Components of the Nanocomposite Photoanisotropic Materials: Comparison
Please note this is a comparison between Version 2 by Fanny Huang and Version 1 by Dimana Nazarova.

Recently,A a new approach has emerged that has been extensively studied by many research groups, namely doping azobenzene-containing materials with nanoparticles with various compositions, sizes, and morphologies. The resulting nanocomposites have shown significant enhancement in their photoanisotropic response, including increased photoinduced birefringence, leading to a higher diffraction efficiency and a larger surface relief modulation in the case of polarization holographic recordings. This review aims to cover the most important achievements in this new but fast-growing field of research and to present an extensive comparative analysis of the result, reported by many research groups during the last two decades. Different hypotheses to explain the mechanism of photoanisotropy enhancement in these nanocomposites are also discussed. Finally, we present our vision for the future development of this scientific field and outline its potential applications in advanced photonics technologies. 

  • nanocomposite materials
  • nanoparticles
  • photoanisotropic materials
  • azopolymers

1. Introduction

The demand for new materials to develop modern technologies is constantly growing. Although nanocomposite (NC) materials have been in use for a long time, they are constantly being improved to enable increasingly advanced applications. The new materials, obtained by combining two or more materials on nanoscale level, in most cases not only combine the qualities of their components, but also yield new, advantageous properties. In many cases, the nanoparticles (NPs) incorporated in nanocomposite materials modify and improve the optical, mechanical, and electrical properties of the matrix.
The optical properties of nanocomposite materials have been used since ancient times. Stained glass windows and ancient works of art exemplify their applications. A popular example of the intriguing optical features of nanocomposites is the Lycurgus cup from the 4th century AD [1]. In this case, the basis is the effect obtained from the excitation of the surface plasmon resonance due to the presence of gold and silver nanoparticles in the glass, which is expressed in a change in the color of the cup depending on whether it is viewed in transmission or reflection.
The combination of organic and inorganic materials in nanocomposites opens up a new and exciting area in applied optics. Inorganic components modify the optical properties of the organic components. In addition, the organic matrix may provide a flexible and ordered structure to the nanocomposite materials. For example, polymers can be hybridized with nanoparticles, modifying the refractive index, birefringence, and other characteristics of the composite material [2,3,4,5,6,7][2][3][4][5][6][7].
From the point of view of holographic applications, in recent years, special attention has been paid to nanocomposite materials composed of photopolymers and nanoparticles [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36]. The ability of these materials to modify their structure and surface through light-induced polymerization is used. Problems like the creation of practically non-shrinkable holographic recording media have been solved by using various types of nanoparticles. Many applications of these materials in holography have been outlined by Tomita et al. in their topical review on photopolymerizable nanocomposite photonic materials [12]. The modern trends in the development of light-sensitive media for holography applications are presented in a review article by Barachevsky [37]. Other type of hybrid organic/inorganic (or nanocomposite) materials include polymer-dispersed liquid crystal (PDLC) materials or liquid crystals doped with nanoparticles of photosensitive polymers, which have been intensively studied by many research groups [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53]
They most often represent an azopolymer matrix doped with metallic or non-metallic nanoparticles. In order to use a given material for polarization holographic recording, it must be photoanisotropic, or in other words, it must be able to register and record the polarization of light. The higher the value of the photoinduced birefringence, the greater the diffraction efficiency of the polarization diffraction gratings recorded in this material. Azobenzene-containing materials are often the preferred recording media for polarization holography due to their high values of photoinduced birefringence, allowing for the inscription of highly efficient polarization-selective holographic gratings. These gratings have specific polarization properties [54,55,56,57][54][55][56][57] that enable various applications in the fields of polarization-selective optical elements, high-capacity data storage, and many others [58,59,60,61,62][58][59][60][61][62]. A polarization diffraction grating is the key component in the design of a spectrophotopolarimeter, which can measure simultaneously in real time the spectra of all four Stokes parameters of light, as reported by Todorov and Nikolova [58,60][58][60]. Provenzano et al. reported the application of anisotropic gratings for circular dichroism measurements using a new configuration that is simpler than the conventional one [63]. Particularly important are the applications of polarization holographic gratings as polarization-selective diffractive optical elements (PSDOEs). Specially designed gratings can be used as circular polarization beam splitters [64] or to convert a circularly polarized incident beam into a linearly polarized beam [65]. They can act as bifocal, spherical, cylindrical, and tunable Fresnel lenses or microlens arrays [66,67[66][67][68][69],68,69], or they can be designed to generate asymmetric diffraction [70].
The implementation of high-density and high-capacity volumetric data storage is another important application of photoanisotropic materials. Polarization holography enables polarization multiplexing, as shown by Nikolova and Ramanujam [55,71][55][71]. Lin et al. designed and experimentally demonstrated a polarization multiplexing holographic memory with an increased storage capacity using a circular polarization recording configuration [72]. Similarly, polarization holographic gratings were applied for polarization multichannel multiplexing, vector beam storage, and fabrication of polarization multiplexing diffracting optical elements [73], self-interference incoherent digital holography [74[74][75],75], virtual reality displays [76[76][77],77], and also 4G optical elements with spatially modulated birefringence across the surface [78,79][78][79]. Yang et al. and Xia et al. applied the diffraction characteristics of anisotropic gratings to demonstrate logic operations using Boolean algebra for all-optical diffraction elements using an azo-dye doped polymer film [80,81][80][81].
In 1995, Rochon et al. [82] and Kim et al. [83] first reported a very important effect in azopolymers: the formation of surface relief during polarization holographic recordings. They found that in this case together with the polarization grating in the volume of the media, a surface relief grating (SRG) is formed in the azobenzene-containing polymer films. The surface relief grating is produced by an interference pattern of light and is due to a photoinduced mass transport of the azopolymer. Since SRG formation is an effective and simple nanofabrication process, it has provoked significant interest in many research areas [84,85,86,87,88,89,90][84][85][86][87][88][89][90]. Various applications based on its unique features have been reported so far in optics [12,28,70[12][28][70][91][92][93],91,92,93], sensors [24[24][88][94][95][96][97][98],88,94,95,96,97,98], mechanical applications [99[99][100][101][102][103],100,101,102,103], optically controlled alignment [104[104][105][106],105,106], etc.
The development of azobenzene-containing nanoparticles and the possibility for optical manipulation of their shape and size also opens several new fields of applications [107,108,109,110][107][108][109][110]. A very significant elongation of the azopolymer-containing drops has been observed when illuminated with linearly polarized light—up to six times their initial diameter [109]. It has also been demonstrated that their shape can be controlled by the direction of light polarization and the laser irradiation time. Potential applications in optical signal control as well as mechanical motion control of photosensitive soft materials at the microscale and nanoscale were also suggested [110].
All these applications require an efficient photoanisotropic media with high photoinduced birefringence. To date, photoinduced anisotropy has been observed in various photosensitive materials. Amongst them, the azobenzene-containing materials have been extensively used due to the high values of photoinduced birefringence and diffraction efficiency achieved in them when recording polarization diffraction gratings [111,112,113,114,115,116,117,118][111][112][113][114][115][116][117][118]. Under irradiation with polarized light within their absorbance band, the azobenzene groups undergo a series of trans-cis-trans photoisomerizations until they reorient perpendicularly to the polarization of the pump light. This anisotropic orientation of the azobenzene groups leads to birefringence, which furthermore can be spatially controlled with high resolution over the area of the optical element. A probe beam, with a wavelength outside of the absorption band of the used material, can non-destructively read this birefringence. Diverse applications have inspired the investigation of large number of azopolymers [117,118,119,120][117][118][119][120]. A commercially available azopolymer, commonly denoted as PAZO (poly[1-4-(3-carboxy-4-hydrophenylazo)benzensulfonamido]-1,2-ethanediyl, sodium salt]), is often the preferred material for polarization holography by many research groups due to the high values of photoinduced birefringence and large amplitude of the surface relief gratings inscribed in it [121,122,123,124,125,126,127,128,129,130,131,132][121][122][123][124][125][126][127][128][129][130][131][132]. In addition, its solubility in water and methanol allows for the easy preparation of nanocomposite materials using water suspensions of nanoparticles, for example gold or silver NPs.
Many approaches have been implemented in order to obtain polarization-sensitive materials with the highest possible photoinduced birefringence. Most often, new azopolymer architectures have been synthesized and tested with various substituents for the azochromophores, different spacer length between the main and the side chain of the azopolymer, etc. Alternatively, some methods are aimed at improving the performance of already existing azopolymers, for example, via thermally assisted recording [133], or by doping the azopolymer matrix with nanoparticles, which is the main subject of this review. We present an overview of the polarization-sensitive nanocomposite materials with an azobenzene-containing matrix doped with nanoparticles with different compositions, concentrations, shape and sizes. As will be shown, these photoanisotropic nanocomposite materials stand out with their improved optical properties, like higher birefringence, faster response, and better stability. We examine the key contributions of each work and explore the ideas that have been suggested to improve the different polarization-sensitive azopolymer materials.

