Clinical Biofluid Assays for Prostate Cancer: Comparison
Please note this is a comparison between Version 2 by Peter Tang and Version 1 by Gyorgy Petrovics.

Prostate cancer (PCa) is a heterogeneous disease, with a large percentage of prostate tumors being indolent, and with a relatively slow metastatic potential. However, due to the high case numbers, the absolute number of PCa-related deaths is still high. In fact, it causes the second highest number of cancer deaths in American men. As a first step for the diagnosis of PCa, the PSA test has been widely used. However, it has low specificity, which results in a high number of false positives leading to overdiagnosis and overtreatment. Newer derivatives of the original PSA test, including the Food and Drug Administration (FDA)-approved 4K (four kallikreins) and the PHI (Prostate Health Index) blood tests, have higher specificities. Tissue-based PCa tests are problematic as biopsies are invasive and have limited accuracy due to prostate tumor heterogeneity. Liquid biopsies offer a minimally or non-invasive choice for the patients, while providing a more representative reflection of the spatial heterogeneity in the prostate. In addition to the abovementioned blood-based tests, urine is a promising source of PCa biomarkers, offering a supplementary avenue for early detection and improved tumor classification. Four urine-based PCa tests are either FDA- or CLIA-approved: PCA3 (PROGENSA), ExoDX Prostate Intelliscore, MiPS, and SelectMDx.

  • prostate cancer
  • liquid biopsy
  • blood-based and urine-based biomarkers

1. Introduction

PCa is the second most prevalent cancer, with nearly 1.4 million new cases and 375,000 deaths globally, making it the fifth leading cause of cancer death among men in 2020 [1,2][1][2]. Specifically in the United States, PCa incidence for 2023 was predicted to be 288,300 new cases and 34,700 deaths [3]. When evaluated across 36 nations, countries in Africa reported the highest mortality associated with PCa [4]. It was noted that the incidence of this disease is markedly higher in African and African American populations, often manifesting in a more aggressive and lethal form. One hypothesis attributing to these racial disparities is the presence of genomic variations. Germline susceptibilities specific to various races have been shown through genome-wide association studies, suggesting differential genomic architecture amongst diverse racial groups [5,6,7][5][6][7]. For instance, African men display a genetic risk score approximately 2.18 times higher than European men, whereas East Asian men exhibit a risk 0.73 times lower than European men [8].
Remarkably, PCa differs from many other malignancies because a large fraction of prostate tumors is indolent with a relatively low metastatic potential. Consequently, many patients may remain asymptomatic and free from complications for prolonged periods of time. Even in cases with metastatic spread, effective management can extend the survival rate. However, if the cancer cannot be controlled, it will progress rapidly, leading to multiple adverse symptoms and death. Therefore, monitoring the status of developing PCa is essential for its treatment.
Early detection strategies for PCa have been prominently dependent on the PSA blood test for decades. Another commonly used screening method for PCa detection is digital rectal examination (DRE), usually performed after an elevated serum PSA level is detected. However, neither the PSA test nor DRE provide enough information to diagnose PCa or to assess its risk of becoming an aggressive cancer. Abnormal results of these tests, however, warrant diagnostic prostate biopsies for pathological examination and, if positive, cancer staging. Cancer-positive diagnostic biopsies are still the only accepted way to diagnose PCa.
A brief introduction of the more recent biofluid-based clinical tests will be reviewed here (Table 1 and Table 2). Two additional blood tests were introduced to clinical use that are better than PSA alone. The PHI test measures three PSA forms in patients with an initial serum PSA of 4–10 ng/mL (“gray zone”). It performs well in predicting the presence of PCa (AUC of 0.7) and similarly well for the presence of high-grade PCA (GS ≥ 7). The four-kallikrein (4K) score, measuring four kallikreins, combined with clinical information, is used to estimate the likelihood of high-grade PCa on biopsy (AUC of about 0.8).
Table 1.
Current FDA- or CLIA-approved biofluid-based biomarkers in prostate cancer.
Table 2.
Urine-based assays: advantages and limitations.

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249.
  2. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33.
  3. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48.
