Metallic FexGeTe2 (3 ≤ x ≤ 7) Ferromagnets: Comparison
Please note this is a comparison between Version 3 by Lindsay Dong and Version 2 by Lindsay Dong.

Thermal fluctuations in two-dimensional (2D) isotropy systems at non-zero finite temperatures can destroy the long-range (LR) magnetic order due to the mechanisms addressed in the Mermin-Wanger theory. However, the magnetic anisotropy related to spin–orbit coupling (SOC) may stabilize magnetic order in 2D systems. 2D FexGeTe2 (3 ≤ x ≤ 7) with a high Curie temperature (TC) has not only undergone significant developments in terms of synthetic methods and the control of ferromagnetism (FM), but is also being actively explored for applications in various devices. 

  • Mermin-Wanger theory
  • Fe stoichiometry
  • strain
  • light control
  • electrical control

1. Introduction

The Mermin-Wanger theory [1][2] asserts that thermal fluctuations occur in 2D isotropy systems at non-zero finite temperatures, which destroy the long-range magnetic order (LRMO). Specifically, exchange interactions alone should not generate magnetic order in 2D systems, and magnetic anisotropy [3][4][5] is also needed to maintain the LRMO. Surprisingly, it was found experimentally that low-temperature long-range ferromagnetic order (LRFO) can exist in the Cr2Ge2Te6 monolayer [4] and CrI3 monolayer [5][6]. Soon after, a vast range of 2D magnetic systems, including metallic (Fe3GeTe2 (FGT) [7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23]), semiconductors (Cr2Ge2Te6 [4][24][25][26][27][28][29][30][31][32], CrI3 [5][33]), and topological insulators (MnBi2Te4 [34]), were successively implemented to promote the development of spintronics.
Recently, FexGeTe2 (3 ≤ x ≤ 7) has received intense attention as a metallic and high Curie temperature (TC) ferromagnet. Six synthesis methods, including solid-state reaction (SSR) [35][36], chemical vapor transport (CVT) [8][13][37], the flux method [11][21][38][39][40][41][42][43][44][45], exfoliation [14][15][34][46][47][48][49][50], chemical vapor deposition (CVD) [51][52], and molecular beam epitaxy (MBE) [7][53][54][55][56][57][58], have been used to attempt to obtain wafer-scale FexGeTe2 (3 ≤ x ≤ 7) materials with room-temperature ferromagnetism (RTFM). However, the TC of the MBE-prepared FexGeTe2 (3 ≤ x ≤ 7) samples (see Figure 1) ranges from 390 to 530 K, with FGT (TC ≈ 400 K) [56], Fe4GeTe2 (F4GT; TC ≈ 530 K) [59], and Fe5GeTe2 (F5GT; TC ≈ 390 K) [60]. Furthermore, RTFM has also been tuned with ten strategies: Fe stoichiometry [9][39][51][59][61][62][63][64][65], strain engineering [46][48][66][67][68][69][70][71][72][73][74][75], hydrostatic pressure [76][77][78][79][80][81], light control [53][82], electrical control [83][84], proximity effects [56][57][85][86][87][88][89], doping engineering [14][20][38][43][44][62][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106], intercalation [107][108] or irradiation [109], twisting [110][111], and patterning [16]. So far, twisting (see Figure 1) has only regulated the magnetic order theoretically and has not been achieved experimentally. Moreover, four typical devices have also been fabricated based on FGT, magnetic tunnel junctions (MTJ) [112][113][114][115], tunneling spin valves [18][99][116][117], nonlocal spin valves [118], and spin–orbit torque devices [20][119], in order to enrich their physical properties and develop their spintronic applications.
Figure 1. Overview of six synthesis methods and ten strategies for ferromagnetic FexGeTe2 (3 ≤ x ≤ 7) materials. Black font represents the synthesis methods and tunable strategies for obtaining the RTFM; white font represents the synthesis methods and strategies that can tune magnetism in experiments; green font represents only theoretically achievable tunable strategies.

2. Crystal Structure of Ferromagnetic FexGeTe2

The Fe3GeTe2 monolayer [46] comprises five atomic layers. Specifically, Te atoms are located in the bottom and top layers, while Fe (I) atoms are located in the second and fourth layers. Notably, the intermediate layer is composed of Fe (II) atoms and Ge atoms. The local magnetic moments of Fe atoms for the FGT monolayer were determined by DFT-LDA (density functional theory–local density approximation) to be 1.723 µB and 1.005 µB, with the out-of-plane direction being its easy axis. They may be related to the several partially occupied d-bands passing through the Fermi level. In addition, the number ratio of Fe3+ to Fe2+ in 2D FexGeTe2 [64] is related to the x value. When the value of x is 3, the ratio of Fe3+/Fe2+ is 2:1. However, when the x value is 5, only Fe3+ is present.

