Full-Color Realization of Micro-LED Displays: Comparison
Please note this is a comparison between Version 4 by Vivi Li and Version 3 by YiFan Wu.

Emerging technologies, such as smart wearable devices, augmented reality (AR)/virtual reality (VR) displays, and naked-eye 3D projection, have gradually entered our lives, accompanied by an urgent market demand for high-end display technologies. Ultra-high-resolution displays, flexible displays, and transparent displays are all important types of future display technology, and traditional display technology cannot meet the relevant requirements. Micro-light-emitting diodes (micro-LEDs), which have the advantages of a high contrast, a short response time, a wide color gamut, low power consumption, and a long life, are expected to replace traditional liquid-crystal displays (LCD) and organic light-emitting diodes (OLED) screens and become the leaders in the next generation of display technology. However, there are two major obstacles to moving micro-LEDs from the laboratory to the commercial market. One is improving the yield rate and reducing the cost of the mass transfer of micro-LEDs, and the other is realizing a full-color display using micro-LED chips. This reviewstudy will outline the three main methods for applying current micro-LED full-color displays, red, green, and blue (RGB) three-color micro-LED transfer technology, color conversion technology, and single-chip multi-color growth technology, to summarize present-day micro-LED full-color display technologies and help guide the follow-up research.

  • micro-LED,full-color display,mass transfer,color conversion,monolithic growth
  • micro-LED
  • full-color display
  • ,mass transfer
  • color conversion
  • monolithic growth
Please wait, diff process is still running!

References

  1. Jang, H.J.; Lee, J.Y.; Kwak, J.; Lee, D.; Park, J.-H.; Lee, B.; Noh, Y.Y. Progress of display performances: AR, VR, QLED, OLED, and TFT. J. Inf. Disp. 2019, 20, 1–8.
  2. Ma, L.; Shao, Y.-F. A brief review of innovative strategies towards structure design of practical electronic display device. J. Cent. South Univ. 2020, 27, 1624–1644.
  3. Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Huang Chen, S.-W.; Guo, W.; Kuo, H.-C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557.
  4. Liang, K.-L.; Kuo, W.-H.; Shen, H.-T.; Yu, P.-W.; Fang, Y.-H.; Lin, C.-C. Advances in color-converted micro-LED arrays. Jpn. J. Appl. Phys. 2020, 60, SA0802.
  5. Tan, G.; Huang, Y.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 2018, 26, 16572–16584.
  6. Li, F.; Qiao, M.; Li, H.; Mu, L. 7.3: Research on LCD display performance improvement based on mini-LED backlight. SID Symp. Dig. Techn. Pap. 2019, 50, 61–64.
  7. Woodgate, G.J.; Harrold, J. P-101: Micro-Optical Systems for micro-LED Displays. SID Symp. Dig. Techn. Pap. 2018, 49, 1559–1562.
  8. Poher, V.; Grossman, N.; Kennedy, G.; Nikolic, K.; Zhang, H.; Gong, Z.; Drakakis, E.; Gu, E.; Dawson, M.; French, P. micro-LED arrays: A tool for two-dimensional neuron stimulation. J. Phys. D Appl. Phys. 2008, 41, 094014.
  9. Grossman, N.; Poher, V.; Grubb, M.S.; Kennedy, G.T.; Nikolic, K.; McGovern, B.; Palmini, R.B.; Gong, Z.; Drakakis, E.M.; Neil, M.A. Multi-site optical excitation using ChR2 and micro-LED array. J. Neural Eng. 2010, 7, 016004.
  10. Zheng, L.; Guo, Z.; Yan, W.; Lin, Y.; Lu, Y.; Kuo, H.-C.; Chen, Z.; Zhu, L.; Wu, T.; Gao, Y. Research on a camera-based microscopic imaging system to inspect the surface luminance of the micro-LED array. IEEE Access 2018, 6, 51329–51336.
