Quinces as Medicinal Fruits of the Rosaceae Family: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Anna Kostecka-Gugala.

Quince (Cydonia oblonga, Chaenomeles sp., and Pseuocydonia sinensis) fruits contain carotenoids, vitamins, minerals, carboxylic acids, triterpenes, and bioactive polyphenols. They are rich in antioxidants and chemical compounds that have demonstrated anti-inflammatory, anticancer, anti-allergic, and immunomodulatory effects. Their phytochemicals have been shown to effectively regulate glycemia and improve blood lipid profiles, suggesting potential anti-diabetic and cardioprotective benefits. The fruits of the Cydonia, Chaenomeles, and Pseuocydonia genera are morpholophically similar, which may make them difficult to distinguish.

  • polyphenols
  • antioxidant
  • functional food
  • anticancer
  • antidiabetic

1. Introduction

For the consumer, the fruits of Cydonia oblonga Mill., Pseudocydonia sinensis (Thouin) Schneid., and Chaenomeles sp. Lindl. are similar: they are yellow, hard, fragrant, have a sour taste, and are used in similar ways. For growers and gardeners, these are plants with different purposes (consumption, medicinal, ornamental) and different requirements. In some languages, there are no separate names for the fruits of Cydonia, Pseudocydonia, or Chaenomeles. In English, adjectives are sometimes added, such as Turkish, Chinese, Japanese, Persian, etc. Not surprisingly, their fruits are confused even in the professional and scientific literature [1]. Distinguishing the fruits is further complicated by the number of Latin synonyms. The relative ease of obtaining hybrid forms within the genus Chaenomeles results in additional difficulties in identification.

2. Characteristics of Quince Plants, Their Biology, Cultivation and Culinary Use

The plant Cydonia oblonga Mill. originates from Western Asia, more precisely from the Transcaucasian region [2]. The species is widespread due to its cultivated forms and is naturalized in the area of the Mediterranean Sea. It is a monotypic genus of the family Rosaceae. Species of the genus Chaenomeles have been known in China for thousands of years, and their fruits are used in traditional Chinese medicine (TCM). Interest in the fruits has increased in recent decades due to the possibility of cultivating several species of these plants in Europe, mainly in the Baltic countries [3]. The genus Chaenomeles, a member of the Rosaceae family, consists of four species, namely Chaenomeles speciosa (Sweet) Nakai, Chaenomeles thibetica Yü, Chaenomeles cathayensis Schneid., and Chaenomeles japonica (Thunb.) Lindl. ex Spach., which are naturally distributed in eastern Asia [4]. These taxa can easily interbreed, both spontaneously and as a result of deliberate hybridization—More than 500 varieties with ornamental flowers have been described in the literature; therefore, Chaenomeles shrubs are sometimes called “flowering quince”. Another member of the Rosaceae family is Pseudocydonia sinensis Schneid., the only species of the genus Pseudocydonia. Its taxonomic status has changed over time and remains controversial [5]. This species was placed in the genus Cydonia and later in the genus Chaenomeles (C. sinensis Kochne). Recent advanced and comprehensive LM and SEM studies of pollen morphology confirmed the placement of this species in the monotypic genus Pseudocydonia [5]. This species is native to southern and eastern China but has also been introduced to Japan, Korea, and the USA. Many taxonomists emphasize that the genera Chaenomeles and Cydonia are closely related, but in the genus Chaenomeles, many hybrids have been described, while in the genus Cydonia hybridization can only occur within C. oblonga and P. sinensis [6]. C. oblonga is a shrub or, more commonly, a small tree. Its flowers are white or pink, large and solitary, and the fruits are spherical to oblong (8–12 cm in diameter), with an average weight of 100–250 g (Figure 1). The color of the epidermis changes from brown to light green in the early stages of development and turns yellow when ripe [2]. The flesh is yellowish, consistent, slightly sweet, often astringent. Due to the high content of organic acids, the pulp of most cultivars is not eaten raw but in the form of jams, marmalades, juices, jellies, puddings, compotes, and cakes [7,8,9,10,11,12][7][8][9][10][11][12]. The naturally dried fruits of Cydonia have been used as tea in Asia Minor for centuries [13]. A unique product from the Iberian Peninsula named “quince cheese”, is a reddish, hard, sticky, and sweet paste. The use of C. oblonga fruits as an ingredient of alcohols is also widespread, including for the production of a brandy-type “rakija”, famous in the Balkans, or as an ingredient in other alcoholic beverages [14]. Attempts have also been made to improve beer with a macerate of Cydonia fruit, which enhances its sensory qualities [15].
Figure 1. Flowers and fruits of Cydonia oblonga Mill. Source: photo by Monika Bieniasz, Univ. of Agriculture in Kraków, Poland (A,C); photo by the author (B).
Plants of the Chaenomeles genus are shrubs, usually growing to 2–3 m in height; only C. cathayensis grows as a small tree up to 6 m tall, while C. japonica is usually shorter. Chaenomeles flowers have unique decorative value; they appear before the leaves unfold and may be white, pink, orange, or red (Figure 2). The fruits are smaller, up to 100 g, spherical, and very sour (a titratable acidity of 47.5% malic eq. was measured for C. japonica) [16], which makes them unsuitable for raw consumption. However, due to their unique sensory properties, including intense aroma, they are used as additives that can enrich other products with valuable properties, e.g., teas, yogurts, cold drinks, liqueurs, ice cream, cocktails, and cottage cheese [17,18,19][17][18][19]. They are highly valued as dried candied fruits [20,21][20][21]. Freeze-dried fruits were added to cookies in order to improve their volatile characteristics and acceptability by consumers and to maintain quality during storage due to the strong antioxidant properties of the fruits [22]. Nawirska-Olszańska et al. [17,23][17][23] analyzed the properties of pumpkin jam mixed with C. japonica fruits and proved that such an additive enriched it with phenolic compounds and ascorbic acid as well as improved the volatile profile more significantly than using other fruits for this purpose.
Figure 2. Flowers and fruits of Chaenomeles japonica (Thunb.) Lindl. ex Spach. Source: photo by the author (A,B); Monika Bieniasz, Univ. of Agriculture in Kraków, Poland (C).
Psudocydonia sinensis is an attractive ornamental tree growing up to 18 m high. What distinguishes it from the genus Chaenomeles is the lack of thorns, single, unclustered flowers (Figure 3), and the exfoliating bark. The flowers are decorative and appear later than in most Chaenomeles shrubs. The fruit itself resembles Cydonia; it is an ovoid pome 12–17 cm long but without tufts. It is also hard and astringent, but after frost, these properties weaken. Nevertheless, the fruit is considered unpalatable due to the high lignin content (24.5% dm) [24]. Therefore, it is processed into jams, syrups, liqueurs, wine, and jellies [25,26][25][26].
Figure 3. Flowers and fruit of Psudocydonia sinensis Schneid. Source: photo, Dalgial, CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0, accessed on 21 December 2023), via Wikimedia Commons (A) and Tusbra (public domain, Wikimedia Commons) (B).