2. Components of the Nanocomposite Photoanisotropic Materials

Two most important components of the nanocomposite photoanisotropic materials: (i) nanoparticle dopants with various chemical compositions, sizes, and morphologies, and (ii) photoanisotropic matrices based on azodyes or azopolymers. Due to their nanoscale dimensions, the nanoparticles are usually characterized using transmission electron microscopy (TEM) or scanning electron microscopy (SEM).
Furthermore, these techniques allow us to determine the size distribution of the NPs and also the way they are dispersed within the nanocomposite thin film samples. The azobenzene-containing NC components (azodyes or azopolymers) are presented with their chemical structures that give the essential information about the azochromophores, the substituents used, the length of the side-chain spacer, etc.

2.1. Nanoparticles

Nanoparticles with different compositions have attracted the attention of researchers as possible dopant components, such as quantum dots (QDs) [134[134][135][136],135,136], carbon nanotubes (CNTs), and carbon nanofibers (CNFs) [137[137][138],138], ZnO [128[128][139][140][141][142],139,140,141,142], SiO2 [143,144][143][144], TiO2 [145[145][146][147][148],146,147,148], semiconductor nanoparticles like tellurium containing chalcogenide system (GeTe4)100−xCux [149] and goethite (α-FeOOH) nanorods [129,150][129][150], nanozeolites [151], and upconverting nanoparticles (UCNPs) [152]. Gold (Au) and silver (Ag) NPs are the most commonly used metallic nanoparticles [132,146,153,154,155,156,157,158,159,160,161][132][146][153][154][155][156][157][158][159][160][161]. Studies have also been conducted with bioactive metals, such as copper and nickel (Cu, Ni) [162,163][162][163]. Nanocomposites with various sized nanoparticles have also been investigated. Very small nanoparticles with sizes in the range 2.5–10 nm have been used by some researchers. There are more studies with medium-sized NPs from 10 nm to 50 nm, whereas fewer studies focus on the larger NPs with sizes in the range 150–600 nm. Nanoparticles of different shapes have also been used. The most commonly used shape is spherical. There are also several studies of nanorods, as well as of nanoparticles with hexagonal, cubic, or rectangular shape. 

2.2. Commonly Used Azo-Containing Matrices for Nanocomposites

A very commonly used azopolymer, as researchers have already noted, is the commercially available azopolymer PAZO (poly[1-4-(3-carboxy-4-hydrophenylazo)benzensulfonamido]-1,2-ethanediyl, sodium salt]). PAZO was used as the base to obtain photoanisotropic NCs by many authors, like Berberova et al. [128[128][141][158],141,158], Nedelchev et al. [129,140,150][129][140][150], Falcione et al. [132], Fernandez et al. [146], Mateev et al. [147[147][162],162], Nazarova et al. [148[148][156],156], Stoilova et al. [149[149][163],163], and others.
Some other azopolymers have also been employed as components of NPM and are denoted by the authors as follows: P1—Nedelchev et al. [139], Nazarova et al. [166][164], P1–2—Nedelchev et al. [139], Nazarova et al. [166][164], P2—Nedelchev et al. [139], p4VP(DY7)1.0 Hautala et al. [161], PDR19—Kang et al. [145], PEPC-co-DO—Achimova et al. [135] and P1, P2, P3—Vijayakumar et al. [167][165].
In other studies, nanocomposites are composed from photoanisotropic azo dyes, nanoparticles and a non-photoanisotropic polymer matrix [142,168,169,170,171][142][166][167][168][169].

2.3. Main Optical Parameters of the Nanocomposite Photoanisotropic Materials

As was already mentioned in the Introduction, an essential parameter that characterizes the optical response of any photoanisotropic media, including the NPM, is the maximal value of the photoinduced birefringence, denoted as Δnmax. It is easily measured by a simple pump-probe optical scheme, which does not require coherent lasers or vibration isolation, and for this reason it is the most commonly used parameter to evaluate the enhancement of the nanocomposites’ performance in comparison with the non-doped azobenzene-containing material.
In case of polarization holographic recording, two more parameters are used to quantify the behavior of the nanocomposite photoanisotropic materials, namely the diffraction efficiency (DE) and height of the formed surface relief grating (hSRG).
These three main parameters are studied and compared throughout the present review to demonstrate the effect of adding different nanoparticles to the azodye/azopolymer matrix.