  11. Radauscher, E.J.; Meitl, M.; Prevatte, C.; Bonafede, S.; Rotzoll, R.; Gomez, D.; Moore, T.; Raymond, B.; Cok, R.; Fecioru, A. Miniaturized LEDs for flat-panel displays. In Proceedings Volume 10124 Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XXI; International Society for Optics and Photonics: San Francisco, CA, USA, 2017; p. 1012418.
  12. Xu, H.; Zhang, J.; Davitt, K.; Song, Y.; Nurmikko, A. Application of blue–green and ultraviolet micro-LEDs to biological imaging and detection. J. Phys. D Appl. Phys. 2008, 41, 094013.
  13. Goßler, C.; Bierbrauer, C.; Moser, R.; Kunzer, M.; Holc, K.; Pletschen, W.; Köhler, K.; Wagner, J.; Schwaerzle, M.; Ruther, P. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J. Phys. D Appl. Phys. 2014, 47, 205401.
  14. Chun, H.; Rajbhandari, S.; Faulkner, G.; Tsonev, D.; Xie, E.; McKendry, J.J.D.; Gu, E.; Dawson, M.D.; O’Brien, D.C.; Haas, H. LED based wavelength division multiplexed 10 Gb/s visible light communications. J. Lightwave Technol. 2016, 34, 3047–3052.
  15. Zhao, L.; Zhu, S.; Wu, C.; Yang, C.; Yu, Z.; Yang, H.; Liu, L. GaN-based LEDs for light communication. Sci. China Phys. Mech. Astron. 2016, 59, 107301.
  16. McKendry, J.J.; Green, R.P.; Kelly, A.; Gong, Z.; Guilhabert, B.; Massoubre, D.; Gu, E.; Dawson, M.D. High-speed visible light communications using individual pixels in a micro light-emitting diode array. IEEE Photonics Technol. Lett. 2010, 22, 1346–1348.
  17. Rajbhandari, S.; McKendry, J.J.; Herrnsdorf, J.; Chun, H.; Faulkner, G.; Haas, H.; Watson, I.M.; O’Brien, D.; Dawson, M.D. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol. 2017, 32, 023001.
  18. Paranjpe, A.; Montgomery, J.; Lee, S.M.; Morath, C. 45-2: Invited Paper: Micro-LED Displays: Key Manufacturing Challenges and Solutions. SID Symp. Dig. Techn. Pap. 2018, 49, 597–600.
  19. Huang, Y.; Tan, G.; Gou, F.; Li, M.C.; Lee, S.L.; Wu, S.T. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 387–401.
  20. Virey, E.H.; Baron, N.; Bouhamri, Z. 11-3: Overlooked Challenges for microLED Displays. SID Symp. Dig. Techn. Pap. 2019, 50, 129–132.
  21. Fan, Z.; Lin, J.; Jiang, H. III-nitride micro-emitter arrays: Development and applications. J. Phys. D Appl. Phys. 2008, 41, 094001.
  22. Jiang, H.; Lin, J. Nitride micro-LEDs and beyond-a decade progress review. Opt. Express 2013, 21, A475–A484.
  23. Lee, V.W.; Twu, N.; Kymissis, I. micro-LED technologies and applications. Inf. Disp. 2016, 32, 16–23.
  24. Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. micro-LEDs, a manufacturability perspective. Appl. Sci. 2019, 9, 1206.
  25. Tong, C.; Liu, X.; Li, W.; Liu, Z. P-6.7: Investigation of Full-Color Solutions for micro-LED Display. SID Symp. Dig. Techn. Pap. 2019, 50, 771–774.
  26. Huang, Y.; Hsiang, E.-L.; Deng, M.-Y.; Wu, S.-T. Mini-LED, micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 1–16.
  27. Zhou, X.; Tian, P.; Sher, C.-W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H.-C. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 2020, 71, 100263.
  28. Wang, Z.; Shan, X.; Cui, X.; Tian, P. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display. J. Semicond. 2020, 41, 041606.
  29. Peng, D.; Zhang, K.; Chao, V.S.-D.; Mo, W.; Lau, K.M.; Liu, Z. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) micro-displays by CoB. J. Disp. Technol. 2016, 12, 742–746.