3. Synthesis of Metallic FexGeTe2 with FM

3.1. Solid-State Reaction (SSR)

The solid-state reaction (SSR) is an experimental method for preparing bulk FGT crystals. As early as 2006, Deiseroth et al. [35] successfully prepared FGT crystals with hexagonal plates using SSR, which exhibited novel air stability and black metallic properties. Through magnetic testing, it was found that below 230 K, the crystals exhibited FM. Meanwhile, above 230 K, they exhibited Curie–Weiss paramagnetic behavior. After increased annealing, black Fe3−δGeTe2 (0 < δ < 0.3) polycrystalline powders could be easily obtained with SSR. The lattice parameters increase monotonically with decreasing δ (it represents the degree of iron deficiency in FGT), but, when δ exceeds 0.3, FeTe2 will appear as an impurity phase. Its magnetic phase transition temperature is about 240 K. Furthermore, its saturation behavior slows down in high magnetic fields, which is different from ordinary ferromagnets. In order to obtain large quantities of high-quality FGT single crystals, Li et al. [120] designed a new experimental method of solid-phase sintering followed by recrystallization. The as-grown plate-like sample (~10 g) is a layered single crystal with a smooth and complete surface, and its size can reach up to 8.5 mm. By intercalating sodium into as-grown FGT, Weber et al. [107] raised its TC to 350 K. After intercalation, the sample retained obvious layered features, with edge lengths of a grain size ranging from 10–50 μm.

3.2. Chemical Vapor Transport (CVT)

One main difference from SSR is that CVT often uses iodine [8][13][14][15][17][37][39][61][119] or TeCl4 [12] as the transport agent. However, the samples obtained via SSR and CVT were both bulk single crystals. Previous studies have mainly focused on the magnetic microstructures of quasi-2D FGT. Based on the prediction that FGT monolayer could be mechanically exfoliated [46], soon after, Chu et al. [15] and Zhang et al. [14], respectively, obtained FGT monolayer samples with the assistance of Au film and Al2O3, respectively. Actually, Zhang et al. [121] exfoliated FGT monolayer from the most possible cleaving planes (001), with a thickness of 1.75 nm and a nearest neighbor atomic spacing of 0.338 nm, which was highly consistent with the lattice constant (a = 0.399 nm; c = 1.63 nm) of the FGT crystal. However, thin layer FGT was highly prone to deteriorate in air, and the device fabrication processes needed to be carried out in a glove box [49]. Notably, many novel physics-related effects, such as patterning-induced RFTM [16], gate-tunable FM [14], and layer-dependent FM [15], have been discovered.

3.3. Flux Growth

The flux method [122][123][124] is commonly used to prepare single crystals. For example, Canfield et al. [122][123] grew a wide variety of single-crystal binary or ternary intermetallic compounds from molten flux solutions. However, the thickness and lateral size of the samples could not be accurately controlled, with mechanical exfoliation still required to obtain thinner samples when fabricating FGT devices. Recently, Gong et al. [44][45] proposed a universal flux-assisted growth (FAG) method to synthesize FexGeTe2 and MyFe5−yGeTe2 (M = Co, Ni) nanosheets on various substrates. In addition, the sample thickness and lateral size of FGT could be precisely controlled by the growth temperature or cosolvents. Although the FGT samples with a thickness of 5–10 nm were prepared on various substrates, in order to obtain atomically thin materials (ATMs), a confinement environment must be provided through two substrates. Up to 80 layered and non-layered ATMs [45] have also been successfully synthesized using FAG, which provides a new strategy for preparing wafer-scale 2D materials.

3.4. Exfoliation

3.4.1. Mechanical Exfoliation

Conventional mechanical exfoliation [125][126] can cleave thin FGT flakes onto SiO2/Si substrates, but its thinnest thickness is around 4.8 nm. After depositing Au onto SiO2/Si substrate, thinner samples can be obtained, and the Au substrate improves the yield to grow various thin layers of materials, including graphene [127][128], MoS2 [47][129][130][131][132], WSe2 [47][129][133], Bi2Te3 [129], and FGT [15][47]. Nevertheless, only a small amount of material can be exfoliated to a monolayer, which hinders the development of 2D magnetic materials. Notably, an Al2O3-assisted exfoliation method was also designed to produce monolayer FGT [14] and MnBi2Te4 [34] single crystals. When the sample was thinned from bulk to a monolayer, its TC decreased from 180 K to 20 K.

3.4.2. Liquid-Phase Exfoliation

Although many methods including SSR [107], CVT [14][15][17][19][61][119][121][134], flux [39][43][44][45], and MBE [7][53][54][55][56][57][58][59][60] have been used to prepare 2D FGT, an economical method for the large-scale preparation of few- or single-layer FGT nanoflakes is still lacking. As a typical example, Ma et al. [50] developed three-stage sonication-assisted liquid-phase exfoliation (TS-LPE) to produce large semiconductive FGT nanoflakes. After ball milling, the sample size and thickness are reduced by the milling time), exposing more boundaries. Stirring causes the interlayer spacing to expand, weakening the interlayer force to facilitate detachment and obtain high-integrity nanoflakes. In addition, XRD analysis [135] reflects the evolution of interlayer spacing. The expansion of interlayer spacing causes the FGT unit cell to move away from the equilibrium state in the c-direction, making them unstable and prone to spall. In practice, the oxidation on the surface layer altered the electronic structure of the FGT system, making the FGT sample semiconductive and different from the metallic FGT prepared using other methods.