  4. Wong, M.C.S.; Goggins, W.B.; Wang, H.H.X.; Fung, F.D.H.; Leung, C.; Wong, S.Y.-S.; Ng, C.-F.; Sung, J.J.Y. Global Incidence and Mortality for Prostate Cancer: Analysis of Temporal Patterns and Trends in 36 Countries. Eur. Urol. 2016, 70, 862–874.
  5. Tan, D.S.; Mok, T.S.; Rebbeck, T.R. Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography. J. Clin. Oncol. 2016, 34, 91–101.
  6. Khani, F.; Mosquera, J.M.; Park, K.; Blattner, M.; O’Reilly, C.; MacDonald, T.Y.; Chen, Z.; Srivastava, A.; Tewari, A.K.; Barbieri, C.E.; et al. Evidence for Molecular Differences in Prostate Cancer between African American and Caucasian Men. Clin. Cancer Res. 2014, 20, 4925–4934.
  7. Petrovics, G.; Li, H.; Stümpel, T.; Tan, S.-H.; Young, D.; Katta, S.; Li, Q.; Ying, K.; Klocke, B.; Ravindranath, L.; et al. A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine 2015, 2, 1957–1964.
  8. Conti, D.V.; Darst, B.F.; Moss, L.C.; Saunders, E.J.; Sheng, X.; Chou, A.; Schumacher, F.R.; Al Olama, A.A.; Benlloch, S.; Dadaev, T.; et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat. Genet. 2021, 53, 65–75.
  9. Wang, M.C.; Papsidero, L.D.; Kuriyama, M.; Valenzuela, L.A.; Murphy, G.P.; Chu, T.M. Prostate antigen: A new potential marker for prostatic cancer. Prostate 1981, 2, 89–96.
  10. Wang, M.C.; Valenzuela, L.A.; Murphy, G.P.; Chu, T.M. Purification of a human prostate specific antigen. Investig. Urol. 1979, 17, 159–163.
  11. Kuriyama, M.; Wang, M.C.; Lee, C.I.; Papsidero, L.D.; Killian, C.S.; Inaji, H.; Slack, N.H.; Nishiura, T.; Murphy, G.P.; Chu, T.M. Use of human prostate-specific antigen in monitoring prostate cancer. Cancer Res. 1981, 41, 3874–3876.
  12. Catalona, W.J.; Bartsch, G.; Rittenhouse, H.G.; Evans, C.L.; Linton, H.J.; Amirkhan, A.; Horninger, W.; Klocker, H.; Mikolajczyk, S.D. Serum pro prostate specific antigen improves cancer detection compared to free and complexed prostate specific antigen in men with prostate specific antigen 2 to 4 Ng/Ml. J. Urol. 2003, 170 Pt 1, 2181–2185.
  13. Sokoll, L.J.; Wang, Y.; Feng, Z.; Kagan, J.; Partin, A.W.; Sanda, M.G.; Thompson, I.M.; Chan, D.W. proenzyme prostate specific antigen for prostate cancer detection: A national cancer institute early detection research network validation study. J. Urol. 2008, 180, 539–543.
  14. Loeb, S.; Sanda, M.G.; Broyles, D.L.; Shin, S.S.; Bangma, C.H.; Wei, J.T.; Partin, A.W.; Klee, G.G.; Slawin, K.M.; Marks, L.S.; et al. The prostate health index selectively identifies clinically significant prostate cancer. J. Urol. 2015, 193, 1163–1169.
  15. White, J.; Shenoy, B.V.; Tutrone, R.F.; Karsh, L.I.; Saltzstein, D.R.; Harmon, W.J.; Broyles, D.L.; Roddy, T.E.; Lofaro, L.R.; Paoli, C.J.; et al. Clinical utility of the Prostate Health Index (phi) for biopsy decision management in a large group urology practice setting. Prostate Cancer Prostatic Dis. 2017, 21, 78–84.
  16. Jansen, F.H.; van Schaik, R.H.; Kurstjens, J.; Horninger, W.; Klocker, H.; Bektic, J.; Wildhagen, M.F.; Roobol, M.J.; Bangma, C.H.; Bartsch, G. Prostate-Specific Antigen (PSA) Isoform p2PSA in Combination with Total PSA and Free PSA Improves Diagnostic Accuracy in Prostate Cancer Detection. Eur. Urol. 2010, 57, 921–927.