  30. Peng, D.; Zhang, K.; Liu, Z. Design and fabrication of fine-pitch pixelated-addressed micro-LED arrays on printed circuit board for display and communication applications. IEEE J. Electron Devices Soc. 2016, 5, 90–94.
  31. Cheung, Y.; Choi, H. Color-tunable and phosphor-free white-light multilayered light-emitting diodes. IEEE Trans. Electron Devices 2012, 60, 333–338.
  32. Hui, K.; Wang, X.; Li, Z.; Lai, P.; Choi, H. Design of vertically-stacked polychromatic light-emitting diodes. Opt. Express 2009, 17, 9873–9878.
  33. Kang, C.-M.; Kong, D.-J.; Shim, J.-P.; Kim, S.; Choi, S.-B.; Lee, J.-Y.; Min, J.-H.; Seo, D.-J.; Choi, S.-Y.; Lee, D.-S. Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display. Opt. Express 2017, 25, 2489–2495.
  34. Yadavalli, K.; Chuang, C.-L.; El-Ghoroury, H.S. Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications. In Proceedings Volume 11310, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR); International Society for Optics and Photonics: San Francisco, CA, USA, 2020; p. 11310Z.
  35. Park, S.-I.; Xiong, Y.; Kim, R.-H.; Elvikis, P.; Meitl, M.; Kim, D.-H.; Wu, J.; Yoon, J.; Yu, C.-J.; Liu, Z. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.
  36. Cok, R.S.; Meitl, M.; Rotzoll, R.; Melnik, G.; Fecioru, A.; Trindade, A.J.; Raymond, B.; Bonafede, S.; Gomez, D.; Moore, T. Inorganic light-emitting diode displays using micro-transfer printing. J. Soc. Inf. Disp. 2017, 25, 589–609.
  37. Meitl, M.A.; Zhu, Z.-T.; Kumar, V.; Lee, K.J.; Feng, X.; Huang, Y.Y.; Adesida, I.; Nuzzo, R.G.; Rogers, J.A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.
  38. Corbett, B.; Loi, R.; Zhou, W.; Liu, D.; Ma, Z. Transfer print techniques for heterogeneous integration of photonic components. Prog. Quantum Electron. 2017, 52, 1–17.
  39. Lee, K.J.; Motala, M.J.; Meitl, M.A.; Childs, W.R.; Menard, E.; Shim, A.K.; Rogers, J.A.; Nuzzo, R.G. Large-Area, Selective Transfer of microstructured Silicon: A Printing-Based Approach to High-Performance Thin-Film Transistors Supported on Flexible Substrates. Adv. Mater. 2005, 17, 2332–2336.
  40. Kim, J.-H.; Kim, B.-C.; Lim, D.-W.; Shin, B.-C. Control of adhesion force for micro LED transfer using a magnetorheological elastomer. J. Mech. Sci. Technol. 2019, 33, 5321–5325.
  41. Lu, H.; Guo, W.; Su, C.; Li, X.; Lu, Y.; Chen, Z.; Zhu, L. Optimization on adhesive stamp Mass-transfer of micro-LEDs with support vector machine model. IEEE J. Electron Devices Soc. 2020, 8, 554–558.
  42. Fernández-Pradas, J.M.; Serra, P. Laser-Induced Forward Transfer: A Method for Printing Functional Inks. Crystals 2020, 10, 651.
  43. Delaporte, P.; Alloncle, A.-P. Laser-induced forward transfer: A high resolution additive manufacturing technology. Opt. Laser Technol. 2016, 78, 33–41.
  44. Marinov, V.R. 52-4: Laser-Enabled Extremely-High Rate Technology for µLED Assembly. SID Symp. Dig. Techn. Pap. 2018, 49, 692–695.
  45. Yeh, H.-J.; Smith, J.S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photonics Technol. Lett. 1994, 6, 706–708.
  46. Talghader, J.J.; Tu, J.K.; Smith, J.S. Integration of fluidically self-assembled optoelectronic devices using a silicon-based process. IEEE Photonics Technol. Lett. 1995, 7, 1321–1323.