In the culinary and pharmaceutical uses of Cydonia, Chaemnomeles, and Pseudocydonia, an important point to keep in mind is the content of cyanogenic glycosides (mainly amygdalin) in their seeds. The potential toxicity of amygdalin results from enzymatic degradation in the human digestive system leading to the production of toxic HCN [27]. However, according to the literature, C. oblonga seeds contain low levels of amygdalin, making this fruit suitable for new applications in food technology and functional food design [28,29][28][29]. Detailed studies have been carried out on C. japonica seeds. Mierina et al. [30,31][30][31] determined the HCN content to be at the level of 0.3 and 0.7 mg/g in seeds. This concentration is similar to that found in apple seeds, which can range from 0.9 to 3.9 mg/g of seed [32]. Therefore, direct consumption of Chaenomeles seeds without pretreatment may be hazardous to human health. On the other hand, tests on cold-pressed oil did not show any amygdalin content [33]. Analyses of different fractions obtained from pressed C. japonica seed residues revealed the absence of amygdalin in all oil extracts obtained with or without ethanol as a co-solvent. Amygdalin was extracted together with polyphenols at levels up to 118 μg/mL, corresponding to 3080 μg/g dm of defatted C. japonica residue. In contrast, protein isolates obtained with or without tannin removal were free of amygdalin [34].

3. Chemical Composition of Quince Fruits and Seeds

3.1. Phenolic Compounds

Many reports show the content of phenolic phytochemicals in Cydonia fruits: in their pulp [35,36,37[35][36][37][38][39][40],38,39,40], peel [35,36,39,40,41[35][36][39][40][41][42],42], and seeds [38,41,43][38][41][43]. A few papers focused on beneficial compounds in leaves [39,44,45,46,47,48][39][44][45][46][47][48]. Some authors used whole fruits for analysis [49,50][49][50] or their callus [51]. The data on the content of polyphenols in fresh and dried pulp, peel, and seeds are summarized in Table 1, Table 2 and Table 3.
Table 1.
Phenolic contents in
C. oblonga
fresh and dried pulp.

References

  1. Rop, O.; Balik, J.; Řezniček, V.; Jurikova, T.; Škardova, P.; Salaš, P.; Sochor, J.; Mlček, J.; Kramařova, D. Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech J. Food Sci. 2011, 29, 65–73.
  2. Al-Snafi, A.E. The medical importance of Cydonia oblonga—A review. IOSR J. Pharm. 2016, 6, 87–99.
  3. Nahorska, A.; Dzwoniarska, M.; Thiem, B. Fruits of Japanese quince (Chaenomeles japonica Thunb. Lindl. ex Spach) as a sourcen of bioactive compounds. Post. Fitoter. 2014, 4, 239–246. (In Polish)
  4. Gao, R.; Xiong, S.; Zhang, T.; Deng, X.; Li, J.; Liao, M. Two new quinic acid derivatives from the fruits of Chaenomeles speciose. Biochem. Syst. Ecol. 2020, 93, e104167.
  5. Wang, Y.; Huang, Z.; Ma, W.; Liu, J.; Tian, L.; Zhou, Y.; Shang, F.; Guo, P. Comparative Pollen Morphology of the Genus Chaenomeles Lindl. (Rosaceae): Diagnostic Features and Implications for Taxonomy. Diversity 2023, 15, 960.
  6. Mabberley, D.J. The Plant Book, a Portable Dictionary of the Higher Plants, 4th ed.; Cambridge University Press: New York, NY, USA, 2017.
  7. Silva, B.M.; Andrade, P.B.; Martins, R.C.; Seabra, R.M.; Ferreira, M.A. Principal component analysis as tool of characterization of quince (Cydonia oblonga Miller) jam. Food Chem. 2006, 94, 504–512.
  8. Trigueros, L.; Pérez-Alvarez, J.A.; Viuda-Martos, M.; Sendra, E. Production of low-fat yogurt with quince (Cydonia oblonga Mill.) scalding water. LWT—Food Sci. Technol. 2011, 44, 1388–1395.
  9. Wojdyło, A.; Teleszko, M.; Oszmiański, J. Antioxidant property and storage stability of quince juice phenolic compounds. Food Chem. 2014, 152, 261–270.
  10. Mir, S.A.; Wani, S.M.; Wani, T.A.; Ahmad, M.; Gani, A.; Masoodi, F.A.; Nazir, A. Comparative Evaluation of the Proximate Composition and Antioxidant Properties of Processed Products of Quince (Cydonia oblonga). Int. J. Food Res. 2016, 23, 816–821.
  11. De Almeida Lopes, M.M.; Guimarães Sanches, A.; de Souza, K.O.; de Oliveira Silva, E. Quince—Cydonia oblonga. In Exotic Fruits; Rodrigues, S., de Oliveira Silva, E., de Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 363–368.
  12. Cascales, E.V.; García, J.M.R. Characteristics of the raw fruit, industrial pulp, and commercial jam elaborated with Spanish quince (Cydonia oblonga Miller). Emir. J. Food Agric. 2020, 32, 623–633.
  13. Gheisari, H.R.; Abhari, K.H. Drying method effects on the antioxidant activity of quince (Cydonia oblonga Miller) tea. Acta Sci. Pol. Technol. Aliment. 2014, 13, 129–134.
  14. Carbonell-Barrachina, A.A.; Szychowski, P.J.; Vásquez, M.V.; Hernández, F.; Wojdyło, A. Technological aspects as the main impact on quality of quince liquors. Food Chem. 2015, 167, 387–395.
  15. Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, A.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT—Food Sci. Technol. 2019, 103, 139–146.
  16. Baranowska-Bosiacka, I.; Bosiacka, B.; Rast, J.; Gutowska, I.; Wolska, J.; Rębacz-Maron, E.; Dębia, K.; Janda, K.; Korbecki, J.; Chlubek, D. Macro- and Microelement Content and Other Properties of Chaenomeles japonica L. Fruit and Protective Effects of Its Aqueous Extract on Hepatocyte Metabolism. Biol. Trace Elem. Res. 2017, 178, 327–337.
  17. Nawirska-Olszańska, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Biesiada, A. Quality Assasment of pumpkin jams enriched with Japanese quince, Cornellian cherry and strawberries. Acta Sci. Pol. Technol. Aliment. 2010, 1, 40–48. (In Polish)
  18. Wojdyło, A.; Oszmiański, J.; Teleszko, M.; Sokół-Łętowska, A. Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. Int. J. Food Sci. Nutr. 2013, 64, 749–756.
  19. Nowicka, P.; Wojdyło, A.; Teleszko, M.; Samoticha, J. Sensory attributes and changes of physicochemical properties during storage of smoothies prepared from selected fruit. LWT—Food Sci Technol. 2016, 71, 102–109.
  20. Seglina, D.; Krasnova, I.; Heidemane, G.; Ruisa, S. Influence of drying technology on the quality of dried candied Chaenomeles japonica during storage. Lat. J. Agron. 2009, 12, 113–118.
  21. Krasnova, I.; Seglina, D.; Pole, V. The effect of pre-treatment methods on the quality of dehydrated candied Japanese quince fruits during storage. J. Food Sci. Technol. 2018, 55, 4468–4476.
  22. Antoniewska, A.; Rutkowska, J.; Martinez Pineda, M. Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chem. 2019, 286, 376–387.
  23. Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Content of biactive compounds and antioxidant capacity of pumpkin puree enriched with Japanese quince Cornellian cherry, strawberry and apples. Acta Sci. Pol. Technol. Aliment. 2011, 10, 51–60.
  24. Hamauzu, Y.; Mizuno, Y. Non-extractable Procyanidins and Lignin are Important Factors in the Bile Acid Binding and Radical Scavenging Properties of Cell Wall Material in some Fruits. Plant Foods Hum. Nutr. 2011, 66, 70–77.
  25. Hamauzu, Y.; Takedachi, N.; Miyasaka, R.; Makabe, H. Heat treatment of Chinese quince polyphenols increases rat plasma levels of protocatechuic and vanillic acids. Food Chem. 2010, 118, 757–763.
