2. Epidemiology and Classification of Gliomas
Gliomas account for about 80% of all malignant brain tumors, with an incidence that increases with age and peaks in individuals older than 65 years. In the United States, the age-adjusted glioma incidence rate is 6.16 per 100,000 person-years in subjects aged 65 and older, compared with 0.50 per 100,000 person-years in subjects aged 20–44 years
[3,4][3][4]. Another relevant factor is the origin of the patients. In Europe, the highest incidence rates have been reported in Denmark and Finland, with age-standardized rates of 6.8 and 5.5 per 100,000 person-years, respectively
[5]. In the United States, the incidence of gliomas is higher among whites compared with other racial/ethnic groups
[6]. Genetic predispositions, such as specific markers associated with glioma susceptibility, contribute to these disparities
[7]. Environmental factors, including exposure to ionizing radiation, are implicated in the etiology of GBM
[8].
Differences in health infrastructure and diagnostic accessibility also influence reported incidence rates. Developed countries with advanced diagnostic capabilities can detect and report cases more accurately, potentially contributing to higher incidence rates. Conversely, underdiagnosis in some regions may lead to biased reporting
[9].
Lifestyle and diet-related factors may further contribute to the complex epidemiological landscape of GBM. Emerging research suggests potential links between certain dietary components and glioblastoma risk.
[10]
In essence, the global distribution of glioblastoma involves a complex interplay of genetic, environmental, and health factors. Unraveling these complexities is essential to advancing our knowledge of glioma epidemiology and ultimately improving prevention and treatment strategies on a global scale.
Gliomas can be classified into grades based on their histological features and molecular characteristics. Grade I gliomas are considered benign tumors, while grades II, III, and IV are malignant. The most common malignant gliomas, approximately 50% of all, are grade IV glioblastomas (GBMs), which are most frequently diagnosed in individuals older than 65 years. In the United States, the age-adjusted incidence rate of GBM is 3.21 per 100,000 person-years in subjects aged 65 and older, compared with 0.23 per 100,000 person-years in individuals aged 20–44 years
[3].
Recent advances in molecular profiling have led to a better understanding of the underlying genetic alterations that drive the development of gliomas and can be used to classify them into molecular subtypes, which are characterized by different clinical outcomes and responses to treatment.
Among the most important genetic variants, mutations in the isocitrate dehydrogenase (IDH) gene identify IDH-mutant gliomas that demonstrate a better prognosis than wildtype IDH gliomas
[11,12][11][12]. Other molecular alterations include mutations in the tumor-suppressor gene tumor protein 53 (TP53), the alpha-thalassemia/mental retardation x-linked (ATRX) syndrome, and the epidermal growth factor receptor (EGFR) pathway
[13]. However, even taking into account this valuable genetic profiling, establishing glioma prognosis is more complicated because it is associated with a complex network of factors that contribute to determining the likelihood of patient survival
[14].
2.1. Classification of Gliomas
In 2021, the World Health Organization (WHO) provided a new classification of tumors of the central nervous system, which is based on a more comprehensive understanding of the molecular and genetic characteristics of tumors and suggests the use of a combination of histology and molecular markers to predict patient outcomes and guide the choice of appropriate treatments (
Table 1).
Table 1.
Comparison of overall survival and progression-free survival of various types of gliomas.
[18].
Indeed, the molecular signature is strongly associated with the pathogenesis and prognosis of several tumors. Glioma pathogenesis is no exception, as it is closely dependent on genetic and epigenetic alterations, cellular signaling pathways, and the tumor microenvironment. The PI3K-Akt-mTOR pathway, which modulates cell growth, proliferation, survival, and metabolism, is one of the most important signaling pathways in glioma pathogenesis. As suggested by Wang et al., this pathway leads to increased activity in downstream effectors that promote glioma growth and progression through the amplification of growth factor receptors or the loss of negative regulators, promoting the processes of invasion and metastasis and resistance to chemotherapy and radiotherapy
[19]. Of note, according to Cancer Genome Atlas (TCGA) data, approximately 88% of diffuse gliomas, which include GBM and lower-grade gliomas (LGGs), have genetic alterations in at least one component of the PI3K-Akt-mTOR pathway
[15]. Specifically, mutations in the gene encoding the catalytic subunit of PI3K (PIK3CA) and the regulatory subunit of PI3K (PIK3R1) were found with a frequency of 17% and 18%, respectively. Less frequent are mutations in the downstream effector Akt (AKT1) and the gene encoding the component of the mTOR complex (MTOR), identified in 2% and 3% of diffuse gliomas, respectively. In addition, amplification of the gene encoding the epithelial growth factor receptor (EGFR), a potent activator of the PI3K-Akt-mTOR pathway, observed in approximately 50% of GBMs, further underscores the importance of this pathway in glioma pathogenesis
[20,21,22][20][21][22]. As a result, targeting this signaling pathway is now considered a promising therapeutic strategy for treating gliomas, with several drugs currently in clinical trials
[23,24][23][24].
Table 2 summarizes the most studied mutations in gliomas with their relative frequency and etiopathogenetic roles. The frequency of each genetic variant is represented by a wide range because of the different grades and histological types of gliomas considered.
Table 2.
Genes affecting GBM tumor growth with their related mutation frequencies.