  47. Bibl, A.; Higginson, J.A.; Law, H.-f.S.; Hu, H.-H. Method of Transferring a Micro Device. U.S. Patent 8,333,860, 18 December 2012.
  48. Saeedi, E.; Kim, S.S.; Parviz, B.A. Self-assembled inorganic micro-display on plastic. In Proceedings of the 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 21–25 January 2007; pp. 755–758.
  49. Ahn, S.H.; Guo, L.J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304–2310.
  50. Sharma, B.K.; Jang, B.; Lee, J.E.; Bae, S.H.; Kim, T.W.; Lee, H.J.; Kim, J.H.; Ahn, J.H. Load-controlled roll transfer of oxide transistors for stretchable electronics. Adv. Funct. Mater. 2013, 23, 2024–2032.
  51. Choi, M.; Jang, B.; Lee, W.; Lee, S.; Kim, T.W.; Lee, H.J.; Kim, J.H.; Ahn, J.H. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv. Funct. Mater. 2017, 27, 1606005.
  52. Luo, S.; Zhang, X.; Qu, S.; Liang, D.; Xu, J. P-8.9: Full-color GaN-based LED micro-display Integrated with Dynamic Color Filter. SID Symp. Dig. Techn. Pap. 2019, 50, 852–855.
  53. McKittrick, J.; Shea-Rohwer, L.E. down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 2014, 97, 1327–1352.
  54. Tao, T.; Zhi, T.; Cen, X.; Liu, B.; Wang, Q.; Xie, Z.; Chen, P.; Chen, D.; Zhou, Y.; Zheng, Y. Hybrid cyan nitride/red phosphors white light-emitting diodes with micro-hole structures. IEEE Photonics J. 2018, 10, 1–8.
  55. Liu, Z.J.; Wong, K.M.; Chong, W.C.; Lau, K.M. P-34: Active Matrix Programmable Monolithic Light Emitting Diodes on Silicon (LEDoS) Displays. SID Symp. Dig. Techn. Pap. 2011, 42, 1215–1218.
  56. Lau, K.M.; Liu, Z. Monolithic Full-Color LED Micro-Display on an Active Matrix Panel Manufactured Using Flip-Chip Technology. U.S. Patent 8,642,363, 4 February 2014.
  57. Chen, D.-C.; Liu, Z.-G.; Deng, Z.-H.; Wang, C.; Cao, Y.-G.; Liu, Q.-L. Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode. Rare Met. 2014, 33, 348–352.
  58. Han, J.; Choi, J.; Piquette, A.; Hannah, M.; Anc, M.; Galvez, M.; Talbot, J.; McKittrick, J. Phosphor development and integration for near-UV LED solid state lighting. ECS J. Solid State Sci. Technol. 2012, 2, R3138.
  59. Li, H.; Li, P.; Kang, J.; Ding, J.; Ma, J.; Zhang, Y.; Yi, X.; Wang, G. Broadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots. Sci. Rep. 2016, 6, 35217.
  60. Oh, J.H.; Lee, K.-H.; Yoon, H.C.; Yang, H.; Do, Y.R. Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors. Opt. Express 2014, 22, A511–A520.
  61. Kim, D.-S.; Kim, S.-Y.; Jung, J.-H.; Shin, S.-Y. High-quality Imaging micro-LED Display based on Quantum Dot CSP Technology. Electron. Imaging 2018, 2018, 185-1–185-5.
  62. Shangguan, Z.; Zheng, X.; Zhang, J.; Lin, W.; Guo, W.; Li, C.; Wu, T.; Lin, Y.; Chen, Z. The Stability of Metal Halide Perovskite Nanocrystals—A Key Issue for the Application on Quantum-Dot-Based micro Light-Emitting Diodes Display. Nanomaterials 2020, 10, 1375.
