Figure 7 illustrates a FAN architecture that enables a connection between a single endpoint and several points within a decentralized control system. This architectural style is gaining popularity at an escalating rate. The system relies on the NAN and HAN network designs. The FAN technology offers a wide range of uses, including energy production, intelligent metering, the administration of assets, or troubleshooting. As stated in reference
[40], FAN is an economical solution that offers a superior degree of access to information and quality of service (QoS). Wide area networks (WANs) are telecommunications networks that cover a large geographic area. These networks provide more efficient control, protection, and monitoring over a larger area and are typically established using leased telecommunication lines. The communication speeds of WANs range from 1 Mbp to 1 Gbp
[41]. WANs are the core layer of a communication system, connecting to all network nodes, including FANs and NANs, and typically have a 100 km radius. Wide area networks (WANs) can provide a reliable communication system by connecting multiple local area networks (LANs) with gateways at the end of the leased line. Two types of switching are employed in wide area networks (WANs): circuit switching and packet switching. Circuit switching creates a dedicated connection between two nodes, allowing for point-to-point communication until the call is terminated. Packet switching, on the other hand, sends data packets to each node and allows IEDs to receive them; however, this approach is more prone to errors, losses, and delays. Voice transmission is the primary application for circuit switching, while packet switching is used in networks.
Figure 7. FAN network architecture
[40].
2.5. Communication Infrastructures
The microgrid communication network can be either wired or wireless, depending on the device capabilities, the geographical region, and the available funds. Wired communication is the most straightforward option and can be achieved through power lines, twisted pair cables, and optical fibers. RF or cellular networks enable more complex wireless communication. Power line communication (PLC) technology uses power lines as signal carriers
[20]. It was created in the early 1900s as a low-data-rate remote power network component control service. Since then, numerous frequency ranges and signal modulation methods have been used to reach data speeds from a few bits per second to 200 Mbps with a broad frequency range (3–20 MHz). PLC technology is susceptible to electromagnetic noise from electrical motors, radio signal interference, and power supply since power lines are not twisted and protected. Open circuits on the power line with switches and insulators can also cause disruptions of the connection. Physical grid architecture, impedance variations, and the reflection of the terminal point wave can weaken and distort signals, preventing transmission
[20].
Twisted-pair wires made of copper have been widely employed in communication, from local area networks to telephone lines
[33]. This cable transmits and receives electrical signals using one or multiple pairs of wires with plastic insulation. One of the wires is used to send the signal, while the other serves as a ground reference. Depending on the type of protection, twisted-pair communication cables can be unshielded, shielded, foiled, FTP, or S-FTP. The shield is composed of metal foil and braided mesh, which covers all conductor pairs or sets. This EMI shield helps to prevent noise and crosstalk from entering the communication channel. Despite its limited range and 1.54 MHz channel capacity, the twisted-pair cable is still an economical communication method.
In the 1960s, optical fiber replaced copper-wired connections in communication networks
[33]. Common components of these systems include PON, WDM, SONET, and SDH, as noted in
[33]. Fiber optic cables provide high data transfer rates (5, 10, 20, or 40 Gbps), immunity to RF and EMI, and the capacity to transmit data over long distances with fewer repeaters (100–1000 km) for electrical system automation. Optical fiber technology is beneficial for connecting electrical substation SG applications and communication networks. Despite its high installation cost, the technology’s high bandwidth capacity allows many users to share one communication channel as a backbone, making it more attractive. This makes optical fiber communication dependable and rapid
[33].
Wireless communication technologies provide several benefits for microgrid operations in high-density areas by eliminating the need for intricate wiring infrastructure. Wireless solutions simplify operational management, allow greater flexibility in system design, and facilitate installation. A range of wireless standards that are appropriate for microgrid applications are listed in
Table 1. These include IEEE 802.11
[34] for WLAN, which offers Wi-Fi connectivity for local area networks; IEEE 802.15
[36] for WPAN, which facilitates device-to-device communication via Bluetooth and ZigBee protocols
[35]; and IEEE 802.16
[37] for WiMAX, which enables wide area coverage. Microgrids can benefit from cellular technologies that offer a wide range of reliable connectivity, ranging from 2G to 4G standards. However, each technology has its own difficulties, such as radio frequency interference, the need for a direct line of sight, environmental obstructions, and susceptibility to weather conditions. These elements must be taken into consideration when constructing and executing a dependable and effective wireless communication system for microgrid settings.