  26. Cheng, X.-C.; Guo, X.-R.; Qin, Z.; Wang, X.-D.; Liu, H.-M.; Liu, Y.-L. Structural features and antioxidant activities of Chinese quince (Chaenomeles sinensis) fruits lignin during auto-catalyzed ethanol organosolv pretreatment. Int. J. Biol. Macromol. 2020, 164, 4348–4358.
  27. Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. Comprehensive characterization of Chaenomeles seeds as a potential source of nutritional and biologically active compounds. J. Food Comp. Anal. 2021, 102, e104065.
  28. Byczkiewicz, S.; Szwajgier, D.; Kobus-Cisowska, J.; Szczepaniak, O.; Szulc, P. Comparative examination of bioactive phytochemicals in quince (Chaenomeles) fruits and their in vitro antioxidant activity. EJFA 2021, 3, 293–302.
  29. Al-Zughbi, I.; Krayem, M. Quince fruit Cydonia oblonga Mill nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: A review. Food Chem. 2022, 393, e133362.
  30. Mierina, I.; Seržane, R.; Strele, M.; Moskaluka, J.; Seglina, D.; Jure, M. Extracts of Japanese quince seeds—Potential source of antioxidants. In Proceedings of 6th Baltic Conference on Food Science and Technology: Innovations for Food Science and Production; Latvia University of Agriculture: Jelgava, Latvia, 2011; p. 75.
  31. Mierina, I.; Seržane, R.; Strele, M.; Moskaļuka, J.; Ivdre, E.; Jure, M. Investigation of the oil and Meal of Japanese Quince (Chaenomeles japonica) Seeds. Proc. Latv. Acad. Sci. Sect. B 2013, 67, 405–410.
  32. Bolarinwa, I.F.; Orfila, C.; Morgan, M.R. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem. 2015, 170, 437–442.
  33. Górnaś, P.; Siger, A.; Juhņeviča, K.; Lācis, G.; Šnē, E.; Segliņa, D. Cold-pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of α-tocopherol, carotenoids and phenolics: A comparison of the composition and antioxidant activity with nine other plant oils. Eur. J. Lipid Sci. Technol. 2014, 116, 563–570.
  34. Ben-Othman, S.; Bleive, U.; Kaldmäe, H.; Aluvee, A.; Rätsep, R.; Karp, K.; Maciel, L.S.; Herodes, K.; Rinken, T. Phytochemical characterization of oil and protein fractions isolated from Japanese quince (Chaenomeles japonica) wine by-product, LWT—Food Sci. Technol. 2023, 178, e114632.
  35. Silva, B.M.; Andrade, P.B.; Ferreres, F.; Domingues, A.L.; Seabra, R.M.; Ferreira, M.A. Phenolic Profile of Quince Fruit (Cydonia oblonga Miller) (Pulp and Peel). J. Agric. Food Chem. 2002, 50, 4615–4618.
  36. Silva, B.M.; Andrade, P.B.; Valentão, P.; Ferreres, F.; Seabra, R.M.; Ferreira, M.A. Quince (Cydonia oblonga Miller) Fruit (Pulp, Peel, and Seed) and Jam: Antioxidant Activity. J. Agric. Food Chem. 2004, 52, 4705–4712.
  37. Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial activity of tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J. Agric. Food Chem. 2007, 55, 963–969.
  38. Carvalho, M.; Silva, B.M.; Silva, R.; Valentão, P.; Andrade, P.B.; Bastos, M.L. First report on Cydonia oblonga Miller anticancer potential: Differential antiproliferative effect against human kidney and colon cancer cells. J. Agric. Food Chem. 2010, 58, 3366–3370.
  39. Stojanović, B.T.; Mitić, S.S.; Stojanović, G.S.; Mitić, M.N.; Kostić, D.A.; Paunović, D.D.; Arsić, B.B.; Pavlović, A.N. Phenolic profiles and metal ions analyses of pulp and peel of fruits and seeds of quince (Cydonia oblonga Mill.). Food Chem. 2017, 232, 466–475.
  40. Sut, S.; Dall’Acqua, S.; Poloniato, G.; Maggi, F.; Malagoli, M. Preliminary evaluation of quince (Cydonia oblonga Mill.) fruit as extraction source of antioxidant phytoconstituents for nutraceutical and functional food applications. J. Sci. Food Agric. 2019, 99, 1046–1054.
  41. Magalhães, A.S.; Silva, B.M.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem. Toxicol. 2009, 47, 1372–1377.
  42. Alesiani, D.; Canini, A.; D’Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Mastellone, C.; Pacifico, S. Antioxidant and antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chem. 2010, 118, 199–207.
  43. Silva, B.M.; Andrade, P.B.; Ferreres, F.; Seabra, R.M.; Beatriz, M.; Oliveira, P.P.; Ferreira, M.A. Composition of Quince (Cydonia oblonga Miller) seeds: Phenolics, organic acids and free amino acids. Nat. Prod. Res. 2005, 19, 275–281.
  44. Oliveira, A.P.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Seabra, R.M.; Silva, B.M. Organic acids composition of Cydonia oblonga Miller leaf. Food Chem. 2008, 111, 393–399.
  45. Oliveira, A.P.; Costa, R.M.; Magalhães, A.S.; Pereira, J.A.; Carvalho, M.; Valentão, P.; Andrade, P.B.; Silva, B.M. Targeted metabolites and biological activities of Cydonia oblonga Miller leaves. Food Res. Int. 2012, 46, 496–504.
  46. Costa, R.M.; Magalhães, A.S.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M.; Silva, B.M. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem. Toxicol. 2009, 47, 860–865.
  47. Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves, J. Funct. Foods 2015, 14, 736–746.
  48. Ashrafi, H.; Ghabili, K.; Alihemmati, A.; Jouyban, A.; Shoja, M.M.; Aslanabadi, S.; Adl, F.H.; Ghavimi, H.; Hajhosseini, L. The effect of quince leaf (Cydonia oblonga Miller) decoction on testes in hypercholesterolemic rabbits: A pilot study. Afr. J. Tradit. Complement. Altern. Med. AJTCAM 2013, 10, 277–282.
  49. Szychowski, P.J.; Lech, K.; Sendra-Nadal, E.; Hernández, F.; Figiel, A.; Wojdyło, A.; Carbonell-Barrachina, A.A. Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying metod. Food Chem. 2018, 255, 157–164.
  50. Blanda, G.; Rodriguez-Roque, M.J.; Comandini, P.; Flores-Cordova, M.A.; Salas-Salazar, N.A.; Cruz-Alvarez, O.; Soto-Caballero, M.C. Phenolic profile and physicochemical characterization of quince (Cydonia oblonga Mill) fruits at different maturity index. Not. Bot. Horti. Agrobot. Cluj Napoca 2020, 48, 2306–2315.
  51. De Bellis, R.; Chiarantini, L.; Potenza, L.; Gorassini, A.; Verardo, G.; De Marco, R.; Benayada, L.; Stocchi, V.; Albertini, M.C.; Fraternale, D. High Production of Secondary Metabolites and Biological Activities of C. oblonga Mill. Pulp Fruit Callus. J. Funct. Foods 2022, 94, 105133.
  52. Andrade, P.B.; Carvalho, A.R.F.; Seabra, R.M.; Ferreira, M.A. A previous study of phenolic profiles of quince, pear, and apple purees by HPLC diode array detection for the evaluation of quince puree genuineness. J. Agric. Food Chem. 1998, 46, 968–972.
  53. Hamauzu, Y.; Yasui, H.; Inno, T.; Kume, C.; Omanyuda, M. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J. Agric. Food Chem. 2005, 53, 928–934.