3.5. Chemical Vapor Deposition (CVD)

So far, researchers have mainly used CVT to prepare 2D magnetic bulk single crystals, which are then exfoliated into atomic layers to prepare devices. However, poor control of the number of layers and a limited sample size have hindered the development of 2D magnets. As a typical example, Liu et al. [51] designed a confined space chemical vapor deposition (CS-CVD) method for preparing 2D FGT or F5GT ferromagnets. They found that the optimal growth temperature was 570–580 °C, with an optimal distance of 10 cm between the Fe/Ge precursor and the Te precursor. When the thickness of the F5GT flakes changed from 4 nm to 1 nm, the TC value decreased by 100K. Very recently, Liu et al. [52] also introduced a general competitive-chemical-reaction-controlled CVD method for producing FGT crystals. The sample was a single layer with a grain size of ~50 μm.

3.6. Molecular Beam Epitaxy (MBE)

Wafer-scale single crystalline FGT thin films were grown on various substrates using the molecular beam epitaxial (MBE) [7][54][55][56][57][136] technique. After heterointegration with the topological insulator Bi2Te3 (Figure 7A), the TC of FGT can be increased to 400 K. This enhancement may be related to the interface exchange coupling. Remarkably, when the thickness of F4GT decreases, its TC is increased from 270 K to 530 K (Figure 7B). For F4GT thin films with a thickness of 10 nm, increasing the dosage of Fe can enhance their TC. Although MBE can alone prepare wafer-scale FexGeTe2 (3 ≤ x ≤ 7) materials with RTFM, this method requires a high vacuum environment, which makes it expensive and limits its industrial applications.

4. Controlling FM in Metallic FexGeTe2

4.1. Fe Stoichiometry

In this research area, the earliest discovery was that the FM in polycrystalline FGT bulk structures [9] was related to the Fe content. The higher the Fe content, the larger the lattice constant of the a-axis and the smaller the lattice constant of the c-axis. Single crystal samples show similar results to the polycrystalline samples. Moreover, the TCand MS decreased with the decrease in Fe content. Subsequently, ferromagnetic F4GT [44][59][61] and F5GT [39][42][44][51][62][137][138][139][140][141][142][143][144] materials were also obtained in experiments. However, most previous reports have focused on FGT materials with a single Fe stoichiometry, and there have been few studies on FexGeTe2 materials using the same experimental method. In addition, theoretical calculations [63] revealed that as the Fe content increased, the interlayer gap gradually increased, and the magnetic anisotropy of its monolayer changed from out-of-plane (FGT) to in-plane (F4GT and F5GT).

4.2. Strain Engineering

Strain engineering is an efficient strategy for modulating the FM of 2D materials [67][68][145]. However, previous theoretical works have focused on applying strain to FGT supercells by changing the lattice constants [46][70][71][73][146] and calculating the exchange coupling, magnetic anisotropy, and magnetic moment of strain through ab initio DFT. Furthermore, the TC could be estimated according to mean field theory (MFT) [10][61][65][147][148][149], random phase approximation (PRA) [147][149], or Monte Carlo (MC) [148][149][150][151] simulation. Recently, Miao et al. [48] and Yan et al. [72] loaded FGT nanoflakes into a three-point-bending experimental setup and applied uniaxial tensile strain to the sample on a polyimide (PI) or polyvinyl alcohol (PVA)/polyethylene terephthalate (PET) flexible polymer substrate by moving the needle.

4.3. Hydrostatic Pressure

Tuning the exchange coupling and magneto-crystalline anisotropy by applying hydrostatic pressure is another commonly used method for regulating 2D magnetism, which has been achieved in Cr2Gr2Te6 [152][153], CrI3 [33][154], and FGT [77][78][79] systems. The ferromagnetic evolution of FGT nanosheets under different pressures can be revealed through in situ magnetic circular dichroism (MCD) spectroscopy. Furthermore, the magnetic hysteresis loop at 30 K exhibited a rectangular shape below 7 GPa, while its loop presented an eight-shaped skewed shape above 7.3 GPa. Moreover, TC increases as the pressure further decreases, which may be related to the strengthening of the exchange interactions.

