European Wild Carnivores and Antibiotic Resistant Bacteria: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Andreia Garces.

Antibiotic resistance is a global concern that affects not only human health but also the health of wildlife and the environment. Wildlife can serve as reservoirs for antibiotic-resistant bacteria, and antibiotics in veterinary medicine and agriculture can contribute to the development of resistance in these populations.

  • mammals
  • wild
  • carnivores
  • bacteria
  • antibiotics
  • contamination
  • resistance

1. Introduction

Antimicrobial resistance (AMR) is considered one of the leading public health problems of the 21st century [1]. Although AMR has always existed, the overuse and misuse of antibiotics have increased antibiotic-resistant strains [2]. In recent decades, selective pressure has been generated by the use of antibiotics in medicine, veterinary, and agricultural practices, which has been responsible for a significant increase in antibiotic resistance [3].
“One Health” is a concept wherein human, animal, and environmental health are interconnected [4]. One of the greatest problems with “One Health” is antimicrobial resistance. This problem affects these three groups simultaneously. Humans and domestic and wild animals can be hosts and spreaders of AMR bacteria. Moreover, bacteria are continuously exchanged between the different environmental niches [5,6][5][6].
Although most wildlife prefer to live far from humans, some species have adapted and can live in contact with domestic animals or humans in urban environments. Therefore, they can be recognized as potential indicators of AMR dissemination [7]. Wild animals usually do not receive antibiotics or veterinary care, except in cases of interventions in endangered animals, admissions to wildlife rehabilitation centers, or treatments during disease outbreaks [8]. Studies have shown that AMR in most wildlife is associated with environmental exposure to anthropogenic AMR contamination [8]. Air, water, land, and food are some of the sources of AMR [9]. Bodies of water, such as rivers, lakes, or seas, can be contaminated with industrial discharges, agricultural discharges (fecal sludge from farms), domestic sewage, discharges from hospitals (human and veterinary), and wastewater treatment plants, among others [8,10,11][8][10][11]. Fertilizers used in agriculture can be a source of AMR [8]. In addition to environmental pressures, there are intrinsic mechanisms in bacteria that may contribute to the development of antimicrobial resistance, such as bacterial permeability, efflux pumps, target receptor modification, or horizontal gene transfer between bacteria via mobile genetic elements (e.g., plasmids, transposons, integrons) [3,12][3][12]. The presence of AMR in wildlife is also associated with other factors, such as habitat use, foraging behavior, and species’ habitats [3,8][3][8]. Habitat destruction, the loss of biodiversity, climate change, the accumulation of toxic pollutants, and the invasion of exotic species and pathogens have also contributed to the spread of AMR [13].
Contact between anthropogenic source areas and wild animals has increased due to human expansion. Some animals—for example, foxes and hedgehogs—have adapted and now live and thrive in urban areas [1,14][1][14]. Animals in these areas can feed on human domestic waste [15]. These contacts can potentially contribute to the emergence of new pathogens and AMR in wildlife, which can promote higher mortality rates. When animals survive, they can become bacterial reservoirs and spread throughout the environment again [13,16][13][16]. A study performed in Botswana showed that the prevalence of AMR Escherichia coli was highest in carnivores (62.5%) and animals using urban habitats (25.6%) when compared to herbivores (9.1%) and animals using protected/rural habitats (9.0%) [8].
Despite the abundance of literature on AMR in the medical and veterinary fields, available studies focus mainly on some bacterial species, such as Escherichia coli or Salmonella spp., and some species of wild animals, mainly birds and mammals [6,7,8][6][7][8]. Carnivores are a very diverse group of species in Europe, with some populations living in remote areas and others in urban areas in close contact with humans [10,15][10][15].