  54. Silva, B.M.; Andrade, P.B.; Gonçalves, A.C.; Seabra, R.M.; Oliveira, M.B.; Ferreira, M.A. Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). Eur. Food Res. Technol. 2004, 218, 385–389.
  55. Baroni, M.V.; Fabani, M.P.; Adan, F.; Podio, N.S.; Wunderlin, D.A. Effect of geographical location, processing and simulated digestion on antioxidant characteristics of quince (Cydonia oblonga). Heliyon 2022, 8, e11435.
  56. Torres, C.A.; Romero, L.A.; Diaz, R.I. Quality and sensory attributes of apple and quince leathers made without preservatives and with enhanced antioxidant activity. LWT—Food Sci. Technol. 2015, 62, 996–1003.
  57. Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic Composition, Antioxidant Activity, and Polyphenol Oxidase (PPO) Activity of Quince (Cydonia oblonga Miller) Varieties. J. Agric. Food Chem. 2013, 61, 2762–2772.
  58. Sharma, R.; Joshi, V.K.; Rana, J.C. Nutritional Composition and Processed Products of Quince (Cydonia oblonga). J. Asian Nat. Prod. Res. 2011, 2, 354–357.
  59. Urbanavičiūtė, I.; Viškelis, P. Biochemical Composition of Japanese Quince (Chaenomeles japonica) and Its Promising Value for Food, Cosmetic, and Pharmaceutical Industries. In Fruit Industry; Kahramanoğlu, İ., Wan, C., Eds.; IntechOpen: London, UK, 2022.
  60. Tarko, T.; Duda-Chodak, A.; Satora, P.; Sroka, P.; Pogoń, P.; Machalica, J. Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J. Food Sci. Technol. 2014, 51, 3934–3941.
  61. Hamauzu, Y.; Inno, T.; Kume, C.; Irie, M.; Hiramatsu, K. Antioxidant and Antiulcerative Properties of Phenolics from Chinese Quince, Quince, and Apple Fruits. J. Agric. Food Chem. 2006, 54, 765–772.
  62. Du, H.; Wu, J.; Li, H.; Zhong, P.-X.; Xu, Y.-J.; Li, C.-H.; Ji, K.-X.; Wang, L.-S. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chem. 2013, 141, 4260–4268.
  63. Huang, G.-H.; Xi, Z.-X.; Li, J.-L.; Chen, C.; Yang, G.-J.; Sun, L.; Chen, W.-S.; Zhu, H.-Y. Isolation of two new phenolic compounds from the fruit of Chaenomeles speciosa (Sweet) Nakai. Phytochem. Lett. 2013, 6, 526–530.
  64. Turkiewicz, I.P.; Wojdyło, A.; Lech, K.; Tkacz, K.; Nowicka, P. Influence of different drying methods on the quality of Japanese quince fruit. LWT—Food Sci. Technol. 2019, 114, e108416.
  65. Lee, M.H.; Son, Y.K.; Han, Y.N. Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch. Pharm. Res. 2002, 25, 842–850.
  66. Kim, C.S.; Subedi, L.; Kim, S.Y.; Choi, S.U.; Kim, K.H.; Lee, K.R. Lignan glycosides from the twigs of Chaenomeles sinensis and their biological activities. J. Nat. Prod. 2015, 78, 1174–1178.
  67. Suh, W.S.; Park, K.J.; Kim, D.H.; Subedi, L.; Kim, S.Y.; Choi, S.U.; Lee, K.R. A biphenyl derivative from the twigs of Chaenomeles speciosa. Bioorg. Chem. 2017, 72, 156–160.
  68. Xie, X.; Cai, X.; Zhu, S.; Zou, G. Chemical composition and antimicrobial activity of essential oils of Chaenomeles speciosa from China. Food Chem. 2007, 100, 1312–1315.
  69. Hellín, P.; Vila, R.; Jordán, M.J.; Laencina, J.; Rumpunen, K.; Ros, J.M. Characteristics and Composition of Chaenomeles Fruit Juice. In Japanese Quince—Potential Fruit Crop for Northern Europe. Department of Crop Science; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 127–139.
  70. Gardner, P.T.; White, T.A.C.; McPhail, D.B.; Duthie, G.G. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 2000, 68, 471–474.
  71. Vila, R.; Granados, M.V.; Hellín, P.; Kauppinen, S.; Laencina, J.; Rumpunen, K.; Ros, J.M. Biochemical changes in chaenomeles fruits and fruit juice during ripening and storage. In Japanese Quince—Potential Fruit Crop for Northern Europe; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 159–168.
  72. Urbanavičiūtė, I.; Liaudanskas, M.; Bobinas, Č.; Šarkinas, A.; Rezgienė, A.; Viskelis, P. Japanese Quince (Chaenomeles japonica) as a Potential Source of Phenols: Optimization of the Extraction Parameters and Assessment of Antiradical and Antimicrobial Activities. Foods 2020, 9, 1132.
  73. Osman, A. Chapter 49—Cold pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 541–546.
  74. Górnaś, P.; Siger, A.; Segliņa, D. Physicochemical characteristics of the cold-pressed Japanese quince seed oil: New promising unconventional bio-oil from by-products for the pharmaceutical and cosmetic industry. Ind. Crops Prod. 2013, 48, 178–182.
  75. Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. UPLC/ESI-Q-TOF-MS analysis of (poly)phenols, tocols and amino acids in Chaenomeles leaves versus in vitro anti-enzyme activities. Ind. Crop. Prod. 2022, 181, e114829.
  76. Marat, N.; Danowska-Oziewicz, M.; Narwojsz, A. Chaenomeles Species-Characteristics of Plant, Fruit and Processed Products: A Review. Plants 2022, 11, 3036.
  77. Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables, 7th ed.; MedPharm: Stuttgart, Germany, 2008; pp. 743–1238.
  78. Zhang, H.; Geng, Y.L.; Wang, D.J.; Liu, J.H.; Wang, X.; Du, J.H.; Li, S.B. Research on nutrient components of different species of Chaenomeles speciosa Nakai. Shandong Sc. 2011, 24, 24–27.
  79. Bieniasz, M.; Dziedzic, E.; Kaczmarczyk, E. The effect of storage and processing on vitamin C content in Japanese quince fruit. Folia Hortic. 2017, 29, 83–93.
  80. Hallmann, E.; Orpel, E.; Rembiałkowska, E. The content of biologically active compounds in some fruits from natural state. Veg. Crop Res. Bull. 2011, 75, 81–90.
  81. Mezhenskij, V.L. Research, Cultivation and Processing of Japanese Quince, Chaenomeles spp. in Ukraine. Verksamhetsberättelse 1992–1994: Report; Balsgård-Deparment of Horticultural Plant Breeding, Swedish University of Agricultural Sciences: Uppsala, Sweden, 1996; pp. 193–195.
  82. Legua, P.; Serrano, M.; Melgarejo, P.; Valero, D.; Martínez, J.J.; Martínez, R.; Hernández, F. Quality parameters, biocompounds and antioxidant activity in fruits of nine quince (Cydonia oblonga Miller) accessions. Sci. Hortic. 2013, 154, 61–65.
  83. Najman, K.; Adrian, S.; Hallmann, E.; Sadowska, A.; Buczak, K.; Waszkiewicz-Robak, B.; Szterk, A. Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.). Agriculture 2023, 13, 446.
  84. Najman, K.; Adrian, S.; Sadowska, A.; Świąder, K.; Hallmann, E.; Buczak, K.; Waszkiewicz-Robak, B.; Szterk, A. Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products. Molecules 2023, 28, 3066.