  17. Agnello, L.; Vidali, M.; Giglio, R.V.; Gambino, C.M.; Ciaccio, A.M.; Sasso, B.L.; Ciaccio, M. Prostate health index (PHI) as a reliable biomarker for prostate cancer: A systematic review and meta-analysis. Clin. Chem. Lab. Med. 2022, 60, 1261–1277.
  18. Merriel, S.W.D.; Pocock, L.; Gilbert, E.; Creavin, S.; Walter, F.M.; Spencer, A.; Hamilton, W. Systematic review and meta-analysis of the diagnostic accuracy of prostate-specific antigen (PSA) for the detection of prostate cancer in symptomatic patients. BMC Med. 2022, 20, 54.
  19. Ankerst, D.; Thompson, I.M. Sensitivity and specificity of prostate-specific antigen for prostate cancer detection with high rates of biopsy verification. Arch. Ital. Urol. Androl. 2006, 78, 125–129.
  20. Haese, A.; Graefen, M.; Steuber, T.; Becker, C.; Pettersson, K.; Piironen, T.; Noldus, J.; Huland, H.; Lilja, H. Human glandular kallikrein 2 levels in serum for discrimination of pathologically organ-confined from locally-advanced prostate cancer in total PSA-levels below 10 ng/ml. Prostate 2001, 49, 101–109.
  21. Steuber, T.; Vickers, A.J.; Serio, A.M.; Vaisanen, V.; Haese, A.; Pettersson, K.; Eastham, J.A.; Scardino, P.T.; Huland, H.; Lilja, H. Comparison of free and total forms of serum human kallikrein 2 and prostate-specific antigen for prediction of locally advanced and recurrent prostate cancer. Clin. Chem. 2007, 53, 233–240.
  22. Recker, F.; Kwiatkowski, M.K.; Piironen, T.; Pettersson, K.; Huber, A.; Lümmen, G.; Tscholl, R. Human glandular kallikrein as a tool to improve discrimination of poorly differentiated and non-organ-confined prostate cancer compared with prostate-specific antigen. Urology 2000, 55, 481–485.
  23. Parekh, D.J.; Punnen, S.; Sjoberg, D.D.; Asroff, S.W.; Bailen, J.L.; Cochran, J.S.; Concepcion, R.; David, R.D.; Deck, K.B.; Dumbadze, I.; et al. A multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer. Eur. Urol. 2015, 68, 464–470.
  24. Punnen, S.; Freedland, S.J.; Polascik, T.J.; Loeb, S.; Risk, M.C.; Savage, S.; Mathur, S.C.; Uchio, E.; Dong, Y.; Silberstein, J.L. A Multi-Institutional Prospective Trial Confirms Noninvasive Blood Test Maintains Predictive Value in African American Men. J. Urol. 2018, 199, 1459–1463.
  25. Stattin, P.; Vickers, A.J.; Sjoberg, D.D.; Johansson, R.; Granfors, T.; Johansson, M.; Pettersson, K.; Scardino, P.T.; Hallmans, G.; Lilja, H. Improving the Specificity of Screening for Lethal Prostate Cancer Using Prostate-specific Antigen and a Panel of Kallikrein Markers: A Nested Case–Control Study. Eur. Urol. 2015, 68, 207–213.
  26. Sjoberg, D.D.; Vickers, A.J.; Assel, M.; Dahlin, A.; Poon, B.Y.; Ulmert, D.; Lilja, H. Twenty-year Risk of Prostate Cancer Death by Midlife Prostate-specific Antigen and a Panel of Four Kallikrein Markers in a Large Population-based Cohort of Healthy Men. Eur. Urol. 2018, 73, 941–948.
  27. Donovan, M.J.; Noerholm, M.; Bentink, S.; Belzer, S.; Skog, J.; O’Neill, V.; Cochran, J.S.; Brown, G.A. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 2015, 18, 370–375.