  63. Jang, E. Perspectives on the environmentally friendly InP-based quantum dots for display applications. In Proceedings of the Organic and Hybrid Light Emitting Materials and Devices XXIV, San Diego, CA, USA, 1–5 August 2021; p. 114731B.
  64. Yin, Y.; Hu, Z.; Ali, M.U.; Duan, M.; Gao, L.; Liu, M.; Peng, W.; Geng, J.; Pan, S.; Wu, Y. Full-Color micro-LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers. Adv. Mater. Technol. 2020, 2000251.
  65. Liu, Z.; Lin, C.-H.; Hyun, B.-R.; Sher, C.-W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.-H.; Kuo, H.-C. micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020, 9, 1–23.
  66. Xie, B.; Hu, R.; Luo, X. Quantum dots-converted light-emitting diodes packaging for lighting and display: Status and perspectives. J. Electron. Packag. 2016, 138, 020803.
  67. Zhao, J.; Bardecker, J.A.; Munro, A.M.; Liu, M.S.; Niu, Y.; Ding, I.-K.; Luo, J.; Chen, B.; Jen, A.K.-Y.; Ginger, D.S. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 2006, 6, 463–467.
  68. Rudorfer, A.; Tscherner, M.; Palfinger, C.; Reil, F.; Hartmann, P.; Seferis, I.E.; Zych, E.; Wenzl, F.P. A study on Aerosol jet printing technology in LED module manufacturing. In Proceedings of the Fifteenth International Conference on Solid State Lighting and LED-Based Illumination Systems, San Diego, CA, USA, 31 August 2016; p. 99540E.
  69. Mei, W.; Zhang, Z.; Zhang, A.; Li, D.; Zhang, X.; Wang, H.; Chen, Z.; Li, Y.; Li, X.; Xu, X. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.
  70. Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet printing—Process and its applications. Adv. Mater. 2010, 22, 673–685.
  71. Han, H.-V.; Lin, H.-Y.; Lin, C.-C.; Chong, W.-C.; Li, J.-R.; Chen, K.-J.; Yu, P.; Chen, T.-M.; Chen, H.-M.; Lau, K.-M. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express 2015, 23, 32504–32515.
  72. Chen, K.J.; Chen, H.C.; Tsai, K.A.; Lin, C.C.; Tsai, H.H.; Chien, S.H.; Cheng, B.S.; Hsu, Y.J.; Shih, M.H.; Tsai, C.H. Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method. Adv. Funct. Mater. 2012, 22, 5138–5143.
  73. Leitao, M.F.; Santos, J.M.; Guilhabert, B.; Watson, S.; Kelly, A.E.; Islim, M.S.; Haas, H.; Dawson, M.D.; Laurand, N. Gb/s visible light communications with colloidal quantum dot color converters. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–10.
  74. Rae, K.; Foucher, C.; Guilhabert, B.; Islim, M.S.; Yin, L.; Zhu, D.; Oliver, R.; Wallis, D.; Haas, H.; Laurand, N. InGaN µLEDs integrated onto colloidal quantum dot functionalized ultra-thin glass. Opt. Express 2017, 25, 19179–19184.
  75. Zhou, D.; Wang, Y.; Tian, P.; Jing, P.; Sun, M.; Chen, X.; Xu, X.; Li, D.; Mei, S.; Liu, X. microwave-assisted heating method toward multicolor quantum dot-based phosphors with much improved luminescence. ACS Appl. Mater. Interfaces 2018, 10, 27160–27170.
  76. Lin, H.-Y.; Sher, C.-W.; Hsieh, D.-H.; Chen, X.-Y.; Chen, H.-M.P.; Chen, T.-M.; Lau, K.-M.; Chen, C.-H.; Lin, C.-C.; Kuo, H.-C. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res. 2017, 5, 411–416.
  77. Hines, D.A.; Becker, M.A.; Kamat, P.V. Photoinduced surface oxidation and its effect on the exciton dynamics of CdSe quantum dots. J. Phys. Chem. C 2012, 116, 13452–13457.