  85. Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. Carotenoids, chlorophylls, vitamin E and amino acid profile in fruits of nineteen Chaenomeles cultivars. J. Food Comp. Anal. 2020, 93, e103608.
  86. Zhang, R.; Li, S.; Zhu, Z.; He, J. Recent advances in valorization of Chaenomeles fruit: A review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trend. Food Sci. Technol. 2019, 91, 467–482.
  87. Xu, N.Y.; Kim, J.S.; Kang, S.S.; Son, K.H.; Kim, H.P.; Chang, H.W.; Bae, K. A new acylated triterpene from the roots of Chaenomeles japonica. Chem. Pharm. Bull. 2002, 50, 1124–1125.
  88. Lesińska, E. Zawartość składników mineralnych w owocach pigwowca. Zesz. Nauk. AR W Krakowie Rol. 1985, 25, 175–183. (In Polish)
  89. Watychowicz, K.; Janda, K.; Jakubczyk, K.; Wolska, J. Chaenomeles—Health Promoting Benefits. Rocz. Panstw. Zakl. Hig. 2017, 68, 217–227.
  90. Lesińska, E. Characteristics of sugars and acids in the fruits of East Asian quince. Die Nahrung 1987, 31, 763–765.
  91. Rasheed, M.; Hussain, I.; Rafiq, S.; Hayat, I.; Qayyum, A.; Ishaq, S.; Awan, M.S. Chemical composition and antioxidant activity of quince fruit pulp collected from different locations. Int. J. Food Propert. 2018, 21, 2320–2327.
  92. Hopur, H.; Asrorov, A.M.; Qingling, M.; Yili, A.; Ayupbek, A.; Nannan, P.; Aisa, H.A. HPLC Analysis of Polysaccharides in Quince (Cydonia Oblonga Mill. var. maliformis) Fruit and PTP1B Inhibitory Activity. Nat. Prod. J. 2011, 1, 146–150.
  93. Ashraf, M.U.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. Cydonia oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals. Front. Pharmacol. 2016, 7, 163.
  94. Hegedus, A.; Nora, P.; Eva, S.B. A Review of Nutritional Value and Putative Health—Effects of Quince (Cydonia oblonga) Fruit. Int. J. Hortic. Sci. 2013, 3, 29–32.
  95. Thomas, M.; Crépeau, M.J.C.; Rumpunen, K.; Thibault, J.-F. Dietary fibre and cell-wall polysaccharides in the fruits of Japanese quince (Chaenomeles japonica). LWT—Food Sci. Technol. 2000, 33, 124–131.
  96. Thomas, M.; Thibault, J.-F. Cell-wall polysaccharides in the fruits of Japanese quince (Chaenomeles japonica): Extraction and preliminary characterisation. Carbohydr. Polym. 2002, 49, 345–355.
  97. Thomas, M.; Guillemin, F.; Guillon, F.; Thibault, J.F. Pectins in the fruits of Japanese Quince (Chaenomeles japonica). Carbohyd. Polym. 2003, 53, 361–372.
  98. Hellín, P.; Jordán, M.J.; Vila, R.; Gustafsson, M.; Göransson, E.; Ĺkesson, B.; Gröön, I.; Laencina, J.; Ros, J.M. Processing and products of Japanese quince (Chaenomeles japonica) fruits. In Japanese Quince—Potential Fruit Crop for Northern Europe; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 169–175.
  99. Qin, Z.; Liu, H.-M.; Lv, T.-T.; Wang, X.-D. Structure, rheological, thermal and antioxidant properties of cell wall polysaccharides from Chinese quince fruits. Int. J. Biol. Macromol. 2019, 147, 1146–1155.
  100. Aliasl, F.; Toliyat, T.; Mohammadi, A.; Minaee, B.; Samadi, N.; Aliasl, J.; Sadeghpour, O. Medicinal Properties of Cydonia Oblonga Mill Fruit (Pulp and Peel) in Iranian Traditional Medicine and Modern Phytothrapy. Trad Integr. Med. 2016, 1, 122–128.
  101. Yang, G.; Fen, W.; Lei, C.; Xiao, W.; Sun, H. Study on determination of pentacyclic triterpenoids in Chaenomeles by HPLC-ELSD. J. Chromatogr. Sci. 2009, 47, 718–722.
  102. Wang, Z.-J.; Jin, D.-N.; Zhou, Y.; Sang, X.-Y.; Zhu, Y.-Y.; He, Y.-J.; Xie, T.-Z.; Dai, Z.; Zhao, Y.-L.; Luo, X.-D. Bioactivity Ingredients of Chaenomeles speciosa against Microbes: Characterization by LC-MS and Activity Evaluation. J. Agric. Food Chem. 2021, 69, 4686–4696.
  103. Fang, Q.; Zheng, H.; Fu, G.; Yin, M.; Jiang, L.; Zhao, Y.; Zha, L.; Chu, S.; Peng, H.; Huang, L. Integrated untargeted metabolome, full-length sequencing, and transcriptome analyses reveal insights into the fruit quality at different harvest times of Chaenomeles speciosa. Food Res. Int. 2023, 164, 112314.
  104. Cha, J.M.; Kim, D.H.; Subedi, L.; Khan, Z.; Choi, S.U.; Kim, S.Y.; Kim, C.S. Chemical constituents of Chaenomeles sinensis twigs and their biological activity. Beilstein J. Org. Chem. 2020, 16, 3078–3085.
  105. Oku, H.; Ueda, Y.; Ishiguro, K. Antipruritic effects of the fruits of Chaenomeles sinensis. Biol. Pharm. Bull. 2003, 26, 1031–1034.
  106. Kim, D.H.; Lee, J.-S.; Yun, C.-Y.; Kim, D.-H.; Kim, I.S. Chinese quince (Chaenomeles sinensis) extract inhibits cell migration and cytokine release in HMC-1 cells. Food Sci. Biotechnol. 2013, 22, 501–506.
  107. National Center for Biotechnology Information. PubChem Compound Summary for CID 1794427, Chlorogenic Acid; CID 5280633, Neochlorogenic Acid; CID 9798666, Cryptochlorogenic Acid; CID 64945, Ursolic Acid, and CID 10494, Oleanolic Acid. 2023. Available online: http://pubchem.ncbi.nlm.nih.gov (accessed on 21 December 2023).
  108. Baroni, M.V.; Gastaminza, J.; Podio, N.S.; Lingua, M.S.; Wunderlin, D.A.; Rovasio, J.L.; Dotti, R.; Rosso, J.C.; Ghione, S.; Ribotta, P.D. Changes in the antioxidant properties of quince fruit (Cydonia oblonga Miller) during jam production at industrial scale. J. Food Qual. 2018, 2018, e1460758.
  109. Essafi-Benkhadir, K.; Refai, A.; Riahi, I.; Fattouch, S.; Karoui, H.; Essafi, M. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition. Biochem. Biophys. Res. Commun. 2012, 418, 180–185.
  110. García-Alonso, M.; de Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J. Evaluation of the antioxidant properties of fruits. Food Chem. 2004, 84, 13–18.
  111. Yildirim, A.; Oktay, M.; Bilaloglu, V. The antioxidant activity of the leaves of Cydonia vulgaris. Turk. J. Med. Sci. 2001, 31, 23–27.
  112. Pacifico, S.; Gallicchio, M.; Fiorentino, A.; Fischer, A.; Meyer, U.; Stintzing, F.C. Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations. Food Chemical Toxicol. 2012, 50, 4130–4135.
  113. Lee, K.T.; Kim, B.J.; Kim, J.H.; Heo, M.Y.; Kim, H.P. Biological screening of 100 plant extracts for cosmetic use (I): Inhibitory activities of tyrosinase and DOPA auto-oxidation. Int. J. Cosmet. Sci. 1997, 19, 291–298.