  28. Brikun, I.; Nusskern, D.; Decatus, A.; Harvey, E.; Li, L.; Freije, D. A panel of DNA methylation markers for the detection of prostate cancer from FV and DRE urine DNA. Clin. Epigenet. 2018, 10, 91.
  29. Ye, L.-F.; He, S.; Wu, X.; Jiang, S.; Zhang, R.-C.; Yang, Z.-S.; Chen, F.-W.; Pan, D.-L.; Li, D.; Li, G. Detection of Prostate Cancer Antigen 3 and Prostate Cancer Susceptibility Candidate in Non-DRE Urine Improves Diagnosis of Prostate Cancer in Chinese Population. Prostate Cancer 2020, 2020, 3964615.
  30. Johnson, H.; Guo, J.; Zhang, X.; Zhang, H.; Simoulis, A.; Wu, A.H.B.; Xia, T.; Li, F.; Tan, W.; Johnson, A.; et al. Development and validation of a 25-Gene Panel urine test for prostate cancer diagnosis and potential treatment follow-up. BMC Med. 2020, 18, 376.
  31. Brikun, I.; Nusskern, D.; Gillen, D.; Lynn, A.; Murtagh, D.; Feczko, J.; Nelson, W.G.; Freije, D. A panel of DNA methylation markers reveals extensive methylation in histologically benign prostate biopsy cores from cancer patients. Biomark. Res. 2014, 2, 25.
  32. Moreira-Barbosa, C.; Barros-Silva, D.; Costa-Pinheiro, P.; Torres-Ferreira, J.; Constâncio, V.; Freitas, R.; Oliveira, J.; Antunes, L.; Henrique, R.; Jerónimo, C. Comparing diagnostic and prognostic performance of two-gene promoter methylation panels in tissue biopsies and urines of prostate cancer patients. Clin. Epigenet. 2018, 10, 132.
  33. Gao, T.; He, B.; Pan, Y.; Li, R.; Xu, Y.; Chen, L.; Nie, Z.; Gu, L.; Wang, S. The association of retinoic acid receptor beta2(RARβ2) methylation status and prostate cancer risk: A systematic review and meta-analysis. PLoS ONE 2013, 8, e62950.
  34. Zhao, F.; Olkhov-Mitsel, E.; van der Kwast, T.; Sykes, J.; Zdravic, D.; Venkateswaran, V.; Zlotta, A.R.; Loblaw, A.; Fleshner, N.E.; Klotz, L.; et al. Urinary DNA Methylation Biomarkers for Noninvasive Prediction of Aggressive Disease in Patients with Prostate Cancer on Active Surveillance. J. Urol. 2017, 197, 335–341.
  35. Zhao, F.; The Movember Urine Biomarker Consortium; Olkhov-Mitsel, E.; Kamdar, S.; Jeyapala, R.; Garcia, J.; Hurst, R.; Hanna, M.Y.; Mills, R.; Tuzova, A.V.; et al. A urine-based DNA methylation assay, ProCUrE, to identify clinically significant prostate cancer. Clin. Epigenet. 2018, 10, 147.
  36. Stuopelyte, K.; Daniunaite, K.; Bakavicius, A.; Lazutka, J.R.; Jankevicius, F.; Jarmalaite, S. The utility of urine-circulating miRNAs for detection of prostate cancer. Br. J. Cancer 2016, 115, 707–715.
  37. Foj, L.; Ferrer, F.; Serra, M.; Arévalo, A.; Gavagnach, M.; Giménez, N.; Filella, X. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate 2017, 77, 573–583.
  38. Fredsøe, J.; Rasmussen, A.K.I.; Mouritzen, P.; Borre, M.; Ørntoft, T.; Sørensen, K.D. A five-microRNA model (pCaP) for predicting prostate cancer aggressiveness using cell-free urine. Int. J. Cancer 2019, 145, 2558–2567.
  39. Fredsøe, J.; Rasmussen, A.K.; Thomsen, A.R.; Mouritzen, P.; Høyer, S.; Borre, M.; Ørntoft, T.F.; Sørensen, K.D. Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine. Eur. Urol. Focus 2018, 4, 825–833.
