Analyzing Performances of Different Atmospheric Correction for Landsat 8: Comparison
Please note this is a comparison between Version 4 by Rita Xu and Version 3 by Amber Yao.

Ocean colour (OC) remote sensing is important for monitoring marine ecosystems. However, inverting the OC signal from the top-of-atmosphere (TOA) radiance measured by satellite sensors remains a challenge as the retrieval accuracy is highly dependent on the performance of the atmospheric correction as well as sensor calibration. In this study, the performances of four atmospheric correction (AC) algorithms, the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI), Atmospheric Correction for OLI ‘lite’ (ACOLITE), Landsat 8 Surface Reflectance (LSR) Climate Data Record (Landsat CDR), herein referred to as LaSRC (Landsat 8 Surface Reflectance Code), and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), implemented for Landsat 8 Operational Land Imager (OLI) data, were evaluated. The OLI-derived remote sensing reflectance (Rrs) products (also known as Level-2 products) were tested against near-simultaneous in-situ data acquired from the OC component of the Aerosol Robotic Network (AERONET-OC). Analyses of the match-ups revealed that generic atmospheric correction methods (i.e., ARCSI and LaSRC), which perform reasonably well over land, provide inaccurate Level-2 products over coastal waters, in particular, in the blue bands. Between water-specific AC methods (i.e., SeaDAS and ACOLITE), SeaDAS was found to perform better over complex waters with root-mean-square error (RMSE) varying from 0.0013 to 0.0005 sr−1 for the 443 and 655 nm channels, respectively. An assessment of the effects of dominant environmental variables revealed AC retrieval errors were influenced by the solar zenith angle and wind speed for ACOLITE and SeaDAS in the 443 and 482 nm channels. Recognizing that the AERONET-OC sites are not representative of inland waters, extensive research and analyses are required to further evaluate the performance of various AC methods for high-resolution imagers like Landsat 8 and Sentinel-2 under a broad range of aquatic/atmospheric conditions

Ocean colour (OC) remote sensing is important for monitoring marine ecosystems. However, inverting the OC signal from the top-of-atmosphere (TOA) radiance measured by satellite sensors remains a challenge as the retrieval accuracy is highly dependent on the performance of the atmospheric correction as well as sensor calibration. In this study, the performances of four atmospheric correction (AC) algorithms, the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI), Atmospheric Correction for OLI ‘lite’ (ACOLITE), Landsat 8 Surface Reflectance (LSR) Climate Data Record (Landsat CDR), herein referred to as LaSRC (Landsat 8 Surface Reflectance Code), and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), implemented for Landsat 8 Operational Land Imager (OLI) data, were evaluated. The OLI-derived remote sensing reflectance (Rrs) products (also known as Level-2 products) were tested against near-simultaneous in-situ data acquired from the OC component of the Aerosol Robotic Network (AERONET-OC). Analyses of the match-ups revealed that generic atmospheric correction methods (i.e., ARCSI and LaSRC), which perform reasonably well over land, provide inaccurate Level-2 products over coastal waters, in particular, in the blue bands. Between water-specific AC methods (i.e., SeaDAS and ACOLITE), SeaDAS was found to perform better over complex waters with root-mean-square error (RMSE) varying from 0.0013 to 0.0005 sr−1 for the 443 and 655 nm channels, respectively. An assessment of the effects of dominant environmental variables revealed AC retrieval errors were influenced by the solar zenith angle and wind speed for ACOLITE and SeaDAS in the 443 and 482 nm channels. Recognizing that the AERONET-OC sites are not representative of inland waters, extensive research and analyses are required to further evaluate the performance of various AC methods for high-resolution imagers like Landsat 8 and Sentinel-2 under a broad range of aquatic/atmospheric conditions.

  • ocean color remote sensing
  • atmospheric correction
  • remote sensing reflectance
Please wait, diff process is still running!

References

  1. A. P. Cracknell; S. K. Newcombe; A. F. Black; N. E. Kirby; The ABDMAP (Algal Bloom Detection, Monitoring and Prediction) Concerted Action. International Journal of Remote Sensing 2001, 22, 205-247, 10.1080/014311601449916.
