NMDA Receptors and Anti-GluN Autoantibodies in Central Disorders: Comparison
Please note this is a comparison between Version 2 by Fanny Huang and Version 1 by Anna Pittaluga.

Autoantibodies against NMDA and AMPA receptors have been identified in the central nervous system of patients suffering from brain disorders characterized by neurological and psychiatric symptoms. It has been demonstrated that these autoantibodies can affect the functions and/or the expression of the targeted receptors, altering synaptic communication. The importance to clarify, in preclinical models, the molecular mechanisms involved in the autoantibody-mediated effects has emerged in order to understand their pathogenic role in central disorders, but also to propose new therapeutic approaches for preventing their deleterious central consequences.

  • NMDA receptor
  • central disorders
  • autoantibodies

NMDA1. Receptors and Anti-GluN Autoantibodies iIntroduction Central Disorders

  1. Introduction

In recent years, the immune system (IS) emerged as a main player of the development and the functioning of the central nervous system (CNS). In physiological conditions, the IS and the CNS are in strict contact and cooperate to dictate the efficiency of synaptic transmission [1]. This cooperation, however, can be altered by concomitant pathological events, and its disorganization can reverberate negatively on synaptic plasticity. Accordingly, the etiopathogenesis of certain central neurological disorders has been associated to the anomalous overproduction of immunocompetent endogenous components, including autoantibodies recognizing neuronal cell-surface antigens, such as receptors and ion channels, most of which are involved in synaptic transmission [2,3][2][3]. Among these proteins, the NMDA receptors emerged as an important target with high immunogenic properties, pivotal to the immune-neuronal desynchronization.

NMDA receptors are ionotropic glutamate receptors composed of a tetrameric assembly of the obligatory GluN1 subunit with GluN2 (A-D) or the GluN3 (A-B) subunits or both[4] [4] . The stoichiometry of the subunit assembly defines the NMDA receptors’ properties, including the affinity of the receptor for the two main natural agonists (i.e., glutamate and glycine), as well as the gating and the ionic permeability of the associated channel [5–7][5][6][7]. NMDA receptors have a wide distribution in the central nervous system (CNS), where they locate in neurons, astrocytes, and oligodendrocytes. The role of the NMDARs in synaptic communication in physiological and in neurological conditions has been largely analyzed in the literature (see for instance [5–8][5][6][7][8]) and will not further be discussed.

During the last two decades, however, evidence accumulated showing that the NMDA receptor subunits, specifically the N terminus of the GluN1 subunit, possess immunogenic properties, and trigger the production of circulating anti-NMDA autoantibodies (specifically of anti-GluN1 autoantibodies), that concentrates in the serum and in the cerebrospinal fluid (CSF) of patients suffering from certain neurological disorders.

  1. NMDA Receptors and Anti-GluN Autoantibodies in Central Disorders

2. NMDA Receptors and Anti-GluN Autoantibodies in Central Disorders

Autoantibodies against NMDA receptors were first identified in the CSF and in the serum of patients suffering from anti-NMDA receptor encephalitis, one of the most common forms of encephalitis. First associated with the presence of ovarian teratoma, this disease is nowadays associated also to ongoing viral infections and possibly other pathological conditions, that drive the autoimmune responses against the GluN subunits. In most cases, the triggering event(s) starts in the periphery, and then progresses centrally, leading to a robust intrathecal synthesis of anti-GluN autoantibodies [9] [9]. The disease progression depends on the production of the autoantibodies (which are specific markers of the pathology) and on the targeted NMDA receptor subunit [9–14] [9][10][11][12][13][14], that in general is the GluN1 subunit (possibly because its immunogenic nature). The anti-GluN autoantibody binds the NH2 terminus of the protein and behaves as a receptor antagonist, reducing the receptor responsiveness towards the endogenous agonists (i.e. glycine, D-serine) and even favoring the internalization of the receptor [9–12][9][10][11][12]. In a whole, the autoantibody-induced adaptations reduce the number of the available NMDA receptors in plasmamembranes, then interfering with the glutamatergic transmission and sustaining synaptic desynchronization [8,11,15–17][8][11][15][16][17]. In line with the hypothesis, anti-NMDA receptor encephalitis is typified by neuropsychiatric symptoms (i.e. psychosis, cognitive impairment, anxiety, irritability, and autonomic disorders, but also seizures, catatonia, and coma) that are comparable to those elicited by the in vivo administration of non-competitive NMDA antagonists (i.e., ketamine or phencyclidine) and which largely recover after immunotherapy and/or plasmapheresis [18,19]. Corticosteroids alone or combined with intravenous IG administration or plasmapheresis are the first-line therapeutic approaches to manage this disease [19]. The timing of the intervention is crucial, since, in the case of delayed treatment, the symptoms can even worsen [15,20,21][15][20][21].

Notably, the production of autoantibodies targeting NMDA receptors is not an exclusive feature of the encephalitis, since anti-GluN1 autoantibodies also are detected in the serum and in the biological fluids of patients suffering from neurodegenerative disorders including Alzheimer’s (AD) and Parkinson’s disease (PD), as well as in neuropsychiatric diseases such dementia, epilepsy, and schizophrenia [21–23][21][22][23].

NMDA receptor autoantibodies were identified in the serum of a certain percentage of psychotic patients, in line with the proposed autoimmune origin for some idiopathic forms of schizophrenia [24–26] [24][25][26]. Despite these findings, the role of the anti-GluN autoantibodies in this pathology is however far to be elucidated and, in some cases, questioned, because of the variability of the anti-GluN autoantibody’s serum titer among individuals, which in some cases is of modest entity. Furthermore, the nature of the pathogenic Ig involved still is matter of discussion. Actually, in 10% of schizophrenic patients, the autoantibodies which target the GluN1A, and in some cases the GluN2B subunit, are mainly identified as IgA and IgM, and, to a lesser extent, as IgG [27] [27], despite only the IgG anti-NMDA receptor autoantibodies seems to be able to efficiently decrease the density of the synaptic and extra-synaptic NMDA receptors and/or alter their neuronal functions [28].

Autoantibodies targeting NMDA receptors also are associated with an atypical form of autoimmune dementia, that, differently from the classic neurodegenerative dementia, is characterized by psychiatric features, and which progression is slowed down by immunotherapy. In these patients, NMDA receptor autoantibodies consist of IgM, IgA, or IgG immunoglobulins that are detected in a significant percentage of symptomatic patients, but not in cognitively healthy controls [29,30] [29][30].

Lastly, anti-NMDA receptor autoantibodies were detected in the sera of AD and PD patients, but, due to their low prevalence, they are thought not to have a pathogenetic role per se, but rather to modulate the pathological phenotype [31].

 

3. NMDA Receptors and Anti-GluN Autoantibodies in Central Disorders: Unanswered Questions and New Perspective

  1. NMDA Receptors and Anti-GluN Autoantibodies in Central Disorders: unanswered questions and new perspective

Despite the several observations that support the positive correlations linking the autoantibody overproduction and the progression of central neurological disorders, in recent years the exclusive pathogenic role of the anti-GluN autoantibodies has been questioned. Specifically, the finding that low levels of circulating anti-GluN1 autoantibodies also can be detected in the serum of healthy individuals, with no evident neuropsychiatric symptoms, was best interpreted by assuming that, beside the pathogenic activity, anti-GluN autoantibodies also could have a physiological role [32] [32]. The hypothesis is far to be addressed but the possibility that anti-NMDA autoantibodies could be protective in the CNS and increase the resilience to central injures (i.e.by reducing the excitotoxicity elicited by an excessive NMDA receptor activation) or even support the correct refinement and synaptic specialization during development (i.e. by driving the functional silencing of weak synapses to maintain synaptic plasticity) is attractive.

 

Another aspect so far poorly investigated is whether human anti-NMDA antibodies target indiscriminately all the NMDARs or, rather, if they specifically recognize and bind selected NMDAR subtypes in selected neuronal subpopulations (i.e. the glutamatergic instead of the GABAergic or the dopaminergic one, see [5,10][5][10]). Again, the question is compelling since, in the positive, the overproduction of anti-NMDA autoantibodies would provide a rationale for synaptic alterations that would subserve specific neuropathological phenotypes. For instance, anti-NMDA autoantibodies that specifically target NMDA heteroreceptors controlling GABA release (as indeed proven in the literature [167][16][17]) might be expected to reduce the central inhibitory GABAergic input onto the synaptic glutamatergic transmission, and to favor the schizophrenic phenotype, as proposed in the literature [24,33,34][24][33][34].

In this view, the possibility also should be investigated that the pathologic phenotype of patients suffering from the anti-NMDA receptor autoantibodies-mediated disorders might depend on so far unexplored structural and functional adaptation of the untargeted NMDA receptors as well as of non-NMDA receptors, colocalized and functionally associated to the targeted NMDA receptor. In other words, anti-GluN autoantibodies could alter the mechanism of metamodulation of synaptic transmission either in physiological or in pathological conditions, driving the efficiency of the synaptic networking [35,36][35][36]. It is the case of the dopaminergic type 1 receptors (D1Rs), which colocalize with the NMDA receptors and that are functionally regulated by human anti-NMDA receptor antibodies [37] [37].

All these points would deserve further investigations, for instance in preclinical in vitro and in vivo models, by using commercial anti GluN antibodies that, based on the available literature, efficiently reproduce the effects elicited by the human anti-GluN autoantibodies [9,16][9][16]. By using these approaches it will be possible to investigate: i) the mechanism(s) of internalization of the targeted NMDA receptors, ii) the responsiveness of different NMDARs to specific anti-GluN antibodies; iii) the functional adaptations of the untargeted NMDA receptors iv) the impact of of anti-GluN autoantibodies on colocalized non-NMDA receptors.

Besides permitting to define the cellular and molecular events that typify the course of autoimmune disorders, the results obtained in preclinical studies would also allow to check interventions for the management of the antibody-induced synaptic adaptations (see for instance the selective positive allosteric modulator of NMDA receptors that reverse the memory and synaptic alterations caused by CSF from patients with anti-NMDA receptor encephalitis in an animal model of passive transfer of antibodies [38]), providing new therapeutic intervention for CNS disorders.

  1. Deczkowska, A.; Schwartz, M. Targeting Neuro-Immune Communication in Neurodegeneration: Challenges and Opportunities. Journal of Experimental Medicine 2018, 215, 2702–2704.
  2. Kirschstein, T.; Köhling, R. Functional Changes in Neuronal Circuits Due to Antibody-Driven Autoimmune Response. Neurobiol Dis 2023, 184, doi:10.1016/j.nbd.2023.106221.
  3. Khojah, O.; Makkawi, S.; Alghamdi, S. Anti-MGluR1 Encephalitis: Case Illustration and Systematic Review. Front Neurol 2023, 14, doi:10.3389/fneur.2023.1142160.
  4. Paoletti, P.; Neyton, J. NMDA Receptor Subunits: Function and Pharmacology. Curr Opin Pharmacol 2007, 7, 39–47.
  5. Pittaluga, A. Presynaptic Release-Regulating NMDA Receptors in Isolated Nerve Terminals: A Narrative Review. Br J Pharmacol 2021, 178, 1001–1017.
  6. Hansen, K.B.; Yi, F.; Perszyk, R.E.; Menniti, F.S.; Traynelis, S.F. NMDA Receptors in the Central Nervous System. In Methods in Molecular Biology; Humana Press Inc., 2017; Vol. 1677, pp. 1–80.
  7. Paoletti, P.; Bellone, C.; Zhou, Q. NMDA Receptor Subunit Diversity: Impact on Receptor Properties, Synaptic Plasticity and Disease. Nat Rev Neurosci 2013, 14, 383–400.
  8. Ge, Y.; Wang, Y.T. GluN2B-Containing NMDARs in the Mammalian Brain: Pharmacology, Physiology, and Pathology. Front Mol Neurosci 2023, 16.
  9. Dalmau, J.; Tüzün, E.; Wu, H.Y.; Masjuan, J.; Rossi, J.E.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; et al. Paraneoplastic Anti-N-Methyl-D-Aspartate Receptor Encephalitis Associated with Ovarian Teratoma. Ann Neurol 2007, 61, 25–36, doi:10.1002/ana.21050.
  10. Hughes, E.G.; Peng, X.; Gleichman, A.J.; Lai, M.; Zhou, L.; Tsou, R.; Parsons, T.D.; Lynch, D.R.; Dalmau, J.; Balice-Gordon, R.J. Cellular and Synaptic Mechanisms of Anti-NMDA Receptor Encephalitis. Journal of Neuroscience 2010, 30, 5866–5875, doi:10.1523/JNEUROSCI.0167-10.2010.
  11. Zhang, Q.; Tanaka, K.; Sun, P.; Nakata, M.; Yamamoto, R.; Sakimura, K.; Matsui, M.; Kato, N. Suppression of Synaptic Plasticity by Cerebrospinal Fluid from Anti-NMDA Receptor Encephalitis Patients. Neurobiol Dis 2012, 45, 610–615, doi:10.1016/j.nbd.2011.09.019.
  12. Moscato, E.H.; Peng, X.; Jain, A.; Parsons, T.D.; Dalmau, J.; Balice-Gordon, R.J. Acute Mechanisms Underlying Antibody Effects in Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Ann Neurol 2014, 76, 108–119, doi:10.1002/ana.24195.
  13. Venuti, A.; Pastori, C.; Siracusano, G.; Pennisi, R.; Riva, A.; Tommasino, M.; Sciortino, M.T.; Lopalco, L. The Abrogation of Phosphorylation Plays a Relevant Role in the CCR5 Signalosome Formation with Natural Antibodies to CCR5. Viruses 2018, 10, doi:10.3390/v10010009.
  14. Kreye, J.; Wenke, N.K.; Chayka, M.; Leubner, J.; Murugan, R.; Maier, N.; Jurek, B.; Ly, L.-T.; Brandl, D.; Rost, B.R.; et al. Human Cerebrospinal Fluid Monoclonal N-Methyl-D-Aspartate Receptor Autoantibodies Are Sufficient for Encephalitis Pathogenesis., doi:10.1093/aww213.
  15. Heine, J.; Kopp, U.A.; Klag, J.; Ploner, C.J.; Prüss, H.; Finke, C. Long-Term Cognitive Outcome in Anti–N-Methyl-D-Aspartate Receptor Encephalitis. Ann Neurol 2021, 90, 949–961, doi:10.1002/ana.26241.
  16. Olivero, G.; Vergassola, M.; Cisani, F.; Usai, C.; Pittaluga, A. Immuno-Pharmacological Characterization of Presynaptic GluN3A-Containing NMDA Autoreceptors: Relevance to Anti-NMDA Receptor Autoimmune Diseases. Mol Neurobiol 2019, 56, 6142–6155, doi:10.1007/s12035-019-1511-8.
  17. Ceanga, M.; Rahmati, V.; Haselmann, H.; Schmidl, L.; Hunter, D.; Brauer, A.-K.; Liebscher, S.; Kreye, J.; Prüss, H.; Groc, L.; et al. Human NMDAR Autoantibodies Disrupt Excitatory-Inhibitory Balance, Leading to Hippocampal Network Hypersynchrony. Cell Rep 2023, 42, 113166, doi:10.1016/j.celrep.2023.113166.
  18. McKeon, G.; Parker, S.; Warren, N.; Scott, J.G. The Patient Experience of Recovery Following Anti-Nmda Receptor Encephalitis: A Qualitative Content Analysis. Journal of Neuropsychiatry and Clinical Neurosciences 2021, 33, 57–63, doi:10.1176/appi.neuropsych.20030049.
  19. Titulaer, M.J.; McCracken, L.; Gabilondo, I.; Armangué, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; et al. Treatment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Observational Cohort Study. Lancet Neurol 2013, 12, 157–165, doi:10.1016/S1474-4422(12)70310-1.
  20. Hirose, S.; Hara, M.; Kamei, S.; Dalmau, J.; Nakajima, H. Characteristics of Clinical Relapses and Patient-Oriented Long-Term Outcomes of Patients with Anti-N-Methyl-d-Aspartate Receptor Encephalitis. J Neurol 2022, 269, 2486–2492, doi:10.1007/s00415-021-10828-8.
  21. Hunter, D.; Jamet, Z.; Groc, L. Autoimmunity and NMDA Receptor in Brain Disorders: Where Do We Stand? Neurobiol Dis 2021, 147.
  22. Gardoni, F.; Stanic, J.; Scheggia, D.; Benussi, A.; Borroni, B.; Di Luca, M. Nmda and Ampa Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features. Cells 2021, 10, 1–12.
  23. Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front Neurosci 2019, 13.
  24. Masdeu, J.C.; Dalmau, J.; Berman, K.F. NMDA Receptor Internalization by Autoantibodies: A Reversible Mechanism Underlying Psychosis? Trends Neurosci 2016, 39, 300–310.
  25. Kayser, M.S.; Dalmau, J. Anti-NMDA Receptor Encephalitis, Autoimmunity, and Psychosis. Schizophr Res 2016, 176, 36–40.
  26. Nakazawa, K.; Sapkota, K. The Origin of NMDA Receptor Hypofunction in Schizophrenia. Pharmacol Ther 2020, 205.
  27. Steiner, J.; Walter, M.; Glanz, W.; Sarnyai, Z.; Bernstein, H.G.; Vielhaber, S.; Kästner, A.; Skalej, M.; Jordan, W.; Schiltz, K.; et al. Increased Prevalence of Diverse N-Methyl-D-Aspartate Glutamate Receptor Antibodies in Patients with an Initial Diagnosis of Schizophrenia: Specific Relevance of IgG NR1a Antibodies for Distinction from N-Methyl-D-Aspartate Glutamate Receptor Encephalitis. JAMA Psychiatry 2013, 70, 271–278, doi:10.1001/2013.jamapsychiatry.86.
  28. Hara, M.; Martinez-Hernandez, E.; Ariño, H.; Armangué, T.; Spatola, M.; Petit-Pedrol, M.; Saiz, A.; Rosenfeld, M.R.; Graus, F.; Dalmau, J. Clinical and Pathogenic Significance of IgG, IgA, and IgM Antibodies against the NMDA Receptor. Neurology 2018, 90, E1386–E1394, doi:10.1212/WNL.0000000000005329.
  29. Doss, S.; Wandinger, K.P.; Hyman, B.T.; Panzer, J.A.; Synofzik, M.; Dickerson, B.; Mollenhauer, B.; Scherzer, C.R.; Ivinson, A.J.; Finke, C.; et al. High Prevalence of NMDA Receptor IgA/IgM Antibodies in Different Dementia Types. Ann Clin Transl Neurol 2014, 1, 822–832, doi:10.1002/acn3.120.
  30. Gibson, L.L.; McKeever, A.; Cullen, A.E.; Nicholson, T.R.; Aarsland, D.; Zandi, M.S.; Pollak, T.A. Neuronal Surface Autoantibodies in Dementia: A Systematic Review and Meta-Analysis. J Neurol 2021, 268, 2769–2779.
  31. Busse, S.; Busse, M.; Brix, B.; Probst, C.; Genz, A.; Bogerts, B.; Stoecker, W.; Steiner, J. Seroprevalence of N-Methyl-d-Aspartate Glutamate Receptor (NMDA-R) Autoantibodies in Aging Subjects without Neuropsychiatric Disorders and in Dementia Patients. Eur Arch Psychiatry Clin Neurosci 2014, 264, 545–550, doi:10.1007/s00406-014-0493-9.
  32. Hammer, C.; Stepniak, B.; Schneider, A.; Papiol, S.; Tantra, M.; Begemann, M.; Sirén, A.L.; Pardo, L.A.; Sperling, S.; Mohd Jofrry, S.; et al. Neuropsychiatric Disease Relevance of Circulating Anti-NMDA Receptor Autoantibodies Depends on Blood-Brain Barrier Integrity. Mol Psychiatry 2014, 19, 1143–1149, doi:10.1038/mp.2013.110.
  33. Moghaddam, B.; Javitt, D. From Revolution to Evolution: The Glutamate Hypothesis of Schizophrenia and Its Implication for Treatment. Neuropsychopharmacology 2012, 37, 4–15.
  34. Kruse, A.O.; Bustillo, J.R. Glutamatergic Dysfunction in Schizophrenia. Transl Psychiatry 2022, 12.
  35. Pittaluga, A.; Grilli, M.; Olivero, G. Progress in Metamodulation and Receptor-Receptor Interaction: From Physiology to Pathology and Therapy. Neuropharmacology 2023, 237.
  36. Olivero, G.; Grilli, M.; Marchi, M.; Pittaluga, A. Metamodulation of Presynaptic NMDA Receptors: New Perspectives for Pharmacological Interventions. Neuropharmacology 2023, 234.
  37. Missale, C.; Fiorentini, C.; Busi, C.; Collo, G.; Spano, P.F. The NMDA/D1 Receptor Complex as a New Target in Drug Development; 2006; Vol. 6;.
  38. Planagumà, J.; Haselmann, H.; Mannara, F.; Petit-Pedrol, M.; Grünewald, B.; Aguilar, E.; Röpke, L.; Martín-García, E.; Titulaer, M.J.; Jercog, P.; et al. Ephrin-B2 Prevents N-Methyl-D-Aspartate Receptor Antibody Effects on Memory and Neuroplasticity. Ann Neurol 2016, 80, 388–400, doi:10.1002/ana.24721.

 

References

  1. Deczkowska, A.; Schwartz, M. Targeting Neuro-Immune Communication in Neurodegeneration: Challenges and Opportunities. Journal of Experimental Medicine 2018, 215, 2702–2704.
  2. Kirschstein, T.; Köhling, R. Functional Changes in Neuronal Circuits Due to Antibody-Driven Autoimmune Response. Neurobiol Dis 2023, 184, doi:10.1016/j.nbd.2023.106221.
  3. Khojah, O.; Makkawi, S.; Alghamdi, S. Anti-MGluR1 Encephalitis: Case Illustration and Systematic Review. Front Neurol 2023, 14, doi:10.3389/fneur.2023.1142160.
  4. Paoletti, P.; Neyton, J. NMDA Receptor Subunits: Function and Pharmacology. Curr Opin Pharmacol 2007, 7, 39–47.
  5. Pittaluga, A. Presynaptic Release-Regulating NMDA Receptors in Isolated Nerve Terminals: A Narrative Review. Br J Pharmacol 2021, 178, 1001–1017.
  6. Hansen, K.B.; Yi, F.; Perszyk, R.E.; Menniti, F.S.; Traynelis, S.F. NMDA Receptors in the Central Nervous System. In Methods in Molecular Biology; Humana Press Inc., 2017; Vol. 1677, pp. 1–80.
  7. Paoletti, P.; Bellone, C.; Zhou, Q. NMDA Receptor Subunit Diversity: Impact on Receptor Properties, Synaptic Plasticity and Disease. Nat Rev Neurosci 2013, 14, 383–400.
  8. Ge, Y.; Wang, Y.T. GluN2B-Containing NMDARs in the Mammalian Brain: Pharmacology, Physiology, and Pathology. Front Mol Neurosci 2023, 16.
  9. Dalmau, J.; Tüzün, E.; Wu, H.Y.; Masjuan, J.; Rossi, J.E.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; et al. Paraneoplastic Anti-N-Methyl-D-Aspartate Receptor Encephalitis Associated with Ovarian Teratoma. Ann Neurol 2007, 61, 25–36, doi:10.1002/ana.21050.
  10. Hughes, E.G.; Peng, X.; Gleichman, A.J.; Lai, M.; Zhou, L.; Tsou, R.; Parsons, T.D.; Lynch, D.R.; Dalmau, J.; Balice-Gordon, R.J. Cellular and Synaptic Mechanisms of Anti-NMDA Receptor Encephalitis. Journal of Neuroscience 2010, 30, 5866–5875, doi:10.1523/JNEUROSCI.0167-10.2010.
  11. Zhang, Q.; Tanaka, K.; Sun, P.; Nakata, M.; Yamamoto, R.; Sakimura, K.; Matsui, M.; Kato, N. Suppression of Synaptic Plasticity by Cerebrospinal Fluid from Anti-NMDA Receptor Encephalitis Patients. Neurobiol Dis 2012, 45, 610–615, doi:10.1016/j.nbd.2011.09.019.
  12. Moscato, E.H.; Peng, X.; Jain, A.; Parsons, T.D.; Dalmau, J.; Balice-Gordon, R.J. Acute Mechanisms Underlying Antibody Effects in Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Ann Neurol 2014, 76, 108–119, doi:10.1002/ana.24195.
  13. Venuti, A.; Pastori, C.; Siracusano, G.; Pennisi, R.; Riva, A.; Tommasino, M.; Sciortino, M.T.; Lopalco, L. The Abrogation of Phosphorylation Plays a Relevant Role in the CCR5 Signalosome Formation with Natural Antibodies to CCR5. Viruses 2018, 10, doi:10.3390/v10010009.
  14. Kreye, J.; Wenke, N.K.; Chayka, M.; Leubner, J.; Murugan, R.; Maier, N.; Jurek, B.; Ly, L.-T.; Brandl, D.; Rost, B.R.; et al. Human Cerebrospinal Fluid Monoclonal N-Methyl-D-Aspartate Receptor Autoantibodies Are Sufficient for Encephalitis Pathogenesis., doi:10.1093/aww213.
  15. Heine, J.; Kopp, U.A.; Klag, J.; Ploner, C.J.; Prüss, H.; Finke, C. Long-Term Cognitive Outcome in Anti–N-Methyl-D-Aspartate Receptor Encephalitis. Ann Neurol 2021, 90, 949–961, doi:10.1002/ana.26241.
  16. Olivero, G.; Vergassola, M.; Cisani, F.; Usai, C.; Pittaluga, A. Immuno-Pharmacological Characterization of Presynaptic GluN3A-Containing NMDA Autoreceptors: Relevance to Anti-NMDA Receptor Autoimmune Diseases. Mol Neurobiol 2019, 56, 6142–6155, doi:10.1007/s12035-019-1511-8.
  17. Ceanga, M.; Rahmati, V.; Haselmann, H.; Schmidl, L.; Hunter, D.; Brauer, A.-K.; Liebscher, S.; Kreye, J.; Prüss, H.; Groc, L.; et al. Human NMDAR Autoantibodies Disrupt Excitatory-Inhibitory Balance, Leading to Hippocampal Network Hypersynchrony. Cell Rep 2023, 42, 113166, doi:10.1016/j.celrep.2023.113166.
  18. McKeon, G.; Parker, S.; Warren, N.; Scott, J.G. The Patient Experience of Recovery Following Anti-Nmda Receptor Encephalitis: A Qualitative Content Analysis. Journal of Neuropsychiatry and Clinical Neurosciences 2021, 33, 57–63, doi:10.1176/appi.neuropsych.20030049.
  19. Titulaer, M.J.; McCracken, L.; Gabilondo, I.; Armangué, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; et al. Treatment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Observational Cohort Study. Lancet Neurol 2013, 12, 157–165, doi:10.1016/S1474-4422(12)70310-1.
  20. Hirose, S.; Hara, M.; Kamei, S.; Dalmau, J.; Nakajima, H. Characteristics of Clinical Relapses and Patient-Oriented Long-Term Outcomes of Patients with Anti-N-Methyl-d-Aspartate Receptor Encephalitis. J Neurol 2022, 269, 2486–2492, doi:10.1007/s00415-021-10828-8.
  21. Hunter, D.; Jamet, Z.; Groc, L. Autoimmunity and NMDA Receptor in Brain Disorders: Where Do We Stand? Neurobiol Dis 2021, 147.
  22. Gardoni, F.; Stanic, J.; Scheggia, D.; Benussi, A.; Borroni, B.; Di Luca, M. Nmda and Ampa Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features. Cells 2021, 10, 1–12.
  23. Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front Neurosci 2019, 13.
  24. Masdeu, J.C.; Dalmau, J.; Berman, K.F. NMDA Receptor Internalization by Autoantibodies: A Reversible Mechanism Underlying Psychosis? Trends Neurosci 2016, 39, 300–310.
  25. Kayser, M.S.; Dalmau, J. Anti-NMDA Receptor Encephalitis, Autoimmunity, and Psychosis. Schizophr Res 2016, 176, 36–40.
  26. Nakazawa, K.; Sapkota, K. The Origin of NMDA Receptor Hypofunction in Schizophrenia. Pharmacol Ther 2020, 205.
  27. Steiner, J.; Walter, M.; Glanz, W.; Sarnyai, Z.; Bernstein, H.G.; Vielhaber, S.; Kästner, A.; Skalej, M.; Jordan, W.; Schiltz, K.; et al. Increased Prevalence of Diverse N-Methyl-D-Aspartate Glutamate Receptor Antibodies in Patients with an Initial Diagnosis of Schizophrenia: Specific Relevance of IgG NR1a Antibodies for Distinction from N-Methyl-D-Aspartate Glutamate Receptor Encephalitis. JAMA Psychiatry 2013, 70, 271–278, doi:10.1001/2013.jamapsychiatry.86.
  28. Hara, M.; Martinez-Hernandez, E.; Ariño, H.; Armangué, T.; Spatola, M.; Petit-Pedrol, M.; Saiz, A.; Rosenfeld, M.R.; Graus, F.; Dalmau, J. Clinical and Pathogenic Significance of IgG, IgA, and IgM Antibodies against the NMDA Receptor. Neurology 2018, 90, E1386–E1394, doi:10.1212/WNL.0000000000005329.
  29. Doss, S.; Wandinger, K.P.; Hyman, B.T.; Panzer, J.A.; Synofzik, M.; Dickerson, B.; Mollenhauer, B.; Scherzer, C.R.; Ivinson, A.J.; Finke, C.; et al. High Prevalence of NMDA Receptor IgA/IgM Antibodies in Different Dementia Types. Ann Clin Transl Neurol 2014, 1, 822–832, doi:10.1002/acn3.120.
  30. Gibson, L.L.; McKeever, A.; Cullen, A.E.; Nicholson, T.R.; Aarsland, D.; Zandi, M.S.; Pollak, T.A. Neuronal Surface Autoantibodies in Dementia: A Systematic Review and Meta-Analysis. J Neurol 2021, 268, 2769–2779.
  31. Busse, S.; Busse, M.; Brix, B.; Probst, C.; Genz, A.; Bogerts, B.; Stoecker, W.; Steiner, J. Seroprevalence of N-Methyl-d-Aspartate Glutamate Receptor (NMDA-R) Autoantibodies in Aging Subjects without Neuropsychiatric Disorders and in Dementia Patients. Eur Arch Psychiatry Clin Neurosci 2014, 264, 545–550, doi:10.1007/s00406-014-0493-9.
  32. Hammer, C.; Stepniak, B.; Schneider, A.; Papiol, S.; Tantra, M.; Begemann, M.; Sirén, A.L.; Pardo, L.A.; Sperling, S.; Mohd Jofrry, S.; et al. Neuropsychiatric Disease Relevance of Circulating Anti-NMDA Receptor Autoantibodies Depends on Blood-Brain Barrier Integrity. Mol Psychiatry 2014, 19, 1143–1149, doi:10.1038/mp.2013.110.
  33. Moghaddam, B.; Javitt, D. From Revolution to Evolution: The Glutamate Hypothesis of Schizophrenia and Its Implication for Treatment. Neuropsychopharmacology 2012, 37, 4–15.
  34. Kruse, A.O.; Bustillo, J.R. Glutamatergic Dysfunction in Schizophrenia. Transl Psychiatry 2022, 12.
  35. Pittaluga, A.; Grilli, M.; Olivero, G. Progress in Metamodulation and Receptor-Receptor Interaction: From Physiology to Pathology and Therapy. Neuropharmacology 2023, 237.
  36. Olivero, G.; Grilli, M.; Marchi, M.; Pittaluga, A. Metamodulation of Presynaptic NMDA Receptors: New Perspectives for Pharmacological Interventions. Neuropharmacology 2023, 234.
  37. Missale, C.; Fiorentini, C.; Busi, C.; Collo, G.; Spano, P.F. The NMDA/D1 Receptor Complex as a New Target in Drug Development; 2006; Vol. 6.
  38. Planagumà, J.; Haselmann, H.; Mannara, F.; Petit-Pedrol, M.; Grünewald, B.; Aguilar, E.; Röpke, L.; Martín-García, E.; Titulaer, M.J.; Jercog, P.; et al. Ephrin-B2 Prevents N-Methyl-D-Aspartate Receptor Antibody Effects on Memory and Neuroplasticity. Ann Neurol 2016, 80, 388–400, doi:10.1002/ana.24721.
More
Video Production Service