  40. Fredsøe, J.; I Rasmussen, A.K.; Laursen, E.B.; Cai, Y.; A Howard, K.; Pedersen, B.G.; Borre, M.; Mouritzen, P.; Ørntoft, T.; Sørensen, K.D. Independent Validation of a Diagnostic Noninvasive 3-MicroRNA Ratio Model (uCaP) for Prostate Cancer in Cell-Free Urine. Clin. Chem. 2019, 65, 540–548.
  41. Weng, J.; Wang, J.; Cai, Y.; Stafford, L.J.; Mitchell, D.; Ittmann, M.; Liu, M. Increased expression of prostate-specific G-protein-coupled receptor in human prostate intraepithelial neoplasia and prostate cancers. Int. J. Cancer 2005, 113, 811–818.
  42. Rigau, M.; Morote, J.; Mir, M.C.; Ballesteros, C.; Ortega, I.; Sanchez, A.; Colás, E.; Garcia, M.; Ruiz, A.; Abal, M.; et al. PSGR and PCA3 as biomarkers for the detection of prostate cancer in urine. Prostate 2010, 70, 1760–1767.
  43. Kohaar, I.; Chen, Y.; Banerjee, S.; Borbiev, T.; Kuo, H.-C.; Ali, A.; Ravindranath, L.; Kagan, J.; Srivastava, S.; Dobi, A.; et al. A Urine Exosome Gene Expression Panel Distinguishes between Indolent and Aggressive Prostate Cancers at Biopsy. J. Urol. 2021, 205, 420–425.
  44. Rigau, M.; Ortega, I.; Mir, M.C.; Ballesteros, C.; Garcia, M.; Llauradó, M.; Colás, E.; Pedrola, N.; Montes, M.; Sequeiros, T.; et al. A Three-Gene panel on urine increases PSA specificity in the detection of prostate cancer. Prostate 2011, 71, 1736–1745.
  45. Xu, L.L.; Stackhouse, B.G.; Florence, K.; Zhang, W.; Shanmugam, N.; Sesterhenn, I.A.; Zou, Z.; Srikantan, V.; Augustus, M.; Roschke, V.; et al. PSGR, a novel prostate-specific gene with homology to a G protein-coupled receptor, is overexpressed in prostate cancer. Cancer Res. 2000, 60, 6568–6572.
  46. Wang, J.; Weng, J.; Cai, Y.; Penland, R.; Liu, M.; Ittmann, M. The prostate-specific G-protein coupled receptors PSGR and PSGR2 are prostate cancer biomarkers that are complementary to α-methylacyl-CoA racemase. Prostate 2006, 66, 847–857.
  47. Xu, L.L.; Sun, C.; Petrovics, G.; Makarem, M.; Furusato, B.; Zhang, W.; Sesterhenn, I.A.; McLeod, D.G.; Sun, L.; Moul, J.W.; et al. Quantitative expression profile of PSGR in prostate cancer. Prostate Cancer Prostatic Dis. 2006, 9, 56–61.
  48. Srikantan, V.; Zou, Z.; Petrovics, G.; Xu, L.; Augustus, M.; Davis, L.; Livezey, J.R.; Connell, T.; Sesterhenn, I.A.; Yoshino, K.; et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc. Natl. Acad. Sci. USA 2000, 97, 12216–12221.
  49. Petrovics, G.; Zhang, W.; Makarem, M.; Street, J.P.; Connelly, R.; Sun, L.; Sesterhenn, I.A.; Srikantan, V.; Moul, J.W.; Srivastava, S. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004, 23, 605–611.
  50. Parolia, A.; Crea, F.; Xue, H.; Wang, Y.; Mo, F.; Ramnarine, V.R.; Liu, H.H.; Lin, D.; Saidy, N.R.N.; Clermont, P.-L.; et al. The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. Mol. Cancer 2015, 14, 46.
  51. Talesa, V.N.; Antognelli, C.; Del Buono, C.; Stracci, F.; Serva, M.R.; Cottini, E.; Mearini, E. Diagnostic potential in prostate cancer of a panel of urinary molecular tumor markers. Cancer Biomark. 2009, 5, 241–251.
More
Video Production Service