Classifications and Treatments for Gliomas: Comparison
Please note this is a comparison between Version 2 by Sirius Huang and Version 1 by Matteo De Simone.

Gliomas pose a significant challenge to neurosurgical oncology because of their diverse histopathological features, genetic heterogeneity, and clinical manifestations. Despite significant advances in understanding the molecular pathways of glioma, translating this knowledge into effective long-term solutions remains a challenge. 

  • gliomas
  • LITT
  • brain tumors
  • FUS
  • classification
  • functional neurosurgery

1. Introduction

Gliomas, primary brain tumors that originate from glial cells, represent a significant challenge in the field of neuro-oncology. These intra-axial tumors exhibit high variability in their histopathological features, genetic profiles, and clinical manifestations, aspects that make it crucial to take an integrated, multidisciplinary approach to effectively combat their annihilating effect on patients [1].
Over the years, extensive research has shed light on the molecular basis of gliomas, offering promising possibilities for targeted therapies. In addition, advances in neurosurgical techniques have opened new horizons in the management of these tumors, providing more precise and personalized therapeutic options [1,2][1][2].
Despite these significant advances in understanding the complexity of glioma molecular pathways, the current standard of care, which includes maximal safe resection followed by radiotherapy and chemotherapy, often fails to provide patients with long-term survival and optimal quality of life. New therapeutic strategies are still needed to address the complexity of glioma biology and improve patient outcomes [2].

2. Epidemiology and Classification of Gliomas

Gliomas account for about 80% of all malignant brain tumors, with an incidence that increases with age and peaks in individuals older than 65 years. In the United States, the age-adjusted glioma incidence rate is 6.16 per 100,000 person-years in subjects aged 65 and older, compared with 0.50 per 100,000 person-years in subjects aged 20–44 years [3,4][3][4]. Another relevant factor is the origin of the patients. In Europe, the highest incidence rates have been reported in Denmark and Finland, with age-standardized rates of 6.8 and 5.5 per 100,000 person-years, respectively [5]. In the United States, the incidence of gliomas is higher among whites compared with other racial/ethnic groups [6]. Genetic predispositions, such as specific markers associated with glioma susceptibility, contribute to these disparities [7]. Environmental factors, including exposure to ionizing radiation, are implicated in the etiology of GBM [8]. Differences in health infrastructure and diagnostic accessibility also influence reported incidence rates. Developed countries with advanced diagnostic capabilities can detect and report cases more accurately, potentially contributing to higher incidence rates. Conversely, underdiagnosis in some regions may lead to biased reporting [9]. Lifestyle and diet-related factors may further contribute to the complex epidemiological landscape of GBM. Emerging research suggests potential links between certain dietary components and glioblastoma risk. [10] In essence, the global distribution of glioblastoma involves a complex interplay of genetic, environmental, and health factors. Unraveling these complexities is essential to advancing our knowledge of glioma epidemiology and ultimately improving prevention and treatment strategies on a global scale. Gliomas can be classified into grades based on their histological features and molecular characteristics. Grade I gliomas are considered benign tumors, while grades II, III, and IV are malignant. The most common malignant gliomas, approximately 50% of all, are grade IV glioblastomas (GBMs), which are most frequently diagnosed in individuals older than 65 years. In the United States, the age-adjusted incidence rate of GBM is 3.21 per 100,000 person-years in subjects aged 65 and older, compared with 0.23 per 100,000 person-years in individuals aged 20–44 years [3]. Recent advances in molecular profiling have led to a better understanding of the underlying genetic alterations that drive the development of gliomas and can be used to classify them into molecular subtypes, which are characterized by different clinical outcomes and responses to treatment. Among the most important genetic variants, mutations in the isocitrate dehydrogenase (IDH) gene identify IDH-mutant gliomas that demonstrate a better prognosis than wildtype IDH gliomas [11,12][11][12]. Other molecular alterations include mutations in the tumor-suppressor gene tumor protein 53 (TP53), the alpha-thalassemia/mental retardation x-linked (ATRX) syndrome, and the epidermal growth factor receptor (EGFR) pathway [13]. However, even taking into account this valuable genetic profiling, establishing glioma prognosis is more complicated because it is associated with a complex network of factors that contribute to determining the likelihood of patient survival [14].

2.1. Classification of Gliomas

In 2021, the World Health Organization (WHO) provided a new classification of tumors of the central nervous system, which is based on a more comprehensive understanding of the molecular and genetic characteristics of tumors and suggests the use of a combination of histology and molecular markers to predict patient outcomes and guide the choice of appropriate treatments (Table 1).
Table 1.
Comparison of overall survival and progression-free survival of various types of gliomas.
[18]. Indeed, the molecular signature is strongly associated with the pathogenesis and prognosis of several tumors. Glioma pathogenesis is no exception, as it is closely dependent on genetic and epigenetic alterations, cellular signaling pathways, and the tumor microenvironment. The PI3K-Akt-mTOR pathway, which modulates cell growth, proliferation, survival, and metabolism, is one of the most important signaling pathways in glioma pathogenesis. As suggested by Wang et al., this pathway leads to increased activity in downstream effectors that promote glioma growth and progression through the amplification of growth factor receptors or the loss of negative regulators, promoting the processes of invasion and metastasis and resistance to chemotherapy and radiotherapy [19]. Of note, according to Cancer Genome Atlas (TCGA) data, approximately 88% of diffuse gliomas, which include GBM and lower-grade gliomas (LGGs), have genetic alterations in at least one component of the PI3K-Akt-mTOR pathway [15]. Specifically, mutations in the gene encoding the catalytic subunit of PI3K (PIK3CA) and the regulatory subunit of PI3K (PIK3R1) were found with a frequency of 17% and 18%, respectively. Less frequent are mutations in the downstream effector Akt (AKT1) and the gene encoding the component of the mTOR complex (MTOR), identified in 2% and 3% of diffuse gliomas, respectively. In addition, amplification of the gene encoding the epithelial growth factor receptor (EGFR), a potent activator of the PI3K-Akt-mTOR pathway, observed in approximately 50% of GBMs, further underscores the importance of this pathway in glioma pathogenesis [20,21,22][20][21][22]. As a result, targeting this signaling pathway is now considered a promising therapeutic strategy for treating gliomas, with several drugs currently in clinical trials [23,24][23][24]. Table 2 summarizes the most studied mutations in gliomas with their relative frequency and etiopathogenetic roles. The frequency of each genetic variant is represented by a wide range because of the different grades and histological types of gliomas considered.
Table 2.
Genes affecting GBM tumor growth with their related mutation frequencies.

References

  1. Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S.M.; Nishikawa, R.; Rosenthal, M.; Wen, P.Y.; Stupp, R.; et al. Glioma. Nat. Rev. Dis. Prim. 2015, 1, 15017.
  2. Lee, J.H.; Wee, C.W. Treatment of Adult Gliomas: A Current Update. Brain Neurorehabilit 2022, 15, e24.
  3. Kim, M.; Ladomersky, E.; Mozny, A.; Kocherginsky, M.; O’shea, K.; Reinstein, Z.Z.; Zhai, L.; Bell, A.; Lauing, K.L.; Bollu, L.; et al. Glioblastoma as an age-related neurological disorder in adults. Neuro-Oncol. Adv. 2021, 3, vdab125.
  4. Kim, H.J.; Park, J.W.; Lee, J.H. Genetic Architectures and Cell-of-Origin in Glioblastoma. Front. Oncol. 2021, 10, 615400.
  5. Crocetti, E.; Trama, A.; Stiller, C.; Caldarella, A.; Soffietti, R.; Jaal, J.; Weber, D.C.; Ricardi, U.; Slowinski, J.; Brandes, A. Epidemiology of glial and non-glial brain tumours in Europe. Eur. J. Cancer 2012, 48, 1532–1542.
  6. Ostrom, Q.T.; Cote, D.J.; Ascha, M.; Kruchko, C.; Barnholtz-Sloan, J.S. Adult Glioma Incidence and Survival by Race or Ethnicity in the United States From 2000 to 2014. JAMA Oncol. 2018, 4, 1254–1262.
  7. Mo, Z.; Xin, J.; Chai, R.; Woo, P.Y.; Chan, D.T.; Wang, J. Epidemiological characteristics and genetic alterations in adult diffuse glioma in East Asian populations. Cancer Biol. Med. 2022, 19, 1440–1459.
  8. Braganza, M.Z.; Kitahara, C.M.; de González, A.B.; Inskip, P.D.; Johnson, K.J.; Rajaraman, P. Ionizing radiation and the risk of brain and central nervous system tumors: A systematic review. Neuro-Oncology 2012, 14, 1316–1324.
  9. Pramesh, C.S.; Badwe, R.A.; Bhoo-Pathy, N.; Booth, C.M.; Chinnaswamy, G.; Dare, A.J.; de Andrade, V.P.; Hunter, D.J.; Gopal, S.; Gospodarowicz, M.; et al. Priorities for cancer research in low- and middle-income countries: A global perspective. Nat. Med. 2022, 28, 649–657.
  10. Shu, L.; Yu, D.; Jin, F. Healthy dietary patterns, foods, and risk of glioma: A systematic review and meta-analysis of observational studies. Front. Nutr. 2023, 9, 1077452.
  11. Villani, V.; Casini, B.; Tanzilli, A.; Lecce, M.; Rasile, F.; Telera, S.; Pace, A.; Piludu, F.; Terrenato, I.; Rollo, F.; et al. The Glioma-IRE project—Molecular profiling in patients with glioma: Steps toward an individualized diagnostic and therapeutic approach. J. Transl. Med. 2023, 21, 215.
  12. Cairncross, J.G.; Wang, M.; Jenkins, R.B.; Shaw, E.G.; Giannini, C.; Brachman, D.G.; Buckner, J.C.; Fink, K.L.; Souhami, L.; Laperriere, N.J.; et al. Benefit From Procarbazine, Lomustine, and Vincristine in Oligodendroglial Tumors Is Associated With Mutation of IDH. J. Clin. Oncol. 2014, 32, 783–790.
  13. Manjunath, M.; Yan, J.; Youn, Y.; Drucker, K.L.; Kollmeyer, T.M.; McKinney, A.M.; Zazubovich, V.; Zhang, Y.; Costello, J.F.; Eckel-Passow, J.; et al. Functional analysis of low-grade glioma genetic variants predicts key target genes and transcription factors. Neuro-Oncology 2021, 23, 638–649.
  14. Lee, K.; Kim, S.-I.; Kim, E.E.; Shim, Y.-M.; Won, J.-K.; Park, C.-K.; Choi, S.H.; Yun, H.; Lee, H.; Park, S.-H. Genomic profiles of IDH-mutant gliomas: MYCN-amplified IDH-mutant astrocytoma had the worst prognosis. Sci. Rep. 2023, 13, 6761.
  15. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251.
  16. Liu, D.; Chen, J.; Hu, X.; Yang, K.; Liu, Y.; Hu, G.; Ge, H.; Zhang, W.; Liu, H. Imaging-Genomics in Glioblastoma: Combining Molecular and Imaging Signatures. Front. Oncol. 2021, 11, 699265.
  17. McMahon, D.J.; Gleeson, J.P.; O’reilly, S.; Bambury, R.M. Management of newly diagnosed glioblastoma multiforme: Current state of the art and emerging therapeutic approaches. Med. Oncol. 2022, 39, 129.
  18. Barthel, L.; Hadamitzky, M.; Dammann, P.; Schedlowski, M.; Sure, U.; Thakur, B.K.; Hetze, S. Glioma: Molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev. 2021, 41, 53–75.
  19. Mohamed, E.; Kumar, A.; Zhang, Y.; Wang, A.S.; Chen, K.; Lim, Y.; Shai, A.; Taylor, J.W.; Clarke, J.; Hilz, S.; et al. PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro-Oncology 2022, 24, 1471–1481.
  20. Hersh, A.M.; Gaitsch, H.; Alomari, S.; Lubelski, D.; Tyler, B.M. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers 2022, 14, 3743.
  21. Rudà, R.; Capper, D.; Waldman, A.D.; Pallud, J.; Minniti, G.; Kaley, T.J.; Bouffet, E.; Tabatabai, G.; Aronica, E.; Jakola, A.S.; et al. EANO—EURACAN—SNO Guidelines on circumscribed astrocytic gliomas, glioneuronal, and neuronal tumors. Neuro-Oncology 2022, 24, 2015–2034.
  22. Gilard, V.; Tebani, A.; Dabaj, I.; Laquerrière, A.; Fontanilles, M.; Derrey, S.; Marret, S.; Bekri, S. Diagnosis and Management of Glioblastoma: A Comprehensive Perspective. J. Pers. Med. 2021, 11, 258.
  23. Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 2016, 7, 33440–33450.
  24. Colardo, M.; Segatto, M.; Di Bartolomeo, S. Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. Int. J. Mol. Sci. 2021, 22, 4899.
  25. Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.-M.; Gallia, G.L.; et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 2008, 321, 1807–1812.
  26. Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Jill, P.; Alexe, G.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110.
  27. Ohgaki, H.; Kleihues, P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 2009, 100, 2235–2241.
  28. Mellinghoff, I.K.; Wang, M.Y.; Vivanco, I.; Haas-Kogan, D.A.; Zhu, S.; Dia, E.Q.; Lu, K.V.; Yoshimoto, K.; Huang, J.H.Y.; Chute, D.J.; et al. Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors. N. Engl. J. Med. 2005, 353, 2012–2024.
  29. Garcia-Fabiani, M.B.; Haase, S.; Comba, A.; Carney, S.; McClellan, B.; Banerjee, K.; Alghamri, M.S.; Syed, F.; Kadiyala, P.; Nunez, F.J.; et al. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front. Oncol. 2021, 11, 631037.
  30. Cohen, A.L.; Holmen, S.L.; Colman, H. IDH1 and IDH2 Mutations in Gliomas. Curr. Neurol. Neurosci. Rep. 2013, 13, 345.
  31. Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; De Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003.
  32. Wick, W.; Weller, M.; Van Den Bent, M.; Sanson, M.; Weiler, M.; Von Deimling, A.; Plass, C.; Hegi, M.; Platten, M.; Reifenberger, G. MGMT testing—The challenges for biomarker-based glioma treatment. Nat. Rev. Neurol. 2014, 10, 372–385.
  33. Weller, M.; Stupp, R.; Reifenberger, G.; Brandes, A.A.; Bent, M.J.V.D.; Wick, W.; Hegi, M.E. MGMT promoter methylation in malignant gliomas: Ready for personalized medicine? Nat. Rev. Neurol. 2009, 6, 39–51.
  34. Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257.
  35. Plate, K.H.; Risau, W. Angiogenesis in malignant gliomas. Glia 1995, 15, 339–347.
  36. Folkman, J.; Klagsbrun, M. Angiogenic factors. Science 1987, 235, 442–447.
  37. Lindberg, N.; Holland, E.C. PDGF in gliomas: More than just a growth factor? Upsala J. Med. Sci. 2012, 117, 92–98.
  38. Cantanhede, I.G.; de Oliveira, J.R.M. PDGF Family Expression in Glioblastoma Multiforme: Data Compilation from Ivy Glioblastoma Atlas Project Database. Sci. Rep. 2017, 7, 15271.
  39. Rollbrocker, B.; Waha, A.; Louis, D.N.; Wiestler, O.D.; von Deimling, A. Amplification of the cyclin-dependent kinase 4 ( CDK4 ) gene is associated with high cdk4 protein levels in glioblastoma multiforme. Acta Neuropathol. 1996, 92, 70–74.
  40. Higa, N.; Akahane, T.; Yokoyama, S.; Yonezawa, H.; Uchida, H.; Takajo, T.; Otsuji, R.; Hamada, T.; Matsuo, K.; Kirishima, M.; et al. Prognostic impact of PDGFRA gain/amplification and MGMT promoter methylation status in patients with IDH wild-type glioblastoma. Neuro-Oncol. Adv. 2022, 4, vdac097.
  41. Lei, C.; Chen, W.; Wang, Y.; Zhao, B.; Liu, P.; Kong, Z.; Liu, D.; Dai, C.; Wang, Y.; Wang, Y.; et al. Prognostic Prediction Model for Glioblastoma: A Metabolic Gene Signature and Independent External Validation. J. Cancer 2021, 12, 3796–3808.
  42. Beiko, J.; Suki, D.; Hess, K.R.; Fox, B.D.; Cheung, V.; Cabral, M.; Shonka, N.; Gilbert, M.R.; Sawaya, R.; Prabhu, S.S.; et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro-Oncology 2013, 16, 81–91.
  43. Richard, S.; Tachon, G.; Milin, S.; Wager, M.; Karayan-Tapon, L. Dual MGMT inactivation by promoter hypermethylation and loss of the long arm of chromosome 10 in glioblastoma. Cancer Med. 2020, 9, 6344–6353.
  44. Shinojima, N.; Tada, K.; Shiraishi, S.; Kamiryo, T.; Kochi, M.; Nakamura, H.; Makino, K.; Saya, H.; Hirano, H.; Kuratsu, J.-I.; et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res. 2003, 63, 6962–6970.
  45. Montano, N.; Cenci, T.; Martini, M.; D’alessandris, Q.G.; Pelacchi, F.; Ricci-Vitiani, L.; Maira, G.; De Maria, R.; Larocca, L.M.; Pallini, R. Expression of EGFRvIII in Glioblastoma: Prognostic Significance Revisited. Neoplasia 2011, 13, 1113–1121.
  46. Severini, L.L.; Bufalieri, F.; Infante, P.; Di Marcotullio, L. Proteolysis-Targeting Chimera (PROTAC): Is the Technology Looking at the Treatment of Brain Tumors? Front. Cell Dev. Biol. 2022, 10, 854352.
  47. Yang, T.; Hu, Y.; Miao, J.; Chen, J.; Liu, J.; Cheng, Y.; Gao, X. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharm. Sin. B 2022, 12, 2658–2671.
  48. Thon, N.; Tonn, J.-C.; Kreth, F.-W. The surgical perspective in precision treatment of diffuse gliomas. OncoTargets Ther. 2019, 12, 1497–1508.
  49. Kirkpatrick, D.B. The first primary brain-tumor operation. J. Neurosurg. 1984, 61, 809–813.
  50. Ellis, H. Harvey Cushing: A founding father of neurosurgery. Br. J. Hosp. Med. 2009, 70, 600.
  51. Ramaglia, A.; Tortora, D.; Mankad, K.; Lequin, M.; Severino, M.; D’arco, F.; Löbel, U.; Benenati, M.; de Leng, W.W.J.; De Marco, P.; et al. Role of diffusion weighted imaging for differentiating cerebral pilocytic astrocytoma and ganglioglioma BRAF V600E-mutant from wild type. Neuroradiology 2019, 62, 71–80.
  52. Ghatol, D.; Widrich, J. Intraoperative Neurophysiological Monitoring. In StatPearls ; StatPearls Publishing: Treasure Island, FL, USA, 2022.
  53. Maybody, M.; Stevenson, C.; Solomon, S.B. Overview of Navigation Systems in Image-Guided Interventions. Technol. Vasc. Interv. Radiol. 2013, 16, 136–143.
  54. Harris, L.W. Endoscopic techniques in neurosurgery. Microsurgery 1994, 15, 541–546.
  55. Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology 2020, 22 (Suppl. 2), iv1–iv96.
  56. Wen, P.Y.; Kesari, S. Malignant Gliomas in Adults. N. Engl. J. Med. 2008, 359, 492–507.
  57. McGirt, M.J.; Chaichana, K.L.; Attenello, F.J.; Weingart, J.D.; Than, K.; Burger, P.C.; Olivi, A.; Brem, H.; Quinoñes-Hinojosa, A. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 2008, 63, 700–708.
  58. Kuhnt, D.; Becker, A.; Ganslandt, O.; Bauer, M.; Buchfelder, M.; Nimsky, C. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro-Oncology 2011, 13, 1339–1348, Erratum in: Neuro-Oncology 2014, 16, 1429.
  59. Hervey-Jumper, S.L.; Berger, M.S. Role of Surgical Resection in Low- and High-Grade Gliomas. Curr. Treat. Opt. Neurol. 2014, 16, 284.
  60. Bonosi, L.; Marrone, S.; Benigno, U.E.; Buscemi, F.; Musso, S.; Porzio, M.; Silven, M.P.; Torregrossa, F.; Grasso, G. Maximal Safe Resection in Glioblastoma Surgery: A Systematic Review of Advanced Intraoperative Image-Guided Techniques. Brain Sci. 2023, 13, 216.
  61. Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001, 95, 190–198.
  62. Han, Q.; Liang, H.; Cheng, P.; Yang, H.; Zhao, P. Gross Total vs. Subtotal Resection on Survival Outcomes in Elderly Patients With High-Grade Glioma: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 151.
  63. Brown, T.J.; Brennan, M.C.; Li, M.; Church, E.W.; Brandmeir, N.J.; Rakszawski, K.L.; Patel, A.S.; Rizk, E.B.; Suki, D.; Sawaya, R.; et al. Association of the Extent of Resection With Survival in Glioblastoma: A systematic review and meta-analysis. JAMA Oncol. 2016, 2, 1460–1469.
  64. Sanai, N.; Eschbacher, J.; Hattendorf, G.; Coons, S.W.; Preul, M.C.; Smith, K.A.; Nakaji, P.; Spetzler, R.F. Intraoperative Confocal Microscopy for Brain Tumors: A Feasibility Analysis in Humans. Neurosurg. 2011, 68, ons282–ons290.
  65. Falco, J.; Cavallo, C.; Vetrano, I.G.; de Laurentis, C.; Siozos, L.; Schiariti, M.; Broggi, M.; Ferroli, P.; Acerbi, F. Fluorescein Application in Cranial and Spinal Tumors Enhancing at Preoperative MRI and Operated With a Dedicated Filter on the Surgical Microscope: Preliminary Results in 279 Patients Enrolled in the FLUOCERTUM Prospective Study. Front. Surg. 2019, 6, 49.
  66. Shalan, M.E.; Soliman, A.Y.; Nassar, I.A.; Alarabawy, R.A. Surgical planning in patients with brain glioma using diffusion tensor MR imaging and tractography. Egypt. J. Radiol. Nucl. Med. 2021, 52, 110.
  67. Lee, I.; Kalkanis, S.; Hadjipanayis, C.G. Stereotactic Laser Interstitial Thermal Therapy for Recurrent High-Grade Gliomas. Neurosurgery 2016, 79, S24–S34.
  68. Sanai, N.; Berger, M.S. Glioma extent of resection and its impact on patient outcome. Neurosurgery 2008, 62, 753–766.
  69. Weller, M.; van den Bent, M.; Hopkins, K.; Tonn, J.C.; Stupp, R.; Falini, A.; Cohen-Jonathan-Moyal, E.; Frappaz, D.; Henriksson, R.; Balana, C.; et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014, 15, e395–e403.
  70. Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996.
  71. Bent, M.v.D.; Keime-Guibert, F.; Brandes, A.; Taphoorn, M.; Kros, J.; Eskens, F.; Carpentier, A. Temozolomide chemotherapy in recurrent oligodendroglioma. Neurology 2001, 57, 340–342.
  72. Nagel, Z.D.; Kitange, G.J.; Gupta, S.K.; Joughin, B.A.; Chaim, I.A.; Mazzucato, P.; Lauffenburger, D.A.; Sarkaria, J.N.; Samson, L.D. DNA Repair Capacity in Multiple Pathways Predicts Chemoresistance in Glioblastoma Multiforme. Cancer Res. 2017, 77, 198–206.
  73. Roden, D.M.; McLeod, H.L.; Relling, M.V.; Williams, M.S.; Mensah, G.A.; Peterson, J.F.; Van Driest, S.L. Pharmacogenomics. Lancet 2019, 394, 521–532.
  74. Conti, V.; Corbi, G.; Manzo, V.; Sellitto, C.; Iannello, F.; Esposito, S.; De Bellis, E.; Iannaccone, T.; Filippelli, A. The Role of Pharmacogenetics in Antithrombotic Therapy Management: New Achievements and Barriers Yet to Overcome. Curr. Med. Chem. 2021, 28, 6675–6703.
  75. Melnick, K.; Shin, D.; Dastmalchi, F.; Kabeer, Z.; Rahman, M.; Tran, D.; Ghiaseddin, A. Role of Laser Interstitial Thermal Therapy in the Management of Primary and Metastatic Brain Tumors. Curr. Treat. Opt. Oncol. 2021, 22, 108.
  76. Wei, H.-J.; Upadhyayula, P.S.; Pouliopoulos, A.N.; Englander, Z.K.; Zhang, X.; Jan, C.-I.; Guo, J.; Mela, A.; Zhang, Z.; Wang, T.J.; et al. Focused Ultrasound-Mediated Blood-Brain Barrier Opening Increases Delivery and Efficacy of Etoposide for Glioblastoma Treatment. Endocrine 2020, 110, 539–550.
  77. Lim, M.; Xia, Y.; Bettegowda, C.; Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 2018, 15, 422–442.
More
ScholarVision Creations