  78. Park, H.C.; Gong, S.; Cho, Y.H. How Effective is Plasmonic Enhancement of Colloidal Quantum Dots for Color-Conversion Light-Emitting Devices? Small 2017, 13, 1701805.
  79. Ho, S.-J.; Hsu, H.-C.; Yeh, C.-W.; Chen, H.-S. Inkjet-Printed Salt-Encapsulated Quantum Dot Film for UV-based RGB Color-converted micro-Light Emitting Diode Displays. ACS Appl. Mater. Interfaces 2020, 12, 33346–33351.
  80. Bai, X.; Yang, H.; Zhao, B.; Zhang, X.; Li, X.; Xu, B.; Wei, F.; Liu, Z.; Wang, K.; Sun, X.W. 4-4: Flexible Quantum Dot Color Converter Film for micro-LED Applications. SID Symp. Dig. Techn. Pap. 2019, 50, 30–33.
  81. Chen, S.-W.H.; Huang, Y.-M.; Singh, K.J.; Hsu, Y.-C.; Liou, F.-J.; Song, J.; Choi, J.; Lee, P.-T.; Lin, C.-C.; Chen, Z. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Res. 2020, 8, 630–636.
  82. Chen, G.-S.; Wei, B.-Y.; Lee, C.-T.; Lee, H.-Y. Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photonics Technol. Lett. 2017, 30, 262–265.
  83. Gou, F.; Hsiang, E.-L.; Tan, G.; Lan, Y.-F.; Tsai, C.-Y.; Wu, S.-T. Tripling the optical efficiency of color-converted micro-LED displays with funnel-tube array. Crystals 2019, 9, 39.
  84. Gou, F.; Hsiang, E.L.; Tan, G.; Lan, Y.F.; Tsai, C.Y.; Wu, S.T. High performance color-converted micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 199–206.
  85. Kang, J.-H.; Li, B.; Zhao, T.; Johar, M.A.; Lin, C.-C.; Fang, Y.-H.; Kuo, W.-H.; Liang, K.-L.; Hu, S.; Ryu, S.-W. RGB arrays for micro-LED applications using nanoporous GaN embedded with quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 30890–30895.
  86. Kang, J.-H.; Han, J. 65-2: Invited Paper: Enabling Technology for microLED Display Based on Quantum Dot Color Converter. SID Symp. Dig. Techn. Pap. 2019, 50, 914–916.
  87. Liu, Z.J.; Chong, W.C.; Wong, K.M.; Tam, K.H.; Lau, K.M. A novel BLU-free full-color LED projector using LED on silicon micro-displays. IEEE Photonics Technol. Lett. 2013, 25, 2267–2270.
  88. Chong, W.C.; Wong, K.M.; Liu, Z.J.; Lau, K.M. 60.4: A Novel Full-Color 3LED Projection System using R-G-B Light Emitting Diodes on Silicon (LEDoS) micro-displays. SID Symp. Dig. Techn. Pap. 2013, 44, 838–841.
  89. Zhang, L.; Ou, F.; Chong, W.C.; Chen, Y.; Li, Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp. 2018, 26, 137–145.
  90. Santos, J.M.; Jones, B.E.; Schlosser, P.J.; Watson, S.; Herrnsdorf, J.; Guilhabert, B.; McKendry, J.J.; De Jesus, J.; Garcia, T.A.; Tamargo, M.C. Hybrid GaN LED with capillary-bonded II–VI MQW color-converting membrane for visible light communications. Semicond. Sci. Technol. 2015, 30, 035012.
  91. Kim, W.H.; Jang, Y.J.; Kim, J.-Y.; Han, M.; Kang, M.; Yang, K.; Ryou, J.-H.; Kwon, M.-K. High-Performance Color-Converted Full-Color micro-LED Arrays. Appl. Sci. 2020, 10, 2112.
  92. Zhou, Q.; Xu, M.; Wang, H. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes. Opto-Electron. Rev. 2016, 24, 1–9.
  93. Park, S.-H.; Chuang, S.-L. Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects. J. Appl. Phys. 2000, 87, 353–364.