2. European Wild Carnivorous

Carnivora is an order of mammals that eats meat, by predation or necrophagy. They have specialized teeth for their meat-based diet, with fang-like canines, which they use to kill their prey and cut the meat into pieces [17,18][17][18]. Some animals in this order can also consume vegetation, insects (omnivores), and meat [17]. Carnivores can be found in diverse habitats, including cold polar regions, desert regions, forests, open seas, and urban areas [19]. The order Carnivora includes 16 families and 9 terrestrial families: Canidae, Felidae, Ursidae, Procyonidae, Mustelidae, Herpestidae, Viverridae, and Hyaenidae. In Europe, there are approximately 63 species of carnivorous mammals, both terrestrial and marine. Some of these species are threatened according to the IUCN Red List of Threatened Species, such as the Iberian lynx (endangered) or the Balkan lynx (critically endangered) [17]. These include larger predators, such as wolves, bears, and lynxes, and smaller carnivores like foxes, weasels, and mustelids. Historically, throughout the continent, these species have all experienced a dramatic decline in their populations and distributions due to anthropogenic factors (hunting, habitat destruction, pollution) [18,20,21][18][20][21]. Table 1 presents some information regarding the distribution, conservation status, and diet of some of the carnivorous species included in this research, to understand better the source of the acquisition of AMR strains of bacteria.
Table 1. Species, family, distribution, diet, habitat, behavior, and conservation status (LC—Least Concern, V—Vulnerable, NT—Near Threat) of wild carnivore species from Europe.

References

  1. Mo, S.S.; Urdahl, A.M.; Madslien, K.; Sunde, M.; Nesse, L.L.; Slettemeås, J.S.; Norström, M. What Does the Fox Say? Monitoring Antimicrobial Resistance in the Environment Using Wild Red Foxes as an Indicator. PLoS ONE 2018, 13, e0198019.
  2. Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Coelho, A.C.; Matos, M.; Rojo-Bezares, B.; Rodrigues, J.; Torres, C. Mechanisms of Antibiotic Resistance in Escherichia coli Isolates Recovered from Wild Animals. Microb. Drug Resist. 2008, 14, 71–77.
  3. Sousa, M.; Gonçalves, A.; Silva, N.; Serra, R.; Alcaide, E.; Zorrilla, I.; Torres, C.; Caniça, M.; Igrejas, G.; Poeta, P. Acquired Antibiotic Resistance among Wild Animals: The Case of Iberian Lynx (Lynx pardinus). Vet. Q. 2014, 34, 105–112.
  4. Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Tejedor-Junco, M.T. Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals 2021, 11, 1692.
  5. Baros Jorquera, C.; Moreno-Switt, A.I.; Sallaberry-Pincheira, N.; Munita, J.M.; Flores Navarro, C.; Tardone, R.; González-Rocha, G.; Singer, R.S.; Bueno, I. Antimicrobial Resistance in Wildlife and in the Built Environment in a Wildlife Rehabilitation Center. One Health 2021, 13, 100298.
  6. CDC. One Health. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health (accessed on 11 April 2023).
  7. Smoglica, C.; Di Francesco, C.E.; Angelucci, S.; Antonucci, A.; Innocenti, M.; Marsilio, F. Occurrence of the Tetracycline Resistance Gene tetA(P) in Apennine Wolves (Canis lupus italicus) from Different Human–Wildlife Interfaces. J. Glob. Antimicrob. Resist. 2020, 23, 184–185.
  8. Ramey, A.M.; Ahlstrom, C.A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 2019, 56, 1–15.
  9. Sens-Junior, H.; Trindade, W.A.; Oliveira, A.F.; Zaniolo, M.M.; Serenini, G.F.; Araujo-Ceranto, J.B.; Gonçalves, D.D.; Germano, R.M. Bacterial Resistance in Bats from the Phyllostomidae Family and Its Relationship with Unique Health. Pesq. Vet. Bras. 2018, 38, 1207–1216.
  10. Sherley, M.; Gordon, D.M.; Collignon, P.J. Variations in Antibiotic Resistance Profile in Enterobacteriaceae Isolated from Wild Australian Mammals. Env. Microbiol 2000, 2, 620–631.
  11. Gharout-Sait, A.; Touati, A.; Ahmim, M.; Brasme, L.; Guillard, T.; Agsous, A.; de Champs, C. Occurrence of Carbapenemase-Producing Klebsiella pneumoniae in Bat Guano. Microb. Drug Resist. 2019, 25, 1057–1062.
  12. Blanco, G.; Lemus, J.A.; Grande, J.; Gangoso, L.; Grande, J.M.; Donázar, J.A.; Arroyo, B.; Frías, O.; Hiraldo, F. Retracted Geographical Variation in Cloacal Microflora and Bacterial Antibiotic Resistance in a Threatened Avian Scavenger in Relation to Diet and Livestock Farming Practices. Environ. Microbiol. 2007, 9, 1738–1749.
  13. Oliveira, M.; Pedroso, N.; Sales-Luís, T.; Santos-Reis, M.; Tavares, L.; Vilela, C. Evidence of Antimicrobial Resistance in Eurasian Otter (Lutra lutra Linnaeus, 1758) Fecal Bacteria in Portugal. In Wildlife: Destruction, Conservation and Biodiversity; Nova Science Publishers: New York, NY, USA, 2009; pp. 201–221. ISBN 978-1-60692-974-2.
  14. Dwi Ash-Santri, A.; Cantya Prakasita, V.; Kristian Adi, Y.; Budipitojo, T.; Endang Tri Hastuti Wahyuni, A. Isolation, Identification, and Antimicrobial Susceptibility Test of Bacteria from Vulva Swab of African Pygmy Hedgehog (Atelerix albiventris) and Sunda Porcupine (Hystrix javanica). BIO Web Conf. 2021, 33, 06009.
  15. Baker, P.J.; Harris, S. Urban Mammals: What Does the Future Hold? An Analysis of the Factors Affecting Patterns of Use of Residential Gardens in Great Britain. Mammal Rev. 2007, 37, 297–315.
  16. Oliveira, M.; Pedroso, N.; Sales-Luís, T.; Santos-Reis, M.; Tavares, L.; Vilela, C. Antimicrobial-Resistant Salmonella Isolated from Eurasian Otters (Lutra Lutra Linnaeus, 1758) in Portugal. J. Wildl. Dis. 2010, 46, 1257–1261.
  17. Bellani, G.G. Chapter 1—Order of Carnivores (Carnivora). In Felines of the World; Bellani, G.G., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–12. ISBN 978-0-12-816503-4.
  18. Clark, T.W.; Curlee, A.P.; Reading, R.P. Crafting Effective Solutions to the Large Carnivore Conservation Problem. Conserv. Biol. 1996, 10, 940–948.
  19. Carnivore-Mammal Classification|Britannica. Available online: https://www.britannica.com/animal/carnivore-mammal (accessed on 31 October 2023).
  20. Farris, Z.J.; Golden, C.D.; Karpanty, S.; Murphy, A.; Stauffer, D.; Ratelolahy, F.; Andrianjakarivelo, V.; Holmes, C.M.; Kelly, M.J. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar. PLoS ONE 2015, 10, e0136456.
  21. Trouwborst, A. Managing the Carnivore Comeback: International and EU Species Protection Law and the Return of Lynx, Wolf and Bear to Western Europe. J. Environ. Law 2010, 22, 347–372.
  22. Martes foina. Britannica. Available online: https://naturdata.com/especie/ (accessed on 1 November 2023).
  23. Mustela putorius. Britannica. Available online: https://naturdata.com/especie/ (accessed on 1 November 2023).
  24. Dewey, T.; Ballenger, L. Ursus arctos (Brown Bear). Available online: https://animaldiversity.org/accounts/Ursus_arctos/ (accessed on 1 November 2023).
  25. Jirik, K. Polar Bear (Ursus maritimus). Available online: https://ielc.libguides.com/sdzg/factsheets/polarbear/summary (accessed on 1 November 2023).
  26. Letková, V.; Lazar, P.; Čurlík, J.; Goldová, M.; Košuthová, L.; Mojžišová, J. The Red Fox (Vulpes vulpes L.) as a Source of Zoonoses. Vet. Arh. 2006, 76, 73–81.
  27. Rafferty, R. Badger. Available online: https://www.britannica.com/animal/badger (accessed on 29 November 2023).
  28. Fusillo, R.; Romanucci, M.; Marcelli, M.; Massimini, M.; Della Salda, L. Health and Mortality Monitoring in Threatened Mammals: A First Post Mortem Study of Otters (Lutra lutra L.) in Italy. Animals 2022, 12, 609.
  29. Canis lupus subsp. italicus Altobello. 1921. Available online: https://www.gbif.org/species/165635864 (accessed on 2 November 2023).
  30. Canis lupus signatus. Britannica. Available online: https://naturdata.com/especie/ (accessed on 2 November 2023).
  31. Lynx pardinus. Britannica. Available online: https://naturdata.com/especie/ (accessed on 2 November 2023).
  32. Ivory, A. Canis aureus (Golden Jackal). Available online: https://animaldiversity.org/accounts/Canis_aureus/ (accessed on 2 November 2023).
  33. Foti, M.; Fisichella, V. Study of the Spread of the Antibiotic Resistance Phenomenon in a Wolf Population (Canis lupus, Linneaus 1758) in the Aspromonte National Park; Iris: San Francisco, CA, USA, 2017.
  34. Smoglica, C.; Angelucci, S.; Di Tana, F.; Antonucci, A.; Marsilio, F.; Di Francesco, C. Antibiotic Resistance in the Apennine Wolf (Canis lupus italicus): Implications for Wildlife and Human Health. Antibiotics 2023, 12, 950.
  35. Simões, R.; Ferreira, C.; Gonçalves, J.; Álvares, F.; Rio-Maior, H.; Roque, S.; Brandão, R.; Martins da Costa, P. Occurrence of Virulence Genes in Multidrug-Resistant Escherichia coli Isolates from Iberian Wolves (Canis lupus signatus) in Portugal. Eur. J. Wildl. Res. 2012, 58, 677–684.
  36. Gonçalves, A.; Igrejas, G.; Radhouani, H.; Santos, T.; Monteiro, R.; Pacheco, R.; Alcaide, E.; Zorrilla, I.; Serra, R.; Torres, C.; et al. Detection of Antibiotic Resistant Enterococci and Escherichia coli in Free Range Iberian Lynx (Lynx pardinus). Sci. Total Environ. 2013, 456–457, 115–119.
  37. Gonçalves, A.; Igrejas, G.; Radhouani, H.; López, M.; Guerra, A.; Petrucci-Fonseca, F.; Alcaide, E.; Zorrilla, I.; Serra, R.; Torres, C.; et al. Detection of Vancomycin-Resistant Enterococci from Faecal Samples of Iberian Wolf and Iberian Lynx, Including Enterococcus faecium Strains of CC17 and the New Singleton ST573. Sci. Total Environ. 2011, 410–411, 266–268.
  38. Di Francesco, A.; Salvatore, D.; Gobbi, M.; Morandi, B. Antimicrobial Resistance Genes in a Golden Jackal (Canis aureus L. 1758) from Central Italy. Vet. Res. Commun. 2023, 1–5.
  39. Radhouani, H.; Igrejas, G.; Gonçalves, A.; Pacheco, R.; Monteiro, R.; Sargo, R.; Brito, F.; Torres, C.; Poeta, P. Antimicrobial Resistance and Virulence Genes in Escherichia coli and Enterococci from Red Foxes (Vulpes vulpes). Anaerobe 2013, 23, 82–86.
  40. Radhouani, H.; Igrejas, G.; Carvalho, C.; Pinto, L.; Gonçalves, A.; Lopez, M.; Sargo, R.; Cardoso, L.; Martinho, A.; Rego, V.; et al. Clonal Lineages, Antibiotic Resistance and Virulence Factors in Vancomycin-Resistant Enterococci Isolated from Fecal Samples of Red Foxes (Vulpes vulpes). J. Wildl. Dis. 2011, 47, 769–773.
  41. O’Hagan, M.J.H.; Pascual-Linaza, A.V.; Couzens, C.; Holmes, C.; Bell, C.; Spence, N.; Huey, R.J.; Murphy, J.A.; Devaney, R.; Lahuerta-Marin, A. Estimation of the Prevalence of Antimicrobial Resistance in Badgers (Meles meles) and Foxes (Vulpes vulpes) in Northern Ireland. Front. Microbiol. 2021, 12, 596891.
  42. Dias, D.; Hipólito, D.; Figueiredo, A.; Fonseca, C.; Caetano, T.; Mendo, S. Unravelling the Diversity and Abundance of the Red Fox (Vulpes vulpes) Faecal Resistome and the Phenotypic Antibiotic Susceptibility of Indicator Bacteria. Animals 2022, 12, 2572.
  43. Bertelloni, F.; Cagnoli, G.; Biagini, F.; Poli, A.; Bibbiani, C.; Ebani, V.V. Virulence Genes of Pathogenic Escherichia coli in Wild Red Foxes (Vulpes vulpes). Animals 2022, 12, 1959.
  44. Botti, V.; Navillod, F.V.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and Antibiotic-Resistant Strains in Wild Mammals and Birds in North-Western Italy from 2002 to 2010. Vet. Ital. 2013, 94, 195–202.
  45. Monecke, S.; Gavier-Widen, D.; Mattsson, R.; Rangstrup-Christensen, L.; Lazaris, A.; Coleman, D.C.; Shore, A.C.; Ehricht, R. Detection of mecC-Positive Staphylococcus aureus (CC130-MRSA-XI) in Diseased European Hedgehogs (Erinaceus europaeus) in Sweden. PLoS ONE 2013, 8, e66166.
  46. Hamarova, L.; Kopcakova, A.; Kocianova-Adamcova, M.; Piknova, M.; Javorsky, P.; Pristas, P. Antimicrobial Resistance of Enterococci from Wild Animals in Slovakia. Pol. J. Environ. Stud. 2021, 30, 2085–2091.
  47. Carson, M.; Meredith, A.L.; Shaw, D.J.; Giotis, E.S.; Lloyd, D.H.; Loeffler, A. Foxes As a Potential Wildlife Reservoir for mecA-Positive Staphylococci. Vector-Borne Zoonotic Dis. 2012, 12, 583–587.
  48. Gambino, D.; Vicari, D.; Vitale, M.; Schirò, G.; Mira, F.; Giglia, M.L.; Riccardi, A.; Gentile, A.; Giardina, S.; Carrozzo, A.; et al. Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Microorganisms 2021, 9, 203.
  49. Rajabi, M. An Investigation Study on Antimicrobial Resistance in Arctic Environments. Bull. Pure Appl. Sci.-Bot. 2014, 33b, 37.
  50. Glad, T.; Bernhardsen, P.; Nielsen, K.M.; Brusetti, L.; Andersen, M.; Aars, J.; Sundset, M.A. Bacterial Diversity in Faeces from Polar Bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiol. 2010, 10, 10.
  51. Vadnov, M.; Barbič, D.; Žgur-Bertok, D.; Erjavec, M.S. Escherichia coli Isolated from Feces of Brown Bears (Ursus arctos) Have a Lower Prevalence of Human Extraintestinal Pathogenic E. coli Virulence-Associated Genes. Can. J. Vet. Res. 2017, 81, 59–63.
  52. Gonçalves, A.; Igrejas, G.; Radhouani, H.; Santos, T.; Monteiro, R.; Marinho, C.; Perez, M.J.; Canales, R.; Mendonza, J.L.; Serra, R.; et al. Iberian Lynx (Lynx pardinus) from the Captive Breeding Program as Reservoir of Antimicrobial Resistant Enterococci and Escherichia coli Isolates. J. Integr. OMICS 2013, 3, 138–144.
  53. Semedo-Lemsaddek, T.; Nóbrega, C.S.; Ribeiro, T.; Pedroso, N.M.; Sales-Luís, T.; Lemsaddek, A.; Tenreiro, R.; Tavares, L.; Vilela, C.L.; Oliveira, M. Virulence Traits and Antibiotic Resistance among Enterococci Isolated from Eurasian Otter (Lutra lutra). Vet. Microbiol. 2013, 163, 378–382.
  54. Semedo-Lemsaddek, T.; Pedroso, N.M.; Freire, D.; Nunes, T.; Tavares, L.; Verdade, L.M.; Oliveira, M. Otter Fecal Enterococci as General Indicators of Antimicrobial Resistance Dissemination in Aquatic Environments. Ecol. Indic. 2018, 85, 1113–1120.
  55. Oliveira, M.; Sales-Luís, T.; Semedo-Lemsaddek, T.; Ribeiro, T.; Pedroso, N.; Tavares, L.; Vilela, C. Chapter 6—Antimicrobial Resistant Aeromonas Isolated from Eurasian Otters (Lutra lutra Linnaeus, 1758) in Portugal. In Animal Diversity, Natural History and Conservation; Daya Publishing House: New Delhi, India, 2011; Volume 1, pp. 123–143.
  56. Mengistu, T.S.; Garcias, B.; Castellanos, G.; Seminati, C.; Molina-López, R.A.; Darwich, L. Occurrence of Multidrug Resistant Gram-Negative Bacteria and Resistance Genes in Semi-Aquatic Wildlife-Trachemys scripta, Neovison vison and Lutra lutra-as Sentinels of Environmental Health. Sci. Total Environ. 2022, 830, 154814.
  57. Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Stalder, G.; Hoffmann, D.; Rosengarten, D.; Walzer, C. Characterization of Methicillin-Resistant Staphylococcus spp. Carrying the mecC Gene, Isolated from Wildlife. J. Antimicrob. Chemother. 2013, 68, 2222–2225.
  58. Vingino, A.; Roberts, M.; Wainstein, M.; West, J.; Norman, S.; Lambourn, D.; Lahti, J.; Ruiz, R.; D’angeli, M.; Weissman, S.; et al. Antibiotics Surveillance for Antibiotic-Resistant E. coli in the Salish Sea Ecosystem. Antibiotics 2021, 10, 1201.
  59. Alonso, C.A.; Alcalá, L.; Simón, C.; Torres, C. Novel Sequence Types of Extended-Spectrum and Acquired AmpC Beta-Lactamase Producing Escherichia coli and Escherichia Clade V Isolated from Wild Mammals. FEMS Microbiol. Ecol. 2017, 93, fix097.
  60. Wilson, J.S.; Hazel, S.M.; Williams, N.J.; Phiri, A.; French, N.P.; Hart, C.A. Nontyphoidal salmonellae in United Kingdom badgers: Prevalence and spatial distribution. Appl. Environ. Microbiol. 2003, 69, 4312–4315.
  61. Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High Prevalence and Diversity of Extended-Spectrum β-Lactamase and Emergence of OXA-48 Producing Enterobacterales in Wildlife in Catalonia. PLoS ONE 2019, 14, e0210686.
  62. Osińska, M.; Nowakiewicz, A.; Zięba, P.; Gnat, S.; Łagowski, D.; Trościańczyk, A. Wildlife Carnivorous Mammals As a Specific Mirror of Environmental Contamination with Multidrug-Resistant Escherichia coli Strains in Poland. Microb. Drug Resist. 2020, 26, 1120–1131.
  63. García, L.A.; Torres, C.; López, A.R.; Rodríguez, C.O.; Espinosa, J.O.; Valencia, C.S. Staphylococcus spp. from Wild Mammals in Aragón (Spain): Antibiotic Resistance Status. J. Vet. Res. 2020, 64, 373–379.
  64. Steele, C.M.; Brown, R.N.; Botzler, R.G. Prevalences of Zoonotic Bacteria Among Seabirds in Rehabilitation Centers Along the Pacific Coast of California and Washington, USA. J. Wildl. Dis. 2005, 41, 735–744.
  65. Garcês, A. Why Do Antibiotics Fail? A Veterinary Perspective. J. Small Anim. Adv. 2022, 1, 10–15.
  66. Jacobsen, L.; Wilcks, A.; Hammer, K.; Huys, G.; Gevers, D.; Andersen, S.R. Horizontal Transfer of tet(M) and erm(B) Resistance Plasmids from Food Strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the Gastrointestinal Tract of Gnotobiotic Rats. FEMS Microbiol. Ecol. 2007, 59, 158–166.
  67. Bengtsson, B.; Persson, L.; Ekström, K.; Unnerstad, H.; Uhlhorn, H.; Börjesson, S. High Occurrence of mecC-MRSA in Wild Hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 2017, 207, 103–107.
  68. Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 1153.
  69. Bonnedahl, J.; Järhult, J.D. Antibiotic Resistance in Wild Birds. Upsala J. Med. Sci. 2014, 119, 113–116.
  70. Gorski, L.; Jay-Russell, M.T.; Liang, A.S.; Walker, S.; Bengson, Y.; Govoni, J.; Mandrell, R.E. Diversity of Pulsed-Field Gel Electrophoresis Pulsotypes, Serovars, and Antibiotic Resistance Among Salmonella Isolates from Wild Amphibians and Reptiles in the California Central Coast. Foodborne Pathog. Dis. 2013, 10, 540–548.
  71. Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795.
  72. Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87.
  73. Kruuk, H. Carnivores. In Encyclopedia of Biodiversity; Levin, S.A., Ed.; Elsevier: New York, NY, USA, 2001; pp. 629–640. ISBN 978-0-12-226865-6.
  74. Amusa, C.; Rothman, J.; Odongo, S.; Matovu, H.; Ssebugere, P.; Baranga, D.; Sillanpää, M. The endangered African Great Ape: Pesticide residues in soil and plants consumed by Mountain Gorillas (Gorilla beringei) in Bwindi Impenetrable National Park, East Africa. Sci. Total Environ. 2021, 758, 143692.
  75. Campbell, S.J.; Ashley, W.; Gil-Fernandez, M.; Newsome, T.M.; Di Giallonardo, F.; Ortiz-Baez, A.S.; Mahar, J.E.; Towerton, A.L.; Gillings, M.; Holmes, E.C.; et al. Red Fox Viromes in Urban and Rural Landscapes. Virus Evol. 2020, 6, veaa065.
  76. Vittecoq, M.; Laurens, C.; Brazier, L.; Durand, P.; Elguero, E.; Arnal, A.; Thomas, F.; Aberkane, S.; Renaud, N.; Prugnolle, F.; et al. VIM-1 Carbapenemase-Producing Escherichia coli in Gulls from Southern France. Ecol. Evol. 2017, 7, 1224–1232.
  77. Blanco, G.; Junza, A.; Segarra, D.; Barbosa, J.; Barrón, D. Wildlife Contamination with Fluoroquinolones from Livestock: Widespread Occurrence of Enrofloxacin and Marbofloxacin in Vultures. Chemosphere 2016, 144, 1536–1543.
  78. Smoglica, C.; Vergara, A.; Angelucci, S.; Festino, A.R.; Antonucci, A.; Marsilio, F.; Di Francesco, C.E. Antibiotic-Resistant Bacteria Dissemination in the Wildlife, Livestock, and Water of Maiella National Park, Italy. Animals 2023, 13, 432.
  79. Ulstad, C.R.; Solheim, M.; Berg, S.; Lindbæk, M.; Dahle, U.R.; Wester, A.L. Carriage of ESBL/AmpC-Producing or Ciprofloxacin Non-Susceptible Escherichia coli and Klebsiella spp. in Healthy People in Norway. Antimicrob. Resist. Infect. Control 2016, 5, 1–11.
  80. Grijjs, J. A Guide to SDG Interactions: From Science to Implementation; International Council for Science (ICSU): Paris, France, 2017.
  81. Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial Resistance in the Context of the Sustainable Development Goals: A Brief Review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 71–82.
  82. WHO Study Group. Antimicrobial Resistance and the United Nations Sustainable Development Cooperation Framework: Guidance for United Nations Country Teams. Available online: https://www.who.int/publications-detail-redirect/9789240036024 (accessed on 28 November 2023).
More
Video Production Service