  114. Tang, Y.; Yu, X.; Mi, M.; Zhao, J.; Wang, J.; Zhang, T. Antioxidative property and antiatherosclerotic effects of the powder processed from Chaenomeles speciosa in APOE-/- mice. J. Food Biochem. 2010, 34, 535–548.
  115. Deng, Y.; Huang, L.; Zhang, C.; Xie, P.; Cheng, J.; Wang, X.; Liu, L. Skin-care functions of peptides prepared from Chinese quince seed protein: Sequences analysis, tyrosinase inhibition and molecular docking study. Ind. Crops Prod. 2020, 148, e112331.
  116. Ma, B.; Wang, J.; Tong, J.; Zhou, G.; Chen, Y.; He, J.; Wang, Y. Protective effects of Chaenomeles thibetica extract against carbon tetrachloride-induced damage via the MAPK/Nrf2 pathway. Food Funct. 2016, 7, 1492–1500.
  117. Sancheti, S.; Sancheti, S.; Bafna, M.; Seo, S.Y. Antihyperglycemic, antihyperlipidemic, and antioxidant effects of Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats. Eur. Food Res. Technol. 2010, 231, 415–421.
  118. Kawahara, T.; Iizuka, T. Inhibitory effect of hotwater extract of quince (Cydonia oblonga) on immunoglobulin E-dependent late-phase immune reactions of mast cells. Cytotechnology 2011, 63, 143–152.
  119. Shinomiya, F.; Hamauzu, Y.; Kawahara, T. Anti-allergic effect of a hot-water extract of quince (Cydonia oblonga). Biosci. Biotechnol. Biochem. 2009, 73, 1773–1778.
  120. Gründemann, C.; Papagiannopoulos, M.; Lamy, E.; Mersch-Sundermann, V.; Huber, R. Immunomodulatory properties of a lemon-quince preparation (Gencydo®) as an indicator of anti-allergic potency. Phytomedicine 2011, 18, 760–768.
  121. Chojnacka, K.; Owczarek, K.; Caban, M.; Caban, M.; Sosnowska, D.; Polka, D.; Koziołkiewicz, M.; Fichna, J.; Lewandowska, U. Japanese quince (Chaenomeles japonica) leaf phenol extract as modulator of the inflammatory response in lipopolysaccharide-triggered murine macrophage raw 264.7 cells. J. Physiol. Pharmacol. 2020, 71, 833–843.
  122. Zhang, L.; Cheng, Y.X.; Liu, A.L.; Wang, H.D.; Wang, Y.L.; Du, G.H. Antioxidant, anti-inflammatory and anti-influenza properties of components from Chaenomeles speciosa. Molecules 2010, 15, 8507–8517.
  123. Li, X.; Yang, Y.-B.; Yang, Q.; Sun, L.-N.; Chen, W.-S. Anti-Inflammatory and Analgesic Activities of Chaenomeles speciosa Fractions in Laboratory Animals. J. Med. Food. 2009, 12, 1016–1022.
  124. Strugała, P.; Cyboran-Mikołajczyk, S.; Dudra, A.; Mizgier, P.; Kucharska, A.Z.; Olejniczak, T.; Gabrielska, J. Biological activity of Japanese quince extract and its interactions with lipids, erythrocyte membrane, and human albumin. J. Membr. Biol. 2016, 249, 393–410.
  125. Chen, Q.; Wei, W. Effects and mechanisms of glucosides of chaenomeles speciosa on collagen-induced arthritis in rats. Int. Immunopharmacol. 2003, 3, 593–608.
  126. Wang, N.P.; Dai, M.; Wang, H.; Zhang, L.L.; Wei, W. Antinociceptive effect of glucosides of Chaenomeles speciosa. Chin. J. Pharmacol. Toxicol. 2005, 19, 169–174.
  127. Huang, D.; Jiang, S.; Du, Z.; Chen, Y.; Xue, D.; Wang, X.; Li, M.; Zhang, F.; Chen, W.; Sun, L. Analgesic and AntiArthritic Activities of Polysaccharides in Chaenomeles speciosa. Front. Pharmacol. 2022, 13, e744915.
  128. Riahi-Chebbi, I.; Haoues, M.; Essafi, M.; Zakraoui, O.; Fattouch, S.; Karoui, H.; Essafi-Benkhadir, K. Quince peel polyphenolic extract blocks human colon adenocarcinoma LS174 cell growth and potentiates 5-fluorouracil efficacy. Cancer Cell Int. 2015, 16, e1.
  129. Adiban, H.H.; Shirazi, F.; Gholami, S.; Kamalinejad, M.; Hosseini, S.H.; Noubarani, M.; Eskandari, M.R. Chemopreventive effect of quince (Cydonia oblonga Mill.) fruit extract on hepatocellular carcinoma induced by diethylnitrosamine in rats. Int. Pharm. Acta 2019, 2, e2.
  130. Strek, M.; Gorlach, S.; Podsędek, A.; Sosnowska, D.; Koziołkiewicz, M.; Hrabec, Z.; Hrabec, E. Procyanidin oligomers from Japanese quince (Chaenomeles japonica) fruit inhibit activity of MMP-2 and MMP-9 metalloproteinases. J. Agric. Food Chem. 2007, 55, 6447–6452.
  131. Lewandowska, U.; Szewczyk, K.; Owczarek, K.; Hrabec, Z.; Podsędek, A.; Koziołkiewicz, M.; Hrabec, E. Flavanols from Japanese quince (Chaenomeles japonica) fruit inhibit human prostate and breast cancer cell line invasiveness and cause favorable changes in Bax/Bcl-2 mRNA Ratio. Nutr. Cancer 2013, 65, 273–285.
  132. Owczarek, K.; Hrabec, E.; Fichna, J.; Sosnowska, D.; Koziołkiewicz, M.; Szymański, J.; Lewandowska, U. Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells. Acta Biochim. Pol. 2017, 64, 567–576.
  133. Zvikas, V.; Urbanaviciute, I.; Bernotiene, R.; Kulakauskiene, D.; Morkunaite, U.; Balion, Z.; Majiene, D.; Liaudanskas, M.; Viskelis, P.; Jekabsone, A.; et al. Investigation of Phenolic Composition and Anticancer Properties of Ethanolic Extracts of Japanese Quince Leaves. Foods 2020, 10, 18.
  134. Chojnacka, K.; Sosnowska, D.; Polka, D.; Owczarek, K.; Gorlach-Lira, K.; Oliveira de Verasa, B.; Lewandowska, U. Comparison of phenolic compounds, antioxidant and cytotoxic activity of extracts prepared from Japanese quince (Chaenomeles japonica L.) leaves. J. Physiol. Pharmacol. 2020, 71, 213–222.
  135. Gao, H.Y.; Wu, L.J.; Kuroyanagi, M.; Harada, K.; Kawahara, N.; Nakane, T.; Umehara, K.; Hirasawa, A.; Nakamura, Y. Antitumor-promoting constituents from Chaenomeles sinensis Koehne and their activities in JB6 mouse epidermal cells. Chem. Pharm. Bull. 2003, 51, 1318–1321.
  136. Abliz, A.; Aji, Q.; Abdusalam, E.; Sun, X.; Abdurahman, A.; Zhou, W.; Moore, N.; Umar, A. Effect of Cydonia oblonga Mill. Leaf extract on serum lipids and liver function in a rat model of hyperlipidaemia. J. Ethnopharmacol. 2014, 151, 970–974.
