You're using an outdated browser. Please upgrade to a modern browser for the best experience.
The No-Rush Theorem in Theory of Entropicity (ToE): Comparison
Please note this is a comparison between Version 8 by John Onimisi Obidi and Version 7 by John Onimisi Obidi.

Here, we give a brief introduction to the No-Rush Theorem of the Theory of Entropicity (ToE), where we state that "Nature cannot be rushed," so that no interaction in nature can proceed instantaneously.

  • Theoretical Physics
  • Quantum Physics
  • Field Theory
  • Particle Physics
The "No-Rush Theorem" in the Theory of Entropicity (ToE), as first formulated by John Onimisi Obidi[1][2][3][4][5][6][7][8][9][10][11][12] establishes a minimum interaction time for physical processes, stating that no physical interaction can occur instantaneously. It is a core principle of ToE, which proposes that entropy is not just a measure of disorder but a fundamental, dynamic field driving physical phenomena.
  Here's a more detailed explanation:
  • Entropy as a Dynamic Field:
    ToE reinterprets entropy as a fundamental field, influencing how objects move, interact, and evolve.
  • No Instantaneous Interactions:
    The No-Rush Theorem posits that due to the nature of this entropic field, interactions cannot occur instantaneously. There must be a finite duration for any process to unfold.
  • Implications for Physics:
    This theorem has implications for various physical phenomena, potentially impacting how we understand gravity, quantum mechanics, and the arrow of time.
  • Connection to Other Concepts:
    The No-Rush Theorem can be seen as related to the concept of decoherence in open quantum systems, where entropy-driven processes lead to the loss of quantum coherence. It also connects to the idea of an entropic force, where motion arises from entropy seeking equilibrium.
  • Beyond Traditional Physics:
    ToE, with its No-Rush Theorem, offers a different perspective compared to traditional physics, which often assumes instantaneous interactions in certain contexts.

References

  1. Obidi, John Onimisi. The Entropic Force-Field Hypothesis: A Unified Framework for Quantum Gravity. Cambridge University; 18 February 2025. https://doi.org/10.33774/coe-2025-fhhmf
  2. Obidi, John Onimisi. Exploring the Entropic Force-Field Hypothesis (EFFH): New Insights and Investigations. Cambridge University; 20 February 2025. https://doi.org/10.33774/coe-2025-3zc2w
  3. Obidi, John Onimisi. Corrections to the Classical Shapiro Time Delay in General Relativity (GR) from the Entropic Force-Field Hypothesis (EFFH). Cambridge University; 11 March 2025. https://doi.org/10.33774/coe-2025-v7m6c
  4. Obidi, John Onimisi. How the Generalized Entropic Expansion Equation (GEEE) Describes the Deceleration and Acceleration of the Universe in the Absence of Dark Energy. Cambridge University; 12 March 2025. https://doi.org/10.33774/coe-2025-6d843
  5. Obidi, John Onimisi. The Theory of Entropicity (ToE): An Entropy-Driven Derivation of Mercury’s Perihelion Precession Beyond Einstein’s Curved Spacetime in General Relativity (GR). Cambridge University; 16 March 2025. https://doi.org/10.33774/coe-2025-g55m9
  6. Obidi, John Onimisi. The Theory of Entropicity (ToE) Validates Einstein’s General Relativity (GR) Prediction for Solar Starlight Deflection via an Entropic Coupling Constant η. Cambridge University; 23 March 2025. https://doi.org/10.33774/coe-2025-1cs81
  7. Obidi, John Onimisi. Attosecond Constraints on Quantum Entanglement Formation as Empirical Evidence for the Theory of Entropicity (ToE). Cambridge University; 25 March 2025. https://doi.org/10.33774/coe-2025-30swc
  8. Obidi, John Onimisi. Review and Analysis of the Theory of Entropicity (ToE) in Light of the Attosecond Entanglement Formation Experiment: Toward a Unified Entropic Framework for Quantum Measurement, Non-Instantaneous Wave-Function Collapse, and Spacetime Emergence. Cambridge University; 29 March 2025. https://doi.org/10.33774/coe-2025-7lvwh
  9. Obidi, John Onimisi. Einstein and Bohr Finally Reconciled on Quantum Theory: The Theory of Entropicity (ToE) as the Unifying Resolution to the Problem of Quantum Measurement and Wave Function Collapse. Cambridge University; 14 April 2025. https://doi.org/10.33774/coe-2025-vrfrx
  10. Obidi, John Onimisi. On the Discovery of New Laws of Conservation and Uncertainty, Probability and CPT-Theorem Symmetry-Breaking in the Standard Model of Particle Physics: More Revolutionary Insights from the Theory of Entropicity (ToE). Cambridge University; 14 June 2025. https://doi.org/10.33774/coe-2025-n4n45
  11. Obidi, John Onimisi. Master Equation of the Theory of Entropicity (ToE). Encyclopedia.pub; 2025. https://encyclopedia.pub/entry/58596.. Accessed 04 July 2025.
  12. A Concise Introduction to the Evolving Theory of Entropicity (ToE). HandWiki; 2025. https://handwiki.org/wiki/Physics:A_Concise_Introduction_to_the_Evolving_Theory_of_Entropicity_(ToE). Accessed 04 July 2025.
More
Academic Video Service