4.4. Light Control

The continuous modulation of monolayer transition-metal dichalcogenides (TMDs) without intrinsic magnetism, including MoS2 [155], WS2 [155], and WSe2 [156], has been achieved using the optical approach. Recently, Tengdin et al. [82] demonstrated that spin polarization was transferred from Mn sublattices to Co on the Heusler compound Co2MnGe via femtosecond laser pulse, which is closely related to the wave function of electrons before and after being excited by light. The ultrafast spin transfer caused by the instantaneous incident light on the material does not only occur in Co2MnGe, but is also a common feature of many materials. Notably, Xu et al. [53] reported that the magnetic anisotropy energy (MAE) and TC were mediated with a femtosecond laser pulse. The optical doping effect alters the electronic structure of FGT, thereby affecting exchange interactions, TC, and MAE. The TC of FGT was estimated to be ~200 K. Under the excitation of a femtosecond laser, electrons transitioned from an occupied state to an unoccupied state, causing the Fermi level EF to shift downwards and crossing the enhanced density of states (DOS). Furthermore, some clear magnetic hysteresis loops at room temperature (RT) can be observed in FGT samples with different thicknesses, according to Polar-MOKE measurements. The TC of FGT can be increased to above RT through light control, providing many opportunities for the development of spintronic applications for 2D magnets.

4.5. Electrical Control

Previous studies have shown that electric fields modify the magnetism of metal films [157][158][159] and Fe/MgO junctions [160] by influencing the behavior of the electrons. Recently, Wang et al. [83] calculated the effect of the electric field on the magnetic anisotropy of the FGT monolayer. The effect of orbital splitting caused by electron doping on magnetic anisotropy was more pronounced; meanwhile, the influence of hole doping related to orbital occupation was relatively weak. In addition, the change in magnetic anisotropy was more obvious in the single-gate configuration. Additionally, the generation of negative differential conductance (NDC) [84] can also be driven by a local electric field in FGT. Furthermore, the three peaks in the Fe d orbits underwent significant shifts under the electric field. As the electric field was enhanced, the off-plane FM of FGT weakened, resulting in a decrease in MAE. Remarkably, in single-layer FGT, the electric field induces charge transfer in the FGT monolayer in the field direction. Therefore, applying an electric field has become an effective way to mediate 2D FM.

4.6. Proximity Effects

Proximity effects [85][161][162][163][164][165] are another dominant area of the research into 2D materials. For example, by using 2D magnetic materials adjacent to a bulk semiconductor substrate [166] or 2D materials with strong spin–orbit coupling [167], their magnetism can be enhanced. Intriguingly, Zhang et al. [85] fabricated antiferromagnetic FePS3(FPS)/ferromagnetic Fe3GeTe2(FGT) heterostructures and detected the enhancement of TC and HC through proximity coupling effects. Furthermore, FPS/FGT/FPS exhibits a slightly different modulation of HC compared to FPS/FGT, which is related to AFM-FM coupling. Moreover, the long-range magnetic order induced by topology triggered by femtosecond laser pulses [57] could also be maintained at room temperature.

4.7. Doping Engineering

4.7.1. Doping with 3d Transition-Metals

Doping 3d-transition metal atoms is an effective strategy for controlling magnetism [66][69][90][168][169][170][171][172]. Theoretical calculations have shown that almost all 3d-transition metal atoms (except for Co atoms) [97] are more inclined to replace Fe1 atoms. The charge transfer generated by doping atoms weakens the magnetic moment of Fe atoms, while the weakening effect of Fe1 atomic magnetic moment is more significant. However, the magnetism increases after doping with Co atoms, which may be related to the shrinking of the a-axis lattice constant. In experiments, doping 3d-transition metal atoms in bulk single-crystal samples were usually achieved via CVT [93] or self-flux [38]. Doping Ni atoms suppressed the ferromagnetic order, which rapidly decreased with the increase in the doping amount. The TC decreased from 212 K to 50 K, and after reaching 0.44, the magnetic moment remained almost constant. Furthermore, the long-range magnetic order was suppressed and subsequently transformed into a glassy magnetic phase. However, doping Co atoms may cause an increase in HC and the appearance of hard magnetic phases; this is related to the movement of pinned domain walls [8]. Bulk F5GT single crystals were also doped with Co atoms via CVT [95][96]. As the amount of Co used for doping increases, it can drive the evolution of the lattice and of magnetism. However, the nominal doping concentration was slightly different from the measured one, with only a specific concentration being more consistent. Afterward, Co atoms were doped into the lattice, resulting in a slight increase in their interlayer spacing. However, Tian et al. [96] found that doping with 20% Co could increase its TC to 337 K and induce complex magnetic phase transitions at higher Co doping levels. Furthermore, hexagonal 2D CoyFe5−yGeTe2 and NiyFe5−yGeTe2 nanoflakes were prepared via flux-assisted growth [44]