  137. Umar, A.; Iskandar, G.; Aikemu, A.; Yiming, W.; Zhou, W.; Berké, B.; Begaud, B.; Moore, N. Effects of Cydonia oblonga Miller leaf and fruit flavonoids on blood lipids and anti-oxydant potential in hyperlipidemia rats. J. Ethnopharmacol. 2015, 169, 239–243.
  138. Zhou, W.; Abdusalam, E.; Abliz, P.; Reyim, N.; Tian, S.; Aji, Q.; Issak, M.; Iskandar, G.; Moore, N.; Umar, A. Effect of Cydonia oblonga Mill. fruit and leaf extracts on blood pressure and blood rheology in renal hypertensive rats. J. Ethnopharmacol. 2014, 152, 464–469.
  139. Zhou, W.; Abdurahman, A.; Abdusalam, E.; Yiming, W.; Abliz, P.; Aji, Q.; Issak, M.; Iskandar, G.; Moore, N.; Umar, A. Effect of Cydonia oblonga Mill. Leaf extracts or captopril on blood pressure and related biomarkers in renal hypertensive rats. J. Ethnopharmacol. 2014, 153, 635–640.
  140. Zhou, W.; Abdurahman, A.; Umar, A.; Iskander, G.; Abdusalam, E.; Berké, B.; Bégaud, B.; Moore, N. Effects of Cydonia oblonga Miller extracts on blood hemostasis, coagulation and fibrinolysis in mice, and experimental thrombosis in rats. J. Ethnopharmacol. 2014, 154, 163–169.
  141. Abulizi, A.; Simayi, J.; Nuermaimaiti, M.; Han, M.; Hailati, S.; Talihati, Z.; Maihemuti, N.; Nuer, M.; Khan, N.; Abudurousuli, K.; et al. Quince extract resists atherosclerosis in rats by down-regulating the EGFR/PI3K/Akt/GSK-3β pathway. Biomed. Pharmacother. 2023, 160, 114330.
  142. Gholami, S.; Hosseini, M.J.; Jafari, L.; Omidvar, F.; Kamalinejad, M.; Mashayekhi, V.; Hosseini, S.H.; Kardan, A.; Pourahmad, J.; Eskandari, M.R. Mitochondria as a Target for the Cardioprotective Effects of Cydonia oblonga Mill. and Ficus carica L. in Doxorubicin-Induced Cardiotoxicity. Drug Res. 2017, 67, 358–365.
  143. Hanan, E.; Hasan, N.; Zahiruddin, S.; Ahmad, S.; Sharma, V.; Ahmad, F.J. Metabolite profiling and Ameliorative effect of quince (Cydonia oblonga) leaves against doxorubicin induced cardiotoxicity in Wistar rats. Food Biosci. 2023, 53, 102691.
  144. Lee, M.H.; Han, Y.N. A new in vitro tissue factor inhibitory triterpene from the fruits of Chaenomeles sinensis. Planta Med. 2003, 69, 327–331.
  145. Tang, D.; Xie, L.; Xin, X.; Aisa, H. Anti-diabetic action of Cydonia oblonga seed extract: Improvement of glucose metabolism via activation of PI3K/AKT signaling pathway. J. Pharmacogn. Phytochem. 2016, 4, 7–13.
  146. Lee, H.S.; Jeon, Y.E.; Jung, J.I.; Kim, S.M.; Hong, S.H.; Lee, J.; Hwang, J.S.; Hwang, M.O.; Kwon, K.; Kim, E.J. Anti-obesity effect of Cydonia oblonga Miller extract in high-fat diet-induced obese C57BL/6 mice. J. Funct. Foods 2022, 89, e104945.
  147. Aslan, M.; Orhan, N.; Orhan, D.D.; Ergun, F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J. Ethnopharmacol. 2010, 128, 384–389.
  148. Zakłos-Szyda, M.; Pawlik, N. Japanese quince (Chaenomeles japonica L.) fruit polyphenolic extract modulates carbohydrate metabolism in HepG2 cells via AMP-activated protein kinase. Acta Biochim. Pol. 2018, 65, 67–78.
  149. Sancheti, S.S.; Sancheti, S.; Seo, S. Chaemnomeles sinensis: A potent α- and β-glucosidase inhibitor. Am. J. Pharmacol. Toxicol. 2009, 4, 8–11.
  150. Sancheti, S.; Sancheti, S.; Seo, S.Y. Antidiabetic and antiacetylcholinesterase effects of ethyl acetate fraction of Chaenomeles sinensis (Thouin) Koehne fruits in streptozotocin-induced diabetic rats. Exp. Toxicol. Pathol. 2013, 65, 55–60.
  151. Alizadeh, H.; Rahnema, M.; Semnani, S.N.; Hajizadeh, N. Detection of compounds and antibacterial effect of quince (Cydonia oblonga Miller) extracts in vitro and in vivo. J. Biol. Active Prod. Nature 2013, 3, 303–309.
  152. Kumar, V.; Singh, S.B.; Singh, S. COVID-19: Environment concern and impact of Indian medicinal system. J. Environ. Chem. Eng. 2020, 8, 104–144.
  153. Naeimi, M.; Kianifar, H.; Memariani, Z.; Kamalinejad, M.; Bijani, A.; Saghebi, R.; Gorji, N. Comparison of the efficacy of ranitidine and quince syrup on gastroesophageal reflux disease in children. BMC Complement. Med. Ther. 2019, 45, 215–221.
  154. Shakeri, A.; Hashempur, M.H.; Mojibian, M.; Aliasl, F.; Bioos, S.; Nejatbakhsh, F. A comparative study of ranitidine and quince (Cydonia oblonga mill) sauce on gastroesophageal reflux disease (GERD) in pregnancy: A randomised, open-label, active-controlled clinical trial. J. Obstet. Gynaecol. 2018, 38, 899–905.
  155. Zohalinezhad, M.E.; Imanieh, M.H.; Samani, S.M.; Mohagheghzadeh, A.; Dehghani, S.M.; Haghighat, M.; Akbarzadeh, A.R. Effects of Quince syrup on clinical symptoms of children with symptomatic gastroesophageal reflux disease: A double-blind randomized controlled clinical trial. Complement. Ther. Clin. Pract. 2015, 21, 268–276.
  156. Rahi, P.; Mirghafourvand, M.; Mohammad-Alizadeh-Charandabi, S.; Javadzadeh, Y.; Seidi, S. Comparison of the effect of mefenamic acid and quince on the level of menstrual bleeding and hemoglobin: A randomized controlled clinical trial. Eur. J. Integr. Med. 2016, 8, 67–72.
  157. Din Ganaie, M.U.; Behl, T.; Nijhawan, P.; Sachdeva, M.; Khan, N. Investigation of anti-depressant effect of aqueous and ethanolic extract of Cydonia oblonga in rats. Obes. Med. 2020, 18, e100202.
  158. Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2019.
  159. Mandal, A.; Hossain, U.; Sil, P.C. Chapter 5.2—Antioxidants and cardiovascular diseases. In Antioxidants Effects in Health; Nabavi, S.M., Sanches Silva, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 613–640.
  160. Zekrumah, M.; Begua, P.B.; Razak, A.S.; Wahab, J.; Moffo, N.; Ivane, A.; Oman, M.H.; Elrashied, H.T.; Zou, X.; Zhang, D. Dietary polyphenols—Role in non-communicable chronic disease prevention, and interactions in food systems. An overview. Nutrition 2023, 112, e112034.
  161. Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Mastellone, C.; Piscopo, V.; Monaco, P. Spectroscopic identification and antioxidant activity of glucosylated carotenoid metabolites from Cydonia vulgaris fruits. J. Agric. Food Chem. 2006, 54, 9592–9597.
  162. Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Mastellone, C.; Piccolella, S.; Monaco, P. Isolation, structure elucidation, and evaluation of cydonioside A, an unusual terpenoid from the fruits of Cydonia vulgaris. Chem. Biodivers. 2007, 4, 973–979.
  163. Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Mastellone, C.; Piscopo, V.; Caputo, R.; Monaco, P. Isolation and structure elucidation of antioxidant polyphenols from quince (Cydonia vulgaris) peels. J. Agric. Food Chem. 2008, 56, 2660–2667.
  164. Silva, B.M.; Valentao, P.; Seabra, R.M.; Andrade, P.P. Quince (Cydonia oblonga Miller): An interesting source of bioactive compounds. In Food Chemistry Research Development; Papadopoulos, K.N., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 243–266.
  165. Devkota, H.P.; Dirar, A.I.; Hassan, M.M.; Logesh, R. Chapter 10—Cydonia oblonga Mill. In Himalayan Fruits and Berries, Bioactive Compounds, Uses and Nutraceutical Potential; Belwal, T., Bhatt, I., Devkota, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 91–99.
  166. Oliveira, A.P.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Seabra, R.M.; Silva, B.M. Phenolic profile of Cydonia oblonga Miller leaves. J. Agric. Food Chem. 2007, 55, 7926–7930.
  167. Rasmussen, S.E.; Frederiksen, H.; Struntze Krogholm, K.; Poulsen, L. Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol. Nutr. Food Res. 2005, 49, 159–174.
  168. Itoh, S.; Yamaguchi, M.; Shigeyama, K.; Sakaguchi, I. The Anti-Aging Potential of Extracts from Chaenomeles sinensis. Cosmetics 2019, 6, 21.
  169. Wang, L.; Liu, H.-M.; Qin, G.-Y. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food Chem. 2017, 234, 314–322.
  170. Li, J.; Wang, S.P.; Wang, Y.Q.; Shi, L.; Zhang, Z.K.; Dong, F.; Li, H.R.; Zhang, J.Y.; Man, Y.Q. Comparative metabolism study on chlorogenic acid, cryptochlorogenic acid and neochlorogenic acid using UHPLC-Q-TOF MS coupled with network pharmacology. Chin. J. Nat. Med. 2021, 19, 212–224.
  171. Zhang, S.Y.; Han, L.Y.; Zhang, H.; Xin, H.L. Chaenomeles speciosa: A review of chemistry and pharmacology. Biomed. Rep. 2014, 2, 12–18.
  172. Fallon, C.M.; Quach, A.; Lajczak-McGinley, N.; O’Toole, A.; Barrett, K.E.; Sheridan, H.; Keely, S.J. Pentacyclic triterpenes modulate farnesoid X receptor expression in colonic epithelial cells: Implications for colonic secretory function. J. Biol. Chem. 2022, 298, 102569.
  173. Xie, X.; Zou, G.; Li, C. Antitumor and immunomodulatory activities of a water-soluble polysaccharide from Chaenomeles speciosa. Carbohydr. Polym. 2015, 132, 323–329.
  174. Haque, A.; Brazeau, D.; Amin, A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds. Eur. J. Cancer. 2021, 149, 165–183.
  175. Shao, J.; Fang, Y.; Zhao, R.; Chen, F.; Yang, M.; Jiang, J.; Chen, Z.; Yuan, X.; Jia, L. Evolution from small molecule to nano-drug delivery systems—An emerging approach for cancer therapy of ursolic acid. Asian J. Pharm. Sci. 2020, 15, 685–700.
  176. Tang, Z.Y.; Li, Y.; Tang, Y.T.; Ma, X.D.; Tang, Z.Y. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed. Pharmacother. 2022, 145, e112397.
  177. Ooi, K.X.; Poo, C.L.; Subramaniam, M.; Cordell, G.A.; Lim, Y.M. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. Phytomedicine 2023, 110, e154631.
  178. Villani, V.; Di Marco, G.; Iacovelli, F.; Pietrucci, D.; Canini, A.; Gismondi, A. Profile and potential bioactivity of the miRNome and metabolome expressed in Malva sylvestris L. leaf and flower. BMC Plant Biol. 2023, 23, 439.
  179. Gezici, S.; Sekeroglu, N. Regulation of MicroRNAs by Natural Products and Bioactive Compounds Obtained from Common Medicinal Plants: Novel Strategy in Cancer Therapy. Indian J. Pharm. Educ. Res. 2017, 51, s483–s488.
  180. Soyturk, A.; Sen, F.; Uncu, A.T.; Celik, I.; Uncu, A.O. De novo assembly and characterization of the first draft genome of quince (Cydonia oblonga Mill.). Sci. Rep. 2021, 11, 3818.
  181. Zhao, X.; Liu, M.; Li, D. Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis. Mol. Cell. Biochem. 2015, 400, 1–7.
  182. The Lancet (editorial) Hypertension: Uncontrolled and conquering the world. Lancet 2007, 370, 539.
  183. He, H.; Wei, Q.; Chang, J.; Yi, X.; Yu, X.; Luo, G.; Li, X.; Yang, W.; Long, Y. Exploring the hypoglycemic mechanism of chlorogenic acids from Pyrrosia petiolosa (Christ) Ching on type 2 diabetes mellitus based on network pharmacology and transcriptomics strategy. J. Ethnopharmacol. 2023, 322, 117580.
  184. Loza-Rodríguez, H.; Estrada-Soto, S.; Alarcón-Aguilar, F.J.; Huang, F.; Aquino-Jarquín, G.; Fortis-Barrera, Á.; Giacoman-Martínez, A.; Almanza-Pérez, J.C. Oleanolic acid induces a dual agonist action on PPARγ/α and GLUT4 translocation: A pentacyclic triterpene for dyslipidemia and type 2 diabetes. Eur. J. Pharmacol. 2020, 883, 173252.
  185. Sawai, R.; Kuroda, K.; Shibata, T.; Gomyou, R.; Osawa, K.; Shimizu, K. Anti-influenza virus activity of Chaenomeles sinensis. J. Ethnopharmacol. 2008, 118, 108–112.
  186. Sawai-Kuroda, R.; Kikuchi, S.; Shimizu, Y.K.; Sasaki, Y.; Kuroda, K.; Tanaka, T.; Yamamoto, T.; Sakurai, K.; Shimizu, K. A polyphenol-rich extract from Chaenomeles sinensis (Chinese quince) inhibits influenza A virus infection by preventing primary transcription in vitro. J. Ethnopharmacol. 2013, 146, 866–872.
  187. Karar, M.G.E.; Pletzer, D.; Jaiswal, R.; Weingart, H.; Kuhnert, N. Identification, characterization, isolation and activity against Escherichia coli of quince (Cydonia oblonga) fruit polyphenols. Food Res. Int. 2014, 65, 121–129.
  188. Armet, A.M.; Deehan, E.C.; O’Sullivan, A.F.; Mota, J.F.; Field, C.J.; Prado, C.M.; Lucey, A.J.; Walter, J. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe 2022, 30, 764–785.
  189. Hamauzu, Y.; Kishida, H.; Yamazaki, N. Gastroprotective property of Pseudocydonia sinensis fruit jelly on the ethanol-induced gastric lesions in rats. J. Funct. Foods 2018, 48, 275–282.
  190. Schloss, J.; Steel, A. Quince fruit compared to Vitamin B6 for treatment of nausea and vomiting in Pregnancy. Adv. Integr. Med. 2017, 4, 80–81.
More
Video Production Service