  120. Heller, J.; Dogan, I.; Schulz, J.B.; Reetz, K. Evidence for Gender Differences in Cognition, Emotion and Quality of Life in Parkinson’s Disease? Aging Dis. 2013, 5, 63–75. [Google Scholar] [CrossRef]
  121. Heller, J.; Dogan, I.; Schulz, J.B.; Reetz, K. Evidence for Gender Differences in Cognition, Emotion and Quality of Life in Parkinson’s Disease? Aging Dis. 2013, 5, 63–75. [Google Scholar] [CrossRef]
More
Academic Video Service