4.7.2. Doping with Non-Metallic Atoms

Not only can Fe atoms be substituted with Co or Ni atoms [38][44][93][95][96][97], but doping can also be achieved by replacing Ge atoms with As atoms [92][98]. The doping of As atoms caused a decrease in the a-axis lattice constant and an increase in the c-axis lattice constant, thereby reducing the density of spin states below the Fermi level, resulting in a decrease in TC [92]. Furthermore, its MS decreased linearly with the increase in the doping amount in polycrystalline Fe3−yGe1−xAsxTe2 (0 ≤ x ≤ 0.85). Similarly, the expansion of the F5GT unit cell [98] in the c-axis direction and the contraction in the ab plane was also observed after doping with the As atom. In addition, its TC and MS decreased in polycrystalline Fe5Ge1−yAsyTe2 (0 ≤ y ≤ 1), a phenomenon similar to that observed in the Fe3-yGe1−xAsxTe2 (0 ≤ x ≤ 0.85) samples. Moreover, the stacking disorder caused by the local AFM coupling can reduce its MS.

4.7.3. Electron Doping

Remarkably, Deng et al. [14] found that FGT devices could be operating in ionic gates, which provides a new approach for mediating 2D FM. Although they did not fully explain the relationship between it’s ferromagnetism and electron doping, the importance of this strategy was acknowledged. Soon after, gate-control was implemented to regulate magnetic resistance [99], magnetic phases [62][101], and interlayer coupling [100][102][173]. Furthermore, the TC and HC in FGT flakes [101] were decreased after Li+ doping from lithium-ion-conducting glass-ceramics (LICGC). In addition, electron doping influenced the Fe–Ge plane in the middle of the FGT monolayer, weakening it’s resistance and enhancing it’s TC [105].

4.7.4. Hole Doping

Inspired by the gate-mediated RTFM in FGT thin flakes [14], many attempts have been made to control its ferromagnetism through hole [43][94][106] or electron [43][94][105] doping. In particular, the magnetic anisotropy in exfoliated Fe2.75GeTe2 flakes was inhibited by hole doping, resulting in a decrease in HC. The magnetic anisotropy could undergo a 93% attenuation, but the change in the magnetic moment was very small. Furthermore, the electronic structure of Fe2.75GeTe2 single crystals changes due to hole doping, causing significant changes in magnetic anisotropy. In addition, another report [94] suggested that hole doping was beneficial for maintaining the long-range ferromagnetic order.

4.8. Intercalation or Irradiation

Recently, inserting sodium into Fe2.78GeTe2 powders [107] can raise its TC to ~300 K. After intercalating Na, more exposed edges appeared, and their layered features remained unchanged in a single crystal structure. More specifically, the Fe, Ge, and Te elements were evenly distributed in the sample, while the inserted Na was concentrated at the edge. A phase transition occurred from PM (Fe2.78GeTe2) to FM (NaFe2.78GeTe2) at 200 K. Furthermore, the magnetic hysteresis loops are also measured at 350 K. Notably, impurity phases, such as Fe or Fe2−xGe, dominated the RTFM in the NaFe2.78GeTe2 samples. Alternatively, the TC and exchange bias could be mediated with Fe-intercalation [108], which induces magnetic order by reinforcing magnetic coupling. However, the detected TeGe antisite defects had no modulation effect on the TC of different samples. Thus, Na intercalation provides a novel strategy for enhancing TC, which is related to the tensile strain.

4.9. Twisting

Twisting 2D materials can introduce some novel properties, such as magnetism [174][175] and superconductivity [176], which trigger the interaction topology with magnetism in 2D ferromagnets, resulting in the formation of skyrmions [177][178] or magnons [179][180] in the twisting system. In fact, the stacking order directly affects the magnetism of bilayer CrI3 by changing the crystal structure [174] or interlayer magnetic coupling [174]. Surprisingly, the magnetism was obtained in double bilayer CrI3 [181] at small twist angles. Although the phase transition from AFM to FM has been theoretically achieved in twist-stacking bilayer FGT [110][175], it has not yet been experimentally achieved [182].

4.10. Patterning

Magnetic domain patterns on FGT surfaces can be modulated with various mechanisms [8][13][183][184], one of which is the phase transition from FM to AFM related to interlayer coupling [13]. The photoemission electron microscopy (PEEM) image clearly shows the magnetic domain structure of FGT nanosheets, and the stripe domain structure disappears after reaching the TC of 230 K. After patterning the FGT sample into diamond and rectangular shapes using a focused ion beam (FIB), striped magnetic domain structures, similar to those in the unpatterned FGT, were also observed. However, the striped domain structure did not completely disappear and was significantly weakened at 230 K.