  2. Shachak Pe’Eri; Christopher Parrish; Chukwuma Azuike; Lee Alexander; Andrew Armstrong; Satellite Remote Sensing as a Reconnaissance Tool for Assessing Nautical Chart Adequacy and Completeness. Marine Geodesy 2014, 37, 293-314, 10.1080/01490419.2014.902880.
  3. Arnold Dekker; Vittorio Brando; Janet Anstee; Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sensing of Environment 2005, 97, 415-433, 10.1016/j.rse.2005.02.017.
  4. Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. Coral Reef Habitat Mapping: How Much Detail Can Remote Sensing Provide? Mar. Biol. 1997, 130, 193–202.
  5. Howard R. Gordon; Menghua Wang; Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied Optics 1994, 33, 443, 10.1364/ao.33.000443.
  6. Antoine, D.; Morel, A. A Multiple Scattering Algorithm for Atmospheric Correction of Remotely Sensed Ocean Colour (MERIS Instrument): Principle and Implementation for Atmospheres Carrying Various Aerosols Including Absorbing Ones. Int. J. Remote Sens. 1999, 20, 1875–1916.
  7. Mobley, C.D.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Colour Radiometry. Available online: https://oceancolor.gsfc.nasa.gov/docs/technical/NASA-TM-2016-217551.pdf (accessed on 18 February 2019).
  8. IOCCG. Remote Sensing of Ocean. Colour in Coastal, and Other Optically-Complex. Waters; Sathyendranath, S., Ed.; Reports of the International Ocean-Colour Coordinating Group (IOCCG); IOCCG: Dartmouth, NS, Canada, 2000.
  9. Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W; Atmospheric Correction of Satellite Ocean Colour Imagery: The Black Pixel Assumption. Appl. Opt. 2000, 39, 3582–3591.
  10. Wei Shi; Menghua Wang; An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sensing of Environment 2009, 113, 1587-1597, 10.1016/j.rse.2009.03.011.
  11. Wang, M.; Shi, W; Combined Atmospheric Correction Approach for MODIS Ocean Colour Data Processing. Opt. Exp. 2017, 15, 15722–15733.
  12. Bailey, S.W.; Franz, B.A.; Werdell, P.J; Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Colour Data Processing. Opt. Exp. 2010, 18, 7521–7527.
  13. C. Goyens; Cédric Jamet; T. Schroeder; Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters. Remote Sensing of Environment 2013, 131, 63-75, 10.1016/j.rse.2012.12.006.
  14. Cédric Jamet; Hubert Loisel; Christopher P. Kuchinke; Kevin Ruddick; Giuseppe Zibordi; Hui Feng; Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements. Remote Sensing of Environment 2011, 115, 1955-1965, 10.1016/j.rse.2011.03.018.
  15. Nima Pahlevan; John R. Schott; Bryan A. Franz; Giuseppe Zibordi; Brian Markham; Sean Bailey; Crystal Schaaf; Michael Ondrusek; Steven Greb; Christopher M. Strait; Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements. Remote Sensing of Environment 2017, 190, 289-301, 10.1016/j.rse.2016.12.030.
  16. Nima Pahlevan; Zhongping Lee; Jianwei Wei; Crystal Schaaf; John R. Schott; Alexander Berk; On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sensing of Environment 2014, 154, 272-284, 10.1016/j.rse.2014.08.001.
  17. John D. Hedley; Chris Roelfsema; Benjamin Koetz; Stuart Phinn; Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection. Remote Sensing of Environment 2012, 120, 145-155, 10.1016/j.rse.2011.06.028.
  18. Franz, B.A.; Bailey, S.; Kuring, N.; Werdell, P.J. Ocean Colour Measurements with the Operational Land Imager on Landsat-8: Implementation and Evaluation in SeaDAS. J. Appl. Remote Sens. 2015, 9, 096070.
  19. Georgia Doxani; Eric Vermote; Jean-Claude Roger; Ferran Gascon; Stefan Adriaensen; David Frantz; Olivier Hagolle; Andre Hollstein; Grit Kirches; Fuqin Li; Jerome Louis; Antoine Mangin; Nima Pahlevan; Bringfried Pflug; Quinten Vanhellemont; Atmospheric Correction Inter-Comparison Exercise. Remote Sensing 2018, 10, 352, 10.3390/rs10020352.