 3. Conclusions

Photoanisotropic nanocomposites based on an azodye or azopolymer matrix with added nanoparticles are an attractive and relatively easy to produce materials with improved optical characteristics. Due to the wide variety of simple synthesis techniques that can be used to obtain nanoparticles of different compositions, shapes and sizes, the optical properties of nanocomposites can be precisely tuned and adjusted for specific applications. Most of the results show an increase in one or all of the parameters: birefringence, diffraction efficiency, or surface relief height of the polarization holographic gratings recorded in the nanocomposites compared to the undoped material. Other optical parameters, such as absorption, response time, stability, etc., were also investigated. Nanocomposites with different compositions were studied, varying both the type of nanoparticles and the type of matrix. Both metallic and non-metallic particles have been studied, with gold and silver nanoparticles being the most commonly used metallic ones, and zinc oxide and quantum dots being the most frequently used non-metallic ones. The preferred photoanisotropic matrix amongst the azopolymers is the commercially available polymer PAZO, and amongst the azodyes, the most common are Methyl Orange and Disperse Red 1. The optimal concentrations of the nanoparticles were determined, as well as in some cases their optimal size. The influence of the shape of the nanoparticles on the optical properties of the nanocomposites was also investigated. Nanocomposite materials, unlike other optical materials, have a much wider range of applications due to their composite nature. One of their components, namely nanoparticles, can be implemented in different ways; for example, they can be dispersed in a liquid or applied as a thin film. This opens up the possibility of a wide range of potential applications. New opportunities are being discovered for the emergence of new products that exploit the unique optical advantages provided by nanocomposite materials.