5. Band Structure of Ferromagnetic FexGeTe2

Like its bulk form, the FGT monolayer band structures near the Fermi level can mainly be attributed to the contribution of the Fe 3d orbitals. Moreover, it was confirmed that the FGT monolayer has the itinerant FM order according to Stoner’s criterion [46][185]. Remarkably, the Stoner model related to itinerant electrons can be used to better elucidate the spontaneous magnetization in most 2D metallic ferromagnets. In addition, the electronic band structures of all the FexGeTe2 systems are metallic, similar to the FGT monolayer. Furthermore, the F4GT and F5GT bilayer [186] have band structures similar to the FGT bulk and FGT monolayer, exhibiting metallic magnetic properties. However, there is a significant difference in the polarizability of F4GT and F5GT near the Fermi level, which leads to their different transport characteristics. The unique nature of FGT gives its related devices many advantages, including nonvolatility, low reversal magnetic field, and the magnetic field reversal FexGeTe2 electrodes through the spin-polarized current.

6. FexGeTe2-based Devices

To the best of our knowledge, four typical devices have been constructed based on metallic FexGeTe2 ferromagnets, including magnetic tunnel junctions (MTJ) [112][113][114][115][136], tunneling spin valves [18][99][116][117], nonlocal spin valves [118] and spin–orbit torque (SOT) devices [20][119][187]. Anonlinear behavior originating from tunneling characteristics [115] was exhibited in the IV curve. Furthermore, a typical spin-valve behavior was also identified in the hysteresis loops. After applying a specific voltage, the spin-transfer torque (STT) generated by the current caused the bottom FGT electrode to switch, which was closely related to MAE. After applying a voltage to FGT/Pt hybrid devices [20], a current was generated between FGT and Pt, forming spin–orbit torques in Pt. Furthermore, a hard magnetic loop similar to an FGT device has also been observed in FGT/Pt devices. As the applied in-plane magnetic field Hx was increased, its transition current decreased, regardless of the direction of Hx. This switch was related to the magnetic domain and domain walls. Moreover, the low switching current of the FGT monolayer was beneficial for exploring more effective devices. Very recently, Wang et al. [187] increased the TC of FGT to RT by the topological insulator Bi2Te3 and achieved the SOT-driven magnetization switching at RT.

7. Magnetic Skyrmions in Metallic FexGeTe2

As topological magnetic materials, the spin textures in FexGeTe2 are also regulated by the Fe stoichiometry. For instance, Bloch-type skyrmion bubbles [188] were observed in FGT by using Lorentz transmission electron microscopy (LTEM). However, in another study [189], Néel-type skyrmions were reported, which indicated the existence of Dzyaloshinskii-Moriya interaction (DMI) in FGT. Generally, FGT was considered as a centrosymmetric material in the space group P63/mmc [35], which should not possess the asymmetric DMI. A possible interpretation is that the asymmetric interface between the pristine and oxidized FGT may induce an interfacial DMI [189]. More recently, a comprehensive study was implemented to answer this question more clearly [190]. It is found that the crystal structure of Fe3−xGeTe2 can be tuned by the Fe stoichiometry, that is, Fe3−xGeTe2 changes from centrosymmetric P63/mmc space group to non-centrosymmetric P63mc space group when x is larger than ~0.2 [190]. Notably, the P63mc space group allows an in-plane DMI in Fe2.74GeTe2, leading to the formation of Néel-type skyrmions. Whereas in Fe3.00GeTe2, the centrosymmetric P63/mmc structure forbids the DMI. Thus, Bloch-type skyrmion bubbles were observed when the dipole–dipole interaction and magnetic anisotropy obtained a delicate balance.