  94. Masui, H.; Sonoda, J.; Pfaff, N.; Koslow, I.; Nakamura, S.; DenBaars, S.P. Quantum-confined Stark effect on photoluminescence and electroluminescence characteristics of InGaN-based light-emitting diodes. J. Phys. D Appl. Phys. 2008, 41, 165105.
  95. Kioupakis, E.; Yan, Q.; Van de Walle, C.G. Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. Appl. Phys. Lett. 2012, 101, 231107.
  96. David, A.; Grundmann, M.J.; Kaeding, J.F.; Gardner, N.F.; Mihopoulos, T.G.; Krames, M.R. Carrier distribution in (0001) In Ga N/ Ga N multiple quantum well light-emitting diodes. Appl. Phys. Lett. 2008, 92, 053502.
  97. Rozhansky, I.; Zakheim, D. Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping. Phys. Status Solidi 2007, 204, 227–230.
  98. Hwang, D.; Mughal, A.; Pynn, C.D.; Nakamura, S.; DenBaars, S.P. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express 2017, 10, 032101.
  99. Lymperakis, L.; Schulz, T.; Freysoldt, C.; Anikeeva, M.; Chen, Z.; Zheng, X.; Shen, B.; Chèze, C.; Siekacz, M.; Wang, X. Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells. Phys. Rev. Mater. 2018, 2, 011601.
  100. Even, A. In incorporation Improvement in InGaN Based Active Region usIng InGaN Pseudo Substrate for Monolithic White LED Application. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2018.
  101. Kim, M.-H.; Schubert, M.F.; Dai, Q.; Kim, J.K.; Schubert, E.F.; Piprek, J.; Park, Y. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 2007, 91, 183507.
  102. Even, A.; Laval, G.; Ledoux, O.; Ferret, P.; Sotta, D.; Guiot, E.; Levy, F.; Robin, I.; Dussaigne, A. Enhanced In incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate. Appl. Phys. Lett. 2017, 110, 262103.
  103. Dussaigne, A.; Barbier, F.; Samuel, B.; Even, A.; Templier, R.; Lévy, F.; Ledoux, O.; Rozhavskaia, M.; Sotta, D. Strongly reduced V pit density on InGaNOS substrate by using InGaN/GaN superlattice. J. Cryst. Growth 2020, 533, 125481.
  104. Damilano, B.; Demolon, P.; Brault, J.; Huault, T.; Natali, F.; Massies, J. Blue-green and white color tuning of monolithic light emitting diodes. J. Appl. Phys. 2010, 108, 073115.
  105. Damilano, B.; Dussaigne, A.; Brault, J.; Huault, T.; Natali, F.; Demolon, P.; De Mierry, P.; Chenot, S.; Massies, J. Monolithic white light emitting diodes using a (Ga, In) N/GaN multiple quantum well light converter. Appl. Phys. Lett. 2008, 93, 101117.
  106. Zhang, S.; Gong, Z.; McKendry, J.J.; Watson, S.; Cogman, A.; Xie, E.; Tian, P.; Gu, E.; Chen, Z.; Zhang, G. CMOS-controlled color-tunable smart display. IEEE Photonics J. 2012, 4, 1639–1646.
  107. El-Ghoroury, H.S.; Yeh, M.; Chen, J.; Li, X.; Chuang, C.-L. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers. AIP Adv. 2016, 6, 075316.
  108. Wang, R.; Ra, Y.-H.; Wu, Y.; Zhao, S.; Nguyen, H.P.; Shih, I.; Mi, Z. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire. In Proceedings Volume 9748, Gallium Nitride Materials and Devices XI; International Society for Optics and Photonics: San Francisco, CA, USA, 2016; p. 97481S.
  109. Wang, R.; Nguyen, H.P.; Connie, A.T.; Lee, J.; Shih, I.; Mi, Z. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt. Express 2014, 22, A1768–A1775.
  110. Kishino, K.; Sakakibara, N.; Narita, K.; Oto, T. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl. Phys. Express 2019, 13, 014003.
  111. Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Aref, O.H.; Nguyen, H.-D.; Lenka, T.R.; Nguyen, H.P.T. Full-color InGaN/AlGaN nanowire micro light-emitting diodes grown by molecular beam epitaxy: A promising candidate for next generation micro displays. Micromachines 2019, 10, 492.
  112. Kim, H.-M.; Cho, Y.-H.; Lee, H.; Kim, S.I.; Ryu, S.R.; Kim, D.Y.; Kang, T.W.; Chung, K.S. High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 2004, 4, 1059–1062.
  113. Qian, F.; Li, Y.; Gradecak, S.; Wang, D.; Barrelet, C.J.; Lieber, C.M. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 2004, 4, 1975–1979.
  114. Chang, Y.-L.; Li, F.; Fatehi, A.; Mi, Z. Molecular beam epitaxial growth and characterization of non-tapered InN nanowires on Si (111). Nanotechnology 2009, 20, 345203.
  115. Mulyo, A.L.; Konno, Y.; Nilsen, J.S.; van Helvoort, A.T.; Fimland, B.-O.; Weman, H.; Kishino, K. Growth study of self-assembled GaN nanocolumns on silica glass by plasma assisted molecular beam epitaxy. J. Cryst. Growth 2017, 480, 67–73.
  116. Hong, Y.J.; Lee, C.H.; Yoon, A.; Kim, M.; Seong, H.K.; Chung, H.J.; Sone, C.; Park, Y.J.; Yi, G.C. Visible-color-tunable light-emitting diodes. Adv. Mater. 2011, 23, 3284–3288.
  117. Nguyen, H.P.T.; Cui, K.; Zhang, S.; Fathololoumi, S.; Mi, Z. Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology 2011, 22, 445202.
  118. Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Nguyen, H.P.T. Full-Color microLEDs for Display Technologies. In CLEO: Applications and Technology; Optical Society of America: Washington, DC, USA, 2020; p. ATh3I-4.
  119. Liu, X.; Wu, Y.; Malhotra, Y.; Sun, Y.; Ra, Y.H.; Wang, R.; Stevenson, M.; Coe-Sullivan, S.; Mi, Z. Submicron full-color LED pixels for microdisplays and micro-LED main displays. J. Soc. Inf. Disp. 2020, 28, 410–417.
  120. Ra, Y.H.; Wang, R.; Woo, S.Y.; Djavid, M.; Mi, Z. Full-color single nanowire pixels for projection displays. Nano Lett. 2016, 7, 4608–4615.
  121. Chen, S.-W.H.; Shen, C.-C.; Wu, T.; Liao, Z.-Y.; Chen, L.-F.; Zhou, J.-R.; Lee, C.-F.; Lin, C.-H.; Lin, C.-C.; Sher, C.-W. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res. 2019, 7, 416–422.
  122. Wang, S.-W.; Hong, K.-B.; Tsai, Y.-L.; Teng, C.-H.; Tzou, A.-J.; Chu, Y.-C.; Lee, P.-T.; Ku, P.-C.; Lin, C.-C.; Kuo, H.-C. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Sci. Rep. 2017, 7, 42962.
  123. Masui, H.; Nakamura, S.; DenBaars, S.P.; Mishra, U.K. Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges. IEEE Trans. Electron Devices 2009, 57, 88–100.
  124. Zhao, H.; Liu, G.; Zhang, J.; Poplawsky, J.D.; Dierolf, V.; Tansu, N. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 2011, 19, A991–A1007.
  125. Usman, M.; Anwar, A.-R.; Munsif, M.; Han, D.-P.; Saba, K. Amelioration of internal quantum efficiency of green GaN-based light-emitting diodes by employing variable active region. Phys. E Low-Dimens. Syst. Nanostructures 2020, 117, 113826.
  126. Usman, M.; Munsif, M.; Anwar, A.-R.; Jamal, H.; Malik, S.; Islam, N.U. Quantum efficiency enhancement by employing specially designed AlGaN electron blocking layer. Superlattices Microstruct. 2020, 139, 106417.
More