References

  1. Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The Lycurgus cup—A Roman nanotechnology. Gold Bull. 2007, 40, 270–277.
  2. Banerjee, P.; Evans, D.; Lee, W.; Reshetnyak, V.; Tansu, N. Hybrid organic–inorganic materials for photonic applications. Opt. Mater. Express 2013, 3, 1149–1151.
  3. Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic-inorganic nano-materials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696–753.
  4. Faupel, F.; Zaporojtchenko, V.; Strunskus, T.; Elbahri, M. Metal-Polymer Nanocomposites for Functional Applications. Adv. Eng. Mater. 2010, 12, 1177–1190.
  5. Castagna, R.; Riminesi, C.; Di Donato, A.; Francescangeli, O.; Lucchetta, D. Top-Performance Transmission Gratings with Haloalkanes-Based Polymeric Composite Materials. Materials 2022, 15, 8638.
  6. Monfared, V.; Bakhsheshi-Rad, H.R.; Razzaghi, M.; Toghraie, D.; Hekmatifar, M.; Berto, F. A Review Study for Creep in Different Nanocomposites. Met. Mater. Int. 2023, 29, 2444–2457.
  7. Linnik, O.; Nadtoka, O. Polymer dye-containing nanocomposites as photocatalysts. Mol. Cryst. Liq. Cryst. 2017, 642, 106–114.
  8. Ni, M.; Peng, H.; Liao, Y.; Yang, Z.; Xue, Z.; Xie, X. 3D Image Storage in Photopolymer/ZnS Nanocomposites Tailored by “Photoinitibitor”. Macromolecules 2015, 48, 2958–2966.
  9. Suzuki, N.; Tomita, Y.; Kojima, T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Appl. Phys. Lett. 2002, 81, 4121–4123.
  10. Tomita, Y.; Nishibiraki, H. Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle dispersed methacrylate photopolymers doped with pyrromethene dyes. Appl. Phys. Lett. 2003, 83, 410–412.
  11. Suzuki, N.; Tomita, Y. Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films. Jpn. J. Appl. Phys. 2003, 42, 927–929.
  12. Tomita, Y.; Hata, E.; Momose, K.; Takayama, S.; Liu, X.; Chikama, K.; Klepp, J.; Pruner, C.; Fally, M. Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J. Mod. Opt. 2016, 63, S11–S41.
  13. Vaia, R.A.; Maguire, J.F. Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers. Chem. Mater. 2007, 19, 2736–2751.
  14. Van Gough, D.; Jhul, A.T.; Braun, P.V. Programming structure into 3D nanomaterials. Mater. Today 2009, 12, 28–35.
  15. Tomita, Y. Holographic Nanoparticle-Photopolymer Composites. In Encyclopedia of Nanoscience and Nanotechnology, 2nd ed.; Nalwa, H.S., Ed.; American Scientific Publishers: Valencia, CA, USA, 2011; Volume 15, pp. 191–205.
  16. Vaia, R.A.; Dennis, C.L.; Natarajan, L.V.; Tondiglia, V.P.; Tomlin, D.W.; Bunning, T.J. One-Step, Micrometer-Scale Organization of Nano- and Mesoparticles Using Holographic Photopolymerization: A Generic Technique. Adv. Mater. 2001, 13, 1570–1574.
  17. Del Monte, F.; Martinez, O.; Rodrigo, J.A.; Calvo, M.L.; Cheben, P. A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species. Adv. Mater. 2006, 18, 2014–2017.
  18. Martinez-Matos, O.; Calvo, M.L.; Rodrigo, J.A.; Cheben, P.; del Monte, F. Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species. Appl. Phys. Lett. 2007, 91, 141115.
  19. Suzuki, N.; Tomita, Y. Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%. Appl. Opt. 2004, 43, 2125–2129.
  20. Naydenova, I.; Sherif, H.; Mintova, S.; Martin, S.; Toal, V. Holographic recording in nanoparticle-doped photopolymer. Proc. SPIE 2006, 6252, 625206.
  21. Leite, E.; Naydenova, I.; Pandey, N.; Babeva, T.; Jajano, G.; Mintova, S.; Toal, V. Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer. J. Opt. A Pure Appl. Opt. 2009, 2, 024016.
  22. Ostrowski, A.M.; Naydenova, I.; Toal, V. Light-induced redistribution of Si-MFI zeolite nanoparticles in acrylamide-based photopolymer holographic gratings. J. Opt. A Pure Appl. Opt. 2009, 3, 034004.
  23. Moothanchery, M.; Naydenova, I.; Mintova, S.; Toal, V. Nanozeolites doped photopolymer layers with reduced shrinkage. Opt. Express 2011, 19, 25786–25791.
  24. Mihaylova, E.; Cody, D.; Naydenova, I.; Martin, S.; Toal, V. Research on Holographic Sensors and Novel Photopolymers at the Centre for Industrial and Engineering Optics. In Holography—Basic Principles and Contemporary Applications; Mihaylova, E., Ed.; InTech: London, UK, 2013; Chapter 4.
  25. Nadal, E.; Barros, N.; Glénat, H.; Laverdant, J.; Schmool, D.S.; Kachkachi, H. Plasmon-enhanced diffraction in nanoparticle gratings fabricated by in situ photo-reduction of gold chloride doped polymer thin films by laser interference patterning. J. Mater. Chem. C 2017, 5, 3553–3560.
  26. Babeva, T.; Todorov, R.; Mintova, S.; Yovcheva, T.; Naydenova, I.; Toal, V. Optical properties of silica-MFI doped acrylamide-based photopolymer. J. Opt. A Pure Appl. Opt. 2009, 11, 024015.
  27. Leite, E.; Babeva, T.; Ng, E.-P.; Toal, V.; Mintova, S.; Naydenova, I. Optical Properties of Photopolymer Layers Doped with Aluminophosphate Nanocrystals. J. Phys. Chem. C 2010, 114, 16767–16775.
  28. Naydenova, I.; Kotakonda, P.; Jallapuram, R.; Babeva, T.; Mintova, S.; Bade, D.; Martin, S.; Toal, V. Recent and Emerging Applications of Holographic Photopolymers and Nanocomposites. AIP Conf. Proc. 2010, 1288, 30–34.
  29. Naydenova, I.; Leite, E.; Babeva, T.; Pandey, N.; Baron, T.; Yovcheva, T.; Sainov, S.; Martin, S.; Mintova, S.; Toal, V. Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves. J. Opt. 2011, 13, 044019.
  30. Cody, D.; Mihaylova, E.; O’Neill, L.; Babeva, T.; Awala, H.; Retoux, R.; Mintova, S.; Naydenova, I. Effect of zeolite nanoparticles on the optical properties of diacetone acrylamide-based photopolymer. Opt. Mater. 2014, 37, 181–187.
  31. Sakhno, O.V.; Goldenberg, L.M.; Stumpe, J.; Smirnova, T.N. Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms. Nanotechnology 2007, 18, 105704.
  32. Irfan, M.; Martin, S.; Obeidi, M.A.; Miller, S.; Kuster, F.; Brabazon, D.; Naydenova, I. A Magnetic Nanoparticle-Doped Photopolymer for Holographic Recording. Polymers 2022, 14, 1858.
  33. Goldenberg, L.M.; Sakhno, O.V.; Smirnova, T.N.; Helliwell, P.; Chechik, V.; Stumpe, J. Holographic Composites with Gold Nanoparticles: Nanoparticles Promote Polymer Segregation. Chem. Mater. 2008, 20, 4619–4627.
  34. Burunkova, J.; Csarnovics, I.; Denisyuk, I.; Daróczi, L.; Kökényesi, S. Enhancement of laser recording in gold/amorphous chalcogenide and gold/acrylate nanocomposite layers. J. Non Cryst. Solids 2014, 402, 200–203.
  35. Burunkova, J.A.; Alkhalil, D.; Svjazhina, D.S.; Bonyár, A.; Csarnovics, I.; Kokenyesi, S. Influence of gold nanoparticles in polymer nanocomposite on space-temporal-irradiation dependent diffraction grating recording. Polymer 2021, 214, 123240.
  36. Burunkova, J.; Alkhalil, G.; Tcypkin, A.; Putilin, S.; Ismagilov, A.; Molnar, S.; Daroczi, L.; Kokenyesi, S. Laser Light Durability and Nonlinear Optical Properties of Acrylate Polymer—Chalcogenide Glass—Gold Nanocomposites. Phys. Status Solidi A 2022, 219, 2100658.
  37. Barachevsky, V.A. The Current Status of the Development of Light-Sensitive Media for Holography (a Review). Opt. Spectrosc. 2018, 124, 373–407.
  38. Kredentser, S.; Eremin, A.; Davidson, P.; Reshetnyak, V.; Stannarius, R.; Reznikov, Y. Dynamic and permanent gratings in suspensions of absorbing nanocrystals in an organic solvent. Photonics Lett. Pol. 2015, 7, 91–93.
  39. Lavrič, M.; Cordoyiannis, G.; Kralj, S.; Tzitzios, V.; Nounesis, G.; Kutnjak, Z. Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. Appl. Opt. 2013, 52, E47–E52.
  40. Yaroshchuk, O.; Tomylko, S.; Gvozdovskyy, I.; Yamaguchi, R. Cholesteric liquid crystal–carbon nanotube composites with photo-settable reversible and memory electro-optic modes. Appl. Opt. 2013, 52, E53–E59.
  41. Nabil, G.; Ho, W.F.; Chan, H.P. Experimental study on the performance of a variable optical attenuator using polymer dispersed liquid crystal. Appl. Opt. 2013, 52, E15–E21.
  42. Minasyan, A.; Galstian, T. Surface-polymer stabilized liquid crystals with dual-frequency control. Appl. Opt. 2013, 52, E60–E67.
  43. Cook, G.; Glushchenko, A.V.; Reshetnyak, V.; Beckel, E.R.; Saleh, M.; Evans, D.R. Liquid crystal inorganic hybrid photorefractives. In Proceedings of the 2008 IEEE/LEOS Winter Topical Meeting Series, Sorrento, Italy, 14–16 January 2008; pp. 129–130.
  44. Lysenko, D.; Ouskova, E.; Ksondzyk, S.; Reshetnyak, V.; Cseh, L.; Mehl, G.H.; Reznikov, Y. Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal. Eur. Phys. J. E 2012, 35, 33.
  45. Qi, H.; Hegmann, T. Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles. J. Mater. Chem. 2006, 16, 4197–4205.
  46. Park, E.-G.; Oh, C.-W.; Park, H.-G. Improvement of the electro-optical properties of nematic liquid crystals doped with strontium titanate nanoparticles at various doping concentrations. Liq. Cryst. 2020, 47, 136–142.
  47. Ha, Y.-S.; Kim, H.-J.; Park, H.-G.; Seo, D.-S. Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping. Opt. Express 2012, 20, 6448–6455.
  48. Tripathi, P.K.; Singh, D.P.; Yadav, T.; Singh, V.; Srivastava, A.K.; Negi, Y.S. Enhancement of birefringence for liquid crystal with the doping of ferric oxide nanoparticles. Opt. Mater. 2023, 135, 113298.
  49. Liu, R.C.; Marinova, V.; Huei, L.S.; Yuh, H.K. Near-infrared sensitive photorefractive device using polymer dispersed liquid crystal and BSO: Ru hybrid structure. Opt. Lett. 2014, 39, 3320–3323.
  50. Marinova, V.; Tong, Z.F.; Petrov, S.; Karashanova, D.; Lin, Y.H.; Lin, S.H.; Hsu, K.Y. Graphene oxide doped PDLC films for all optically controlled light valve structures. Proc. SPIE 2016, 9970, 997009.
  51. Marinova, V.; Liu, R.C.; Lin, S.H.; Chen, M.S.; Lin, Y.H.; Hsu, K.Y. Near infrared sensitive organic–inorganic photorefractive device. Opt. Rev. 2016, 23, 811–816.
  52. Marinova, V.; Lin, S.H.; Hsu, K.Y. Electro-optically and all optically addressed spatial light modulator devices based on organic-inorganic hybrid structures. Proc. SPIE 2016, 10022, 100220V.
  53. Rusen, E.; Diacon, A.; Mitran, R.-A.; Dinescu, A.; Nistor, C.; Șomoghi, R.; Boscornea, A.C.; Mănăilă-Maximean, D. E7 nematic liquid crystal encapsulated in a polymeric photonic crystal. Eur. Polym. J. 2022, 175, 111374.
  54. Emoto, A.; Uchida, E.; Fukuda, T. Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers. Polymers 2012, 4, 150–186.
  55. Nikolova, L.; Ramanujam, P.S. Polarization Holography; Cambridge University Press: Cambridge, UK, 2009.
  56. Kuroda, K.; Matsuhashi, Y.; Fujimura, R.; Shimura, T. Theory of polarization holography. Opt. Rev. 2011, 18, 374–382.
  57. Hong, Y.F.; Kang, G.G.; Zang, J.L.; Fan, F.L.; Liu, Y.; Tan, X.D.; Shimura, T.; Kuroda, K. Investigation of faithful reconstruction in nonparaxial approximation polarization holography. Appl. Opt. 2017, 56, 10024–10029.
  58. Todorov, T.; Nikolova, L. Spectrophotopolarimeter: Fast simultaneous real-time measurement of light parameters. Opt. Lett. 1992, 17, 358–369.
  59. Provenzano, C.; Cipparrone, G.; Mazzulla, A. Photopolarimeter based on two gratings recorded in thin organic films. Appl. Opt. 2006, 45, 3929–3934.
  60. Todorov, T.; Nikolova, L.; Stoilov, G.; Hristov, B. Spectral Stokesmeter 1 Implementation of the device. Appl. Opt. 2007, 46, 6662–6668.
  61. Sasaki, T.; Hatayama, A.; Emoto, A.; Ono, H.; Kawatsuki, N. Simple detection of light polarization by using crossed polarization gratings. J. Appl. Phys. 2006, 100, 063502.
  62. Fernández, E.A.; Bruce, N.C.; Rodríguez-Herrera, O.G.; Espinosa-Luna, R. Calibration and data extraction in a Stokes polarimeter employing three wavelengths simultaneously. Appl. Opt. 2021, 60, 5153–5160.
  63. Provenzano, C.; Pagliusi, P.; Mazzulla, A.; Cipparrone, G. Method for artifact-free circular dichroism measurements based on polarization grating. Opt. Lett. 2010, 35, 1822–1824.
  64. Nedelchev, L.; Todorov, T.; Nikolova, L.; Petrova, T.; Tomova, N.; Dragostinova, V. Characteristics of high-efficient polarization holographic gratings. Proc. SPIE 2001, 4397, 338–342.
  65. Ono, H.; Nakamura, M.; Kawatsuki, N. Conversion of circularly polarized light into linearly polarized light in anisotropic phase gratings using photo-cross-linkable polymer liquid crystals. Appl. Phys. Lett. 2007, 90, 231107.
  66. Martinez-Ponce, G.; Petrova, T.; Tomova, N.; Dragostinova, V.; Todorov, T.; Nikolova, L. Bifocal polarization holographic lens. Opt. Lett. 2004, 29, 1001–1003.
  67. Jashnsaz, H.; Nataj, N.H.; Mohajerani, E.; Khabbazi, A. All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals. Appl. Opt. 2011, 50, 4295–4301.
  68. Yeh, H.C.; Kuo, Y.C.; Lin, S.H.; Lin, J.D.; Mo, T.S.; Huang, S.Y. Optically controllable and focus-tunable Fresnel lens in azo-dyedoped liquid crystals using a Sagnac interferometer. Opt. Lett. 2011, 36, 1311–1313.
  69. Ruiz, U.; Pagliusi, P.; Provenzano, C.; Lepera, E.; Cipparrone, G. Liquid crystal microlens arrays recorded by polarization holography. Appl. Opt. 2015, 54, 3303–3307.
  70. Emoto, A.; Fukuda, T.; Barada, D. Asymmetric polarization conversion in polarization holograms with surface relief. Jpn. J. Appl. Phys. 2008, 47, 3568–3571.
  71. Matharu, A.S.; Jeeva, S.; Ramanujam, P.S. Liquid crystals for holographic optical data storage. Chem. Soc. Rev. 2007, 36, 1868–1880.
  72. Lin, S.H.; Cho, S.L.; Chou, S.F.; Lin, J.H.; Lin, C.M.; Chi, S.; Hsu, K.Y. Volume polarization holographic recording in thick photopolymer for optical memory. Opt. Express 2014, 22, 14944–14957.
  73. Wang, J.; Pang, H.; Cao, A.; Zhang, M.; Kan, R.; Hu, S.; Shi, L.; Deng, Q. The Polarization Multiplexing Image with a Single Diffractive Optical Element. IEEE Photonics J. 2017, 9, 7000208.
  74. Choi, K.; Hong, K.; Park, J.; Min, S.-W. Michelson-interferometric-configuration-based incoherent digital holography with a geometric phase shifter. Appl. Opt. 2020, 59, 1948–1953.
  75. Kim, Y.; Hong, K.; Yeom, H.; Choi, K.; Park, J.; Min, S.-W. Wide-viewing holographic stereogram based on self-interference incoherent digital holography. Opt. Express 2022, 30, 12760–12774.
  76. Li, L.; Shi, S.; Kim, J.; Escuti, M.J. Color-selective geometric-phase lenses for focusing and imaging based on liquid crystal polymer films. Opt. Express 2022, 30, 2487–2502.
  77. Xia, R.; Wang, C.; Pan, Y.; Chen, T.; Lyu, Z.; Sun, L. Design of an augmented reality display based on polarization grating. Chin. Phys. B 2019, 28, 074201.
  78. De Sio, L.; Roberts, D.E.; Liao, Z.; Nersisyan, S.; Uskova, O.; Wickboldt, L.; Tabiryan, N.; Steeves, D.M.; Kimball, B.R. Digital polarization holography advancing geometrical phase optics. Opt. Express 2016, 24, 18297–18306.
  79. Yin, K.; Zhan, T.; Xiong, J.; He, Z.; Wu, S.T. Polarization Volume Gratings for Near-Eye Displays and Novel Photonic Devices. Crystals 2020, 10, 561.
  80. Yang, X.; Zhang, C.; Qi, S.; Chen, K.; Tian, J.; Zhang, G. All-optical Boolean logic gate using azo-dye doped polymer film. Optik 2005, 116, 251–254.
  81. Xia, R.; Wang, C.; Chen, T.; Pan, Y.; Lü, Z.; Sun, L. Design of an all-optical logic sequence generator based on polarization holographic gratings. Chin. Opt. Lett. 2019, 17, 082302.
  82. Rochon, P.; Batalla, E.; Natansohn, A. Optically induced surface gratings on azoaromatic polymer films. Appl. Phys. Lett. 1995, 66, 136–138.
  83. Kim, D.Y.; Tripathy, S.K.; Li, L.; Kumar, J. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 1995, 66, 1166–1168.
  84. Ohdaira, Y.; Hoshiyama, S.; Kawakami, T.; Shinbo, K.; Kato, K.; Kaneko, F. Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves. Appl. Phys. Lett. 2005, 86, 051102.
  85. Meshalkin, A.; Robu, S.; Achimova, E.; Prisacar, A.; Shepel, D.; Abashkin, V.; Triduh, G. Direct photoinduced surface relief formation in carbazole-based azopolymer using polarization holographic recording. J. Optoelectron. Adv. M. 2016, 18, 763–768.
  86. Babeva, T.; Mackey, D.; Naydenova, I.; Martin, S.; Toal, V. Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light. J. Opt. 2010, 12, 124011.
  87. Babeva, T.; Mackey, D.; Naydenova, I.; Martin, S.; Toal, V. Surface Relief Profile of Photopolymerisable Systems in a Single Illuminated Spot. AIP Conf. Proc. 2010, 1288, 43–46.
  88. Nazarova, D.; Mednikarov, B.; Sharlandjiev, P. Resonant optical transmission from a one-dimensional relief metalized subwavelength grating. Appl. Opt. 2007, 46, 8250–8255.
  89. Aleksejeva, J.; Teteris, J. Surface relief grating recording in azo polymer films. IOP Conf. Ser. Mater. Sci. Eng. 2013, 49, 012024.
  90. Teteris, J.; Reinfelde, M.; Aleksejeva, J.; Gertners, U. Optical field-induced mass transport in soft materials. Phys. Procedia 2013, 44, 151–158.
  91. Fukuda, T. Rewritable high-density optical recording on azobenzene polymer thin film. Opt. Rev. 2005, 12, 126–129.
  92. Natansohn, A.; Rochon, P. Photoinduced motions in azobenzene-based amorphous polymers: Possible photonic devices. Adv. Mater. 1999, 11, 1387–1391.
  93. Ubukata, T.; Isoshima, T.; Hara, M. Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system. Adv. Mater. 2005, 17, 1630–1633.
  94. Naydenova, I.; Nikolova, L.; Todorov, T.; Holme, N.C.R.; Ramanujam, P.S.; Hvilsted, S. Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters. J. Opt. Soc. Am. B 1998, 15, 1257–1265.
  95. Viswanathan, N.; Kim, D.; Tripathy, S. Surface relief structures on azo polymer films. J. Mater. Chem. 1999, 9, 1941–1955.
  96. Schedl, A.E.; Probst, P.T.; Meichner, C.; Neuber, C.; Kador, L.; Fery, A.; Schmidt, H.W. Confinement templates for hierarchical nanoparticle alignment prepared by azobenzene-based surface relief gratings. Soft Matter 2019, 19, 3872–3878.
  97. Capeluto, G.M.; Falcione, R.; Salvador, R.F.; Eceiza, A.; Goyanes, S.; Ledesma, S.A. Functional surfaces through the creation of adhesion and charged patterns on azopolymer surface relief gratings. Opt. Mater. 2019, 90, 281–288.
  98. Huh, P.; Yan, F.; Li, L.; Kim, M.; Mosurkal, R.; Samuelson, L.A.; Kumar, J. Simple fabrication of zinc oxide nanostructures. J. Mater. Chem. 2008, 18, 637–639.
  99. Li, X.T.; Natansohn, A.; Rochon, P. Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell. Appl. Phys. Lett. 1999, 74, 3791–3793.
  100. Kim, M.H.; Kim, J.D.; Fukuda, T.; Matsuda, H. Alignment control of liquid crystals on surface relief gratings. Liq. Cryst. 2000, 27, 1633–1640.
  101. Parfenov, A.; Tamaoki, N.; Ohnishi, S. Photoinduced alignment of nematic liquid crystal on the polymer surface microrelief. J. Appl. Phys. 2000, 87, 2043–2045.
  102. Chung, D.H.; Fukuda, T.; Takanishi, Y.; Ishikawa, K.; Matsuda, H.; Takezoe, H.; Osipov, M.A. Competitive effects of grooves and photoalignment on nematic liquid-crystal alignment using azobenzene polymer. J. Appl. Phys. 2002, 92, 1841–1844.
  103. Ye, Y.H.; Badilescu, S.; Truong, V.V.; Rochon, P.; Natansohn, A. Self-assembly of colloidal spheres on patterned substrates. Appl. Phys. Lett. 2001, 79, 872–874.
  104. Yi, D.K.; Seo, E.M.; Kim, D.Y. Surface-modulation-controlled three-dimensional colloidal crystals. Appl. Phys. Lett. 2002, 80, 225–227.
  105. Yi, D.K.; Kim, M.J.; Kim, D.Y. Surface relief grating induced colloidal crystal structures. Langmuir 2002, 18, 2019–2023.
  106. Watanabe, O.; Ikawa, T.; Kato, T.; Tawata, M.; Shimoyama, H. Area-selective photoimmobilization of a two-dimensional array of colloidal spheres on a photodeformed template formed in photoresponsive azopolymer film. Appl. Phys. Lett. 2006, 88, 204107.
  107. Li, Y.; He, Y.; Tong, X.; Wang, X. Photoinduced Deformation of Amphiphilic Azo Polymer Colloidal Spheres. J. Am. Chem. Soc. 2005, 127, 2402–2403.
  108. Li, J.; Chen, L.; Xu, J.; Wang, K.; Wang, X.; He, X.; Dong, H.; Lin, S.; Zhu, J. Photoguided Shape Deformation of Azobenzene-Containing Polymer Microparticles. Langmuir 2015, 31, 13094–13100.
  109. Loebner, S.; Lomadze, N.; Kopyshev, A.; Koch, M.; Guskova, O.; Saphiannikova, M.; Santer, S. Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres: Calculation and Measurement of Opto-Mechanical Stresses. J. Phys. Chem. B 2018, 122, 2001–2009.
  110. Ohdaira, Y.; Ikeda, Y.; Oka, H.; Shinbo, K. Optically reversible deformation of azobenzene particles prepared by a colloidal method. J. Appl. Phys. 2019, 125, 103104.
  111. Ichimura, K. Photoalignment of Liquid-Crystal Systems. Chem. Rev. 2000, 100, 1847–1874.
  112. Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139–4175.
  113. Ikeda, T. Photomodulation of Liquid Crystal Orientations for Photonic Applications. J. Mater. Chem. 2003, 13, 2037–2057.
  114. Todorov, T.; Nikolova, L.; Tomova, N. Polarization Holography 1: A new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt. 1984, 23, 4309–4312.
  115. Todorov, T.; Nikolova, L.; Tomova, N. Polarization Holography 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence. Appl. Opt. 1984, 23, 4588–4591.
  116. Todorov, T.; Nikolova, L.; Stoyanova, K.; Tomova, N. Polarization Holography 3: Some applications of polarization holographic recording. Appl. Opt. 1985, 24, 785–788.
  117. Wang, X. Azo Polymers: Synthesis, Functions and Applications; Springer: Berlin/Heidelberg, Germany, 2017.
  118. Zhai, Y.; Cao, L.; Liu, Y.; Tan, X. A Review of Polarization-Sensitive Materials for Polarization Holography. Materials 2020, 13, 5562.
  119. Oscurato, S.L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics 2018, 7, 1387–1422.
  120. Priimagi, A.; Shevchenko, A. Azopolymer-Based Micro- and Nanopatterning for Photonic Applications. J. Polym. Sci. B Polym. Phys. 2014, 52, 163–182.
  121. Ferreira, Q.; Gomes, P.; Raposo, M.; Giacometti, J.; Oliveira, O.; Ribeiro, P. Influence of ionic interactions on the photoinduced birefringence of poly-1,2-ethanediyl, sodium salt] films. J. Nanosci. Nanotechnol. 2007, 7, 2659–2666.
  122. Ferreira, Q.; Ribeiro, P.; Oliveira Jr, O.; Raposo, M. Long-term stability at high temperatures for Birefringence in PAZO/PAH layer-by-layer films. ACS Appl. Mater. Interfaces 2012, 4, 1470–1477.
  123. Madruga, C.; Filho, P.; Andrade, M.; Gonçalves, M.; Raposo, M.; Ribeiro, P. Birefringence dynamics of poly cast films. Thin Solid Films 2011, 519, 8191–8196.
  124. Yadavalli, N.S.; Santer, S. In-situ atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films. J. Appl. Phys. 2013, 113, 224304.
  125. Jelken, J.; Santer, S. Light induced reversible structuring of photosensitive polymer films. RSC Adv. 2019, 9, 20295–20305.
  126. Nedelchev, L.; Ivanov, D.; Berberova, N.; Strijkova, V.; Nazarova, D. Polarization holographic gratings with high diffraction efficiency recorded in azopolymer PAZO. Opt. Quantum Electron. 2018, 50, 212.
  127. Nedelchev, L.; Ivanov, D.; Blagoeva, B.; Nazarova, D. Optical anisotropy induced at five different wavelengths in azopolymer thin films: Kinetics and spectral dependence. J. Photochem. Photobiol. A Chem. 2019, 376, 1–6.
  128. Berberova, N.; Nazarova, D.; Nedelchev, L.; Blagoeva, B.; Kostadinova, D.; Marinova, V.; Stoykova, E. Photoinduced variation of the Stokes parameters of light passing through thin films of azopolymer-based hybrid organic/inorganic materials. J. Physics Conf. Ser. 2016, 700, 012032.
  129. Nedelchev, L.; Mateev, G.; Strijkova, V.; Salgueiriño, V.; Schmool, D.S.; Berberova-Buhova, N.; Stoykova, E.; Nazarova, D. Tunable Polarization and Surface Relief Holographic Gratings in Azopolymer Nanocomposites with Incorporated Goethite (α-FeOOH) Nanorods. Photonics 2021, 8, 306.
  130. Blagoeva, B.; Nedelchev, L.; Mateev, G.; Stoykova, E.; Nazarova, D. Diffraction efficiency of polarization holographic gratings recorded in azopolymer thin films coated using different solvents. Proc. SPIE 2020, 11367, 113671G.
  131. Nazarova, D.; Nedelchev, L.; Ivanov, D.; Blagoeva, B.; Berberova, N.; Stoykova, E.; Mateev, G.; Kostadinova, D. Laser induced optically and thermally reversible birefringence in azopolymers. Proc. SPIE 2017, 10226, 1022608.
  132. Falcione, R.; Roldan, M.V.; Pellegri, N.; Goyanes, S.; Ledesma, S.A.; Capeluto, M.G. Increase of SRG modulation depth in azopolymers-nanoparticles hybrid materials. Opt. Mater. 2021, 115, 111015.
  133. Ivanov, M.; Ilieva, D.; Minchev, G.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L. Temperature-dependent light intensity controlled optical switching in azobenzene polymers. Appl. Phys. Lett. 2005, 86, 181902.
  134. Loşmanskii, C.; Achimova, E.; Abaskin, V.; Meshalkin, A.; Prisacar, A.; Loghina, L.; Vlcek, M.; Yakovleva, A. QDs Doped Azopolymer for Direct Holographic Recording. In Proceedings of the 4th International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Moldova, 18–21 September 2019; Volume 77.
  135. Achimova, E.; Abaskin, V.; Meshalkin, A.; Prisacar, A.; Loghina, L.; Vlcek, M.; Yakovleva, A. Polarization Holographic Recording on Photosensitive Polymers. In Proceedings of the 4th International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Moldova, 18–21 September 2019; Volume 77.
  136. Li, X.; Chon, J.W.M.; Evans, R.A.; Gu, M. Two-photon energy transfer enhanced three-dimensional optical memory in quantum-dot and azo-dye doped polymers. Appl. Phys. Lett. 2008, 92, 063309.
  137. Rodríguez-González, R.J.; Ramos-Díaz de León, A.; Hernández-Hernández, E.; Larios-López, L.; Ruiz-Martínez, A.Y.; Felix-Serrano, I.; Navarro-Rodríguez, D. Enhancement of the photoinduced birefringence and inverse relaxation of a liquid crystal azopolymer by doping with carbon nanostructures. J. Photochem. Photobiol. A Chem. 2023, 435, 114342.
  138. Díaz-Constanzo, G.; Ribba, L.; Goyanes, S.; Ledesma, S. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes. J. Phys. D Appl. Phys. 2004, 47, 135103.
  139. Nedelchev, L.; Nazarova, D.; Dragostinova, V.; Karashanova, D. Increase of photoinduced birefringence in a new type of anisotropic nanocomposite: Azopolymer doped with ZnO nanoparticles. Opt. Lett. 2002, 37, 2676–2678.
  140. Nedelchev, L.; Nazarova, D.; Dragostinova, V. Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence. J. Photochem. Photobiol. A Chem. 2013, 261, 26–30.
  141. Berberova, N.; Daskalova, D.; Strijkova, V.; Kostadinova, D.; Nazarova, D.; Nedelchev, L.; Stoykova, E.; Marinova, V.; Chi, C.H.; Lin, S.H. Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials. Opt. Mater. 2017, 64, 212–216.
  142. Shah, S.M.; Martini, C.; Ackermann, J.; Fages, F.C. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: Nanodots vs. nanorods. J. Colloid Interface Sci. 2012, 367, 109–114.
  143. Alsaad, A.M.; Al-Bataineh, Q.M.; Telfah, M.; Ahmad, A.A.; Albataineh, Z.; Telfah, A. Optical properties and photo-isomerization processes of PMMA–BDK–MR nanocomposite thin films doped by silica nanoparticles. Polym. Bull. 2021, 78, 3425–3441.
  144. Nazarova, D.; Nedelchev, L.; Sharlandjev, P.; Dragostinova, V. Anisotropic hybrid organic/inorganic (azopolymer/SiO2 NP) materials with enhanced photoinduced birefringence. Appl. Opt. 2013, 52, E28–E33.
  145. Kang, L.; Fu, S.; Zhang, X.; Wang, X.; Wu, J.; Liu, S.; Ji, R.; Han, X.; Liu, Y.; Li, J. Nano porous-template-modulated azopolymers for enhancing reversible photo photo-transformation. OSA Contin. 2018, 1, 477–487.
  146. Fernandez, R.; Gutierrez, J.; Eceiza, A.; Tercjak, A. Hybrid materials based on azopolymer and sol–gel synthesized silver-containing titanium oxide nanoparticles with photoinduced birefringence. RSC Adv. 2015, 5, 15740–15748.
  147. Mateev, G.; Nazarova, D.; Nedelchev, L. Increase of the Photoinduced Birefringence in Azopolymer Films Doped with TiO2 Nanoparticles. J. Phys. Technol. 2019, 3, 18–21.
  148. Nazarova, D.; Mateev, G.; Nedelchev, L.; Stoykova, E.; Blagoeva, B.; Berberova, N.; Hong, K.; Park, J. Polarization holographic gratings with enhanced parameters recorded in azopolymer based nanocomposite materials. Optik 2021, 226, 165882.
  149. Stoilova, A.; Dimov, D.; Trifonova, Y.; Lilova, V.; Blagoeva, B.; Nazarova, D.; Nedelchev, L. Preparation, structural investigation and optical properties determination of composite films based on PAZO polymer doped with GeTe4-Cu chalcogenide particles. Eur. Phys. J. Appl. Phys. 2021, 95, 30301.
  150. Nedelchev, L.; Nazarova, D.; Berberova, N.; Mateev, G.; Kostadinova, D.; Mariño-Fernández, R.; Salgueiriño, V.; Schmool, D. Enhanced photoanisotropic response in azopolymer doped with elongated goethite nanoparticles. J. Phys. Conf. Ser. 2016, 700, 012031.
  151. Nazarova, D.; Nedelchev, L.; Mintova, S. Birefringence improvement in azopolymer doped with MFI zeolite nanoparticles. Optofluidics Microfluid. Nanofluidics 2014, 1, 43–48.
  152. Liu, Y.; Liang, S.; Yuan, C.; Best, A.; Kappl, M.; Koynov, K.; Butt, H.-J.; Wu, S. Fabrication of Anticounterfeiting Nanocomposites with Multiple Security Features via Integration of a Photoresponsive Polymer and Upconverting Nanoparticles. Adv. Funct. Mater. 2021, 31, 2103908.
  153. Elhani, S.; Ishitobi, H.; Inouye, Y.; Ono, A.; Hayashi, S.; Sekkat, Z. Surface Enhanced Visible Absorption of Dye Molecules in the Near-Field of Gold Nanoparticles. Sci. Rep. 2020, 10, 3913.
  154. Na, S.-K.; Kim, J.-S.; Song, S.-H.; Oh, C.-H.; Han, Y.-K.; Lee, Y.-H.; Oh, S.-G. Efficient formation of surface relief grating on azopolymer films by gold nanoparticles. J. Appl. Phys. 2008, 104, 103117.
  155. Wu, S.; Shen, J.; Huang, J.; Wu, Y.; Zhang, Z.; Hu, Y.; Wu, W.; Huang, W.; Wang, K.; Zhang, Q. Ag nanoparticle/azopolymer nanocomposites: In situ synthesis, microstructure, rewritable optically induced birefringence and optical recording. Polymer 2010, 51, 1395–1403.
  156. Nazarova, D.; Nedelchev, L.; Stoykova, E.; Blagoeva, B.; Mateev, G.; Karashanova, D.; Georgieva, B.; Kostadinova, D. Photoinduced birefringence in azopolymer doped with Au nanoparticles. J. Phys. Conf. Ser. 2019, 1310, 012018.
  157. Zhou, J.; Yang, J.; Sun, Y.; Zhang, D.; Shen, J.; Zhang, Q.; Wang, K. Effect of silver nanoparticles on photo-induced reorientation of azo groups in polymer films. Thin Solid Films 2007, 515, 7242–7246.
  158. Berberova-Buhova, N.; Nedelchev, L.; Mateev, G.; Stoykova, E.; Strijkova, V.; Nazarova, D. Influence of the size of Au nanoparticles on the photoinduced birefringence and diffraction efficiency of polarization holographic gratings in thin films of azopolymer nanocomposites. Opt. Mater. 2021, 121, 111560.
  159. Yang, Y.; Wang, C.; Wang, Y.; Pan, Y.; Li, H.; Xia, R. Enhanced diffraction efficiency of polarization holographic gratings in Au nanoparticles-doped methyl orange film. Opt. Eng. 2017, 56, 117105.
  160. Zhang, J.; He, T.; Wang, C.; Zhang, X.; Zeng, Y. Enhancement of two-photon absorption and photoinduced birefringence in methyl orange by Au nanoparticles. Opt. Laser Technol. 2011, 43, 974–977.
  161. Hautala, J. Light-Induced Motions in Azopolymer Films Doped with Silver Nanoparticles. Master’s Thesis, Aalto University, Espoo, Finland, 29 January 2014. Available online: https://aaltodoc.aalto.fi/handle/123456789/12734 (accessed on 23 May 2023).
  162. Mateev, G.; Stoilova, A.; Nazarova, D.; Nedelchev, L.; Todorov, P.; Georgieva, S.; Trifonova, Y.; Lilova, V. Photoinduced birefringence in PAZO polymer nanocomposite films with embedded particles of biologically active metal complexes. J. Chem. Technol. Metall. 2019, 54, 1123–1127.
  163. Stoilova, A.; Mateev, G.; Nazarova, D.; Nedelchev, L.; Stoykova, E.; Blagoeva, B.; Berberova, N.; Georgieva, S.; Todorov, P. Polarization holographic gratings in PAZO polymer films doped with particles of biometals. J. Photochem. Photobiol. A Chem. 2021, 411, 113196.
  164. Nazarova, D.; Nedelchev, L.; Dragostinova, V.; Berberova, N. Influence of the size of nanoparticles doped in series of azopolymers on the photoinduced birefringence. Proc. SPIE 2013, 8770, 877009.
  165. Vijayakumar, C.; Balan, B.; Kim, M.J.; Takeuchi, M. Noncovalent functionalization of SWNTs with azobenzene-containing polymers: Solubility, stability, and enhancement of photoresponsive properties. J. Phys. Chem. C 2011, 115, 4533–4539.
  166. Schneider, V.; Strunskus, T.; Elbahri, M.; Faupe, F. Light-induced conductance switching in azobenzene based near-percolated single wall carbon nanotube/polymer composites. Carbon 2015, 90, 94–101.
  167. Basuki, S.W.; Schneider, V.; Strunskus, T.; Elbahri, M.; Faupel, F. Light-controlled conductance switching in azobenzene-containing MWCNT-polymer nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 11257–11262.
  168. Hu, D.; Lin, J.; Jin, S.; Hu, Y.; Wang, W.; Wang, R.; Yang, B. Synthesis, structure and optical data storage properties of silver nanoparticles modified with azobenzene thiols. Mater. Chem. Phys. 2016, 170, 108–112.
  169. Alivisatos, A.P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933–937.
More
Video Production Service