  20. Jianwei Wei; Zhongping Lee; Rodrigo Garcia; Laura Zoffoli; Roy A. Armstrong; Zhehai Shang; Patrick Sheldon; Robert F. Chen; An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters. Remote Sensing of Environment 2018, 215, 18-32, 10.1016/j.rse.2018.05.033.
  21. Daniel Clewley; Peter Bunting; James Shepherd; Sam Gillingham; Neil Flood; John Dymond; Richard Lucas; John Armston; Mahta Moghaddam; A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sensing 2014, 6, 6111-6135, 10.3390/rs6076111.
  22. Quinten Vanhellemont; Kevin Ruddick; Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment 2014, 145, 105-115, 10.1016/j.rse.2014.01.009.
  23. USGS. Product Guide: Landsat 8 Surface Reflectance Code (LASRC) Product, 2017. Available online: https://doi.org/10.1080/1073161X.1994.10467258 (accessed on 18 February 2019).
  24. Vermote, E.F.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016.
  25. Aaron Gerace; John R. Schott; Robert Nevins; Increased potential to monitor water quality in the near-shore environment with Landsat’s next-generation satellite. Journal of Applied Remote Sensing 2013, 7, 73558, 10.1117/1.jrs.7.073558.
  26. Zibordi, G.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Mélin, H.; Berthon, J.F. AERONET-OC: A Network for the Validation of Ocean Colour Primary Products. J. Atmos. Ocean. Tech. 2009, 26, 1634–1651.
  27. B. N. Holben; D. Tanre; Alexander Smirnov; Thomas F. Eck; I. Slutsker; N. Abuhassan; W. W. Newcomb; Joel S. Schafer; B. Chatenet; F. Lavenu; Y. J. Kaufman; J. Vande Castle; A. Setzer; Brian Markham; D. Clark; R. Frouin; R. Halthore; A. Karneli; N. T. O'neill; C. Pietras; R. T. Pinker; Kenneth Voss; G. Zibordi; An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research 2001, 106, 12067-12097, 10.1029/2001jd900014.
  28. B.N. Holben; T.F. Eck; I. Slutsker; D. Tanre; J.P. Buis; A. Setzer; E. Vermote; J.A. Reagan; Y.J. Kaufman; T. Nakajima; F. Lavenu; I. Jankowiak; A. Smirnov; AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment 1998, 66, 1-16, 10.1016/s0034-4257(98)00031-5.
  29. G. Thuillier; M. Hersé; D. Labs; T. Foujols; W. Peetermans; D. Gillotay; P.C. Simon; H. Mandel; The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions. Solar Physics 2003, 214, 1-22, 10.1023/A:1024048429145.
  30. Bailey, S.; Franz, A.; Werdell, J. A Multi-Sensor Approach for the on-Orbit Validation of Ocean Colour Satellite Data Products. Remote Sens. Environ. 2006, 102, 12–23.
  31. Wicks, D.J.; Jarman, M. S2 ARD Project Briefing Document. 2017. Available online: https://media.sa.catapult.org.uk/wp-content/uploads/2017/09/14123619/Sentinel-2-ARD-Project-Summary_final.pdf (accessed on 22 February 2018).
  32. Robin Wilson; Py6S: A Python interface to the 6S radiative transfer model. Computers & Geosciences 2013, 51, 166-171, 10.1016/j.cageo.2012.08.002.
  33. E.F. Vermote; D. Tanre; J.L. Deuze; M. Herman; J.-J. Morcette; Vermote E.F.; Tanre D.; Deuze J.L.; Herman M.; Morcette J.-J.; Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview. A Coherent Method for Simulating Active and Passive Radar Sounding of the Jovian Icy Moons 1997, 35, 675-686, 10.1109/36.581987.
  34. Vanhellemont, Q.; Ruddick, K. Landsat-8 As a Precursor to Sentinel-2: Observations of Human Impacts in Coastal Waters. In Proceedings of the Sentinel-2 for Science Workshop, Frascati, Italy, 20–23 May 2014.
  35. Shettle, E.P.; Fenn, R.W. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties. Environ. Res. 1979, 676.
  36. Kevin George Ruddick; Fabrice Ovidio; Machteld Rijkeboer; Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.. Applied Optics 2000, 39, 897-912, 10.1364/ao.39.000897.
  37. Vanhellemont, Q.; Ruddick, K. Acolite for sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016.
  38. Yingjie Wang; Liangyun Liu; Yong Hu; Nghui Li; Zhengqiang Li; Development and validation of the Landsat-8 surface reflectance products using a MODIS-based per-pixel atmospheric correction method. International Journal of Remote Sensing 2016, 37, 1291-1314, 10.1080/01431161.2015.1104742.
  39. Zhuosen Wang; Angela M. Erb; Crystal Schaaf; Qingsong Sun; Yan Liu; Yun Yang; Yanmin Shuai; Kimberly A. Casey; Miguel O. Román; Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data. Remote Sensing of Environment 2015, 185, 71-83, 10.1016/j.rse.2016.02.059.
  40. Francesco Vuolo; Matteo Mattiuzzi; Clement Atzberger; Comparison of the Landsat Surface Reflectance Climate Data Record (CDR) and manually atmospherically corrected data in a semi-arid European study area. International Journal of Applied Earth Observation and Geoinformation 2015, 42, 1-10, 10.1016/j.jag.2015.05.003.
  41. Min Feng; Joseph O. Sexton; Chengquan Huang; Jeffrey Masek; Eric F. Vermote; Feng Gao; Raghuram Narasimhan; Saurabh Channan; Robert E. Wolfe; John R. Townshend; Global surface reflectance products from Landsat: Assessment using coincident MODIS observations. Remote Sensing of Environment 2013, 134, 276-293, 10.1016/j.rse.2013.02.031.
  42. Ahmad, Z.; Franz, B.; McClain, C.; Kwiatkowska, E.; Werdell, J.; Shettle, E.; Holben, B; New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors over Coastal Regions and Open Oceans. Applied Optics 2010, 49, 5545–5556.
  43. Gordon, H.R.; Wang, M. Influence of Oceanic Whitecaps on Atmospheric Correction of Ocean-Colour Sensors. Appl. Opt. 1994, 33, 7754.
  44. Nima Pahlevan; B. Smith; C. Binding; D. M. O’Donnell; Spectral band adjustments for remote sensing reflectance spectra in coastal/inland waters. Optics Express 2017, 25, 28650–28667, 10.1364/oe.25.028650.
  45. Mélin, F.; Sclep, G. Band Shifting for Ocean Colour Multi-Spectral Reflectance Data. Opt. Exp. 2015, 23, 2262–2279.
  46. Nima Pahlevan; Jean-Claude Roger; Ziauddin Ahmad; Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. Optics Express 2017, 25, 6015–6035, 10.1364/oe.25.006015.
  47. Quinten Vanhellemont; Kevin Ruddick; Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sensing of Environment 2015, 161, 89-106, 10.1016/j.rse.2015.02.007.
  48. De Maerschalck, B.; Vanlede, J. Zeebrugge Harbour Sediment Transport Model. Coast. Dyn. 2013, 477–486.
  49. Amin, R.; Gilerson, A.; Zhou, J.; Gross, B.; Moshary, F.; Ahmed, S. Impacts of Atmospheric Corrections on Algal Bloom Detection Techniques. In Proceedings of the Eighth Conference on Coastal Atmospheric, Oceanic Prediction, Phoenix, AZ, USA, 11–15 January 2009.
  50. Curtis D. Mobley; Estimation of the remote-sensing reflectance from above-surface measurements.. Applied Optics 1999, 38, 7442-55, 10.1364/ao.38.007442.
  51. Kaufman, Y.J; Aerosol Optical Thickness and Atmospheric Path Radiance. J. Geophys. Res. 1993, 98, 2677–2692.
  52. Giuseppe Zibordi; F. Mélin; J.-F. Berthon; Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site. Geophysical Research Letters 2006, 33, 1-4, 10.1029/2006gl025778.
  53. Vanhellemont, Q.; Bailey, S.; Franz, B.; Shea, D. Atmospheric Correction of Landsat-8 Imagery Using Seadas. In Proceedings of the Sentinel-2 for Science Workshop, Frascati, Italy, 20–23 May 2014.
More
ScholarVision Creations