References

  1. Mermin, N.D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.
  2. Hohenberg, P.C. Existence of long-range order in one and two dimensions. Phys. Rev. 1967, 158, 383–386.
  3. Miller, J. Ferromagnetism found in two-dimensional materials. Phys. Today 2017, 70, 16–19.
  4. Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.A.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.
  5. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.
  6. Jiang, S.W.; Li, L.Z.; Wang, Z.F.; Mak, K.F.; Jie Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.
  7. Liu, S.S.; Yuan, X.; Zou, Y.C.; Sheng, Y.; Huang, C.; Zhang, E.Z.; Ling, J.W.; Liu, Y.W.; Wang, W.Y.; Zhang, C.; et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl. 2017, 1, 30.
  8. Leon-Brito, N.; Bauer, E.D.; Ronning, F.; Thompson, J.D.; Movshovich, R. Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2. J. Appl. Phys. 2016, 120, 083903.
  9. May, A.F.; Calder, S.; Cantoni, C.; Cao, H.B.; McGuire, M.A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−XGeTe2. Phys. Rev. B 2016, 93, 014411.
  10. Zhu, J.X.; Janoschek, M.; Chaves, D.S.; Cezar, J.C.; Durakiewicz, T.; Ronning, F.; Sassa, Y.; Mansson, M.; Scott, B.L.; Wakeham, N.; et al. Electronic correlation and magnetism in the ferromagnetic metal Fe3GeTe2. Phys. Rev. B 2016, 93, 144404.
  11. Liu, Y.; Ivanovski, V.N.; Petrovic, C. Critical behavior of the van der Waals bonded ferromagnet Fe3−XGeTe2. Phys. Rev. B 2017, 96, 144429.
  12. Wang, Y.H.; Xian, C.; Wang, J.; Liu, B.J.; Ling, L.S.; Zhang, L.; Cao, L.; Qu, Z.; Xiong, Y.M. Anisotropic anomalous hall effect in triangular itinerant ferromagnet Fe3GeTe2. Phys. Rev. B 2017, 96, 134428.
  13. Yi, J.Y.; Zhuang, H.L.; Zou, Q.; Wu, Z.M.; Cao, G.X.; Tang, S.W.; Calder, S.A.; Kent, P.R.C.; Mandrus, D.; Gai, Z. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 2017, 4, 011005.
  14. Deng, Y.J.; Yu, Y.J.; Song, Y.C.; Zhang, J.Z.; Wang, N.Z.; Sun, Z.Y.; Yi, Y.F.; Wu, Y.Z.; Wu, S.W.; Zhu, J.Y.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.
  15. Fei, Z.Y.; Huang, B.; Malinowski, P.; Wang, W.B.; Song, T.C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.Y.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.
  16. Li, Q.; Yang, M.M.; Gong, C.; Chopdekar, R.V.; N’Diaye, A.T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E.; et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 2018, 18, 5974–5980.
  17. Tan, C.; Lee, J.; Jung, S.G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M.R.; McCulloch, D.G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.
  18. Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A.F. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018, 18, 4303–4308.
  19. Albarakati, S.; Tan, C.; Chen, Z.J.; Partridge, J.G.; Zheng, G.L.; Farrar, L.; Mayes, E.L.H.; Field, M.R.; Lee, C.G.; Wang, Y.H.; et al. Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphene/Fe3GeTe2 trilayer heterostructures. Sci. Adv. 2019, 5, eaaw0409.
  20. Alghamdi, M.; Lohmann, M.; Li, J.X.; Jothi, P.R.; Shao, Q.M.; Aldosary, M.; Su, T.; Fokwa, B.P.T.; Shi, J. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 2019, 19, 4400–4405.
  21. Calder, S.; Kolesnikov, A.I.; May, A.F. Magnetic excitations in the quasi-two-dimensional ferromagnet Fe3GeTe2 measured with inelastic neutron scattering. Phys. Rev. B 2019, 99, 094423.
  22. Johansen, O.; Risinggard, V.; Sudbo, A.; Linder, J.; Brataas, A. Current control of magnetism in two-dimensional Fe3GeTe2. Phys. Rev. Lett. 2019, 122, 217203.
  23. Kim, D.; Park, S.; Lee, J.; Yoon, J.; Joo, S.; Kim, T.; Min, K.J.; Park, S.Y.; Kim, C.; Moon, K.W.; et al. Antiferromagnetic coupling of van der waals ferromagnetic Fe3GeTe2. Nanotechnology 2019, 30, 245701.
  24. Idzuchi, H.; Llacsahuanga Allcca, A.E.; Pan, X.C.; Tanigaki, K.; Chen, Y.P. Increased curie temperature and enhanced perpendicular magneto anisotropy of Cr2Ge2Te6/NiO heterostructures. Appl. Phys. Lett. 2019, 115, 232403.
  25. Khan, I.; Hong, J.S. High curie temperature and strain-induced semiconductor-metal transition with spin reorientation transition in 2D CrPbTe3 monolayer. Nanotechnology 2020, 31, 195704.
  26. Selter, S.; Bastien, G.; Wolter, A.U.B.; Aswartham, S.; Büchner, B. Magnetic anisotropy and low-field magnetic phase diagram of the quasi-two-dimensional ferromagnet Cr2Ge2Te6. Phys. Rev. B 2020, 101, 014440.
  27. Šiškins, M.; Kurdi, S.; Lee, M.; Slotboom, B.J.M.; Xing, W.Y.; l Mañas-Valero, S.; Coronado, E.; Jia, S.; Han, W.; Sar, T.V.D.; et al. Nanomechanical probing and strain tuning of the curie temperature in suspended Cr2Ge2Te6-based heterostructures. npj 2D Mater. Appl. 2022, 6, 41.
  28. McCray, A.R.C.; Li, Y.; Qian, E.; Li, Y.; Wang, W.; Huang, Z.J.; Ma, X.M.; Liu, Y.Z.; Chung, D.Y.; Kanatzidis, M.G.; et al. Direct observation of magnetic bubble lattices and magnetoelastic effects in van der Waals Cr2Ge2Te6. Adv. Funct. Mater. 2023, 23, 2214203.
  29. Noah, A.; Zur, Y.; Fridman, N.; Singh, S.; Gutfreund, A.; Herrera, E.; Vakahi, A.; Remennik, S.; Huber, M.E.; Gazit, S.; et al. Nano-patterned magnetic edges in CrGeTe3 for quasi 1-D spintronic devices. ACS Appl. Nano Mater. 2023, 6, 8627–8634.
  30. O’Neill, A.; Rahman, S.; Zhang, Z.; Schoenherr, P.; Yildirim, T.J.; Gu, B.; Su, G.; Lu, Y.R.; Seidel, J. Enhanced room temperature ferromagnetism in highly strained 2D semiconductor Cr2Ge2Te6. ACS Nano 2023, 17, 735–742.
  31. Spachmann, S.; Selter, S.; Büchner, B.; Aswartham, S.; Klingeler, R. Strong uniaxial pressure dependencies evidencing spin-lattice coupling and spin fluctuations in Cr2Ge2Te6. Phys. Rev. B 2023, 107, 184421.
  32. Kritika, V.; Vavilapalli, D.S.; Arya, A.; Srivastava, S.K.; Singh, R.; Sagdeo, A.; Jha, S.N.; Kumar, K.; Soma Banik, S. Magneto-strain effects in 2D ferromagnetic van der Waal material CrGeTe3. Sci. Rep. 2023, 13, 8579.
  33. Li, T.X.; Jiang, S.W.; Sivadas, N.; Wang, Z.F.; Xu, Y.; Weber, D.; Goldberger, J.E.; Watanabe, K.; Taniguchi, T.; Fennie, C.J.; et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.
  34. Deng, Y.J.; Yu, Y.J.; Shi, M.Z.; Guo, Z.X.; Xu, Z.H.; Wang, J.; Chen, X.H.; Zhang, Y.B. Quantum anomalous hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, eaax8156.
  35. Deiseroth, H.J.; Aleksandrov, K.; Reiner, C.; Kienle, L.; Kremer, R.K. Fe3GeTe2 and Ni3GeTe2—Two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 2006, 1561–1567.
  36. Verchenko, V.Y.; Tsirlin, A.A.; Sobolev, A.V.; Presniakov, I.A.; Shevelkov, A.V. Ferromagnetic order, strong magnetocrystalline anisotropy, and magnetocaloric effect in the layered telluride Fe3−δGeTe2. Inorg. Chem. 2015, 54, 8598–8607.
  37. Chen, B.; Yang, J.H.; Wang, H.D.; Imai, M.; Ohta, H.; Michioka, C.; Yoshimura, K.; Fang, M.H. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2. J. Phys. Soc. Jpn. 2013, 82, 124711.
  38. Drachuck, G.; Salman, Z.; Masters, M.W.; Taufour, V.; Lamichhane, T.N.; Lin, Q.S.; Straszheim, W.E.; Bud’ko, S.L.; Canfield, P.C. Effect of nickel substitution on magnetism in the layered van der Waals ferromagnet Fe3GeTe2. Phys. Rev. B 2018, 98, 144434.
  39. May, A.F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.V.; Fei, Z.Y.; Liu, Y.H.; Xu, X.D.; McGuire, M.A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.
  40. You, Y.R.; Gong, Y.Y.; Li, H.; Li, Z.F.; Zhu, M.M.; Tang, J.X.; Liu, E.K.; Yao, Y.; Xu, G.Z.; Xu, F.; et al. Angular dependence of the topological hall effect in the uniaxial van der Waals ferromagnet Fe3GeTe2. Phys. Rev. B 2019, 100, 134441.
  41. Ke, J.Z.; Yang, M.; Xia, W.; Zhu, H.P.; Liu, C.B.; Chen, R.; Dong, C.; Liu, W.X.; Shi, M.Y.; Guo, Y.F.; et al. Magnetic and magneto-transport studies of two-dimensional ferromagnetic compound Fe3GeTe2. J. Phys. Condens. Matter 1995, 32, 405805.
  42. Ohta, T.; Sakai, K.; Taniguchi, H.; Driesen, B.; Okada, Y.; Kobayashi, K.; Niimi, Y. Enhancement of coercive field in atomically-thin quenched Fe5GeTe2. Appl. Phys. Express 2020, 13, 043005.
  43. Park, S.Y.; Kim, D.S.; Liu, Y.; Hwang, J.; Kim, Y.; Kim, W.; Kim, J.Y.; Petrovic, C.; Hwang, C.; Mo, S.K.; et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett. 2020, 20, 95–100.
  44. Jiang, H.N.; Zang, Z.H.; Wang, X.G.; Que, H.F.; Wang, L.; Si, K.P.; Zhang, P.; Ye, Y.; Gong, Y.J. Thickness-tunable growth of composition-controllable two-dimensional FexGeTe2. Nano Lett. 2022, 22, 9477–9484.
  45. Zhang, P.; Wang, X.G.; Jiang, H.N.; Zhang, Y.W.; He, Q.Q.; Si, K.P.; Li, B.X.; Zhao, F.F.; Cui, A.Y.; Wei, Y.; et al. Flux-assisted growth of atomically thin materials. Nat. Synth. 2022, 1, 864–872.
  46. Zhuang, H.L.; Kent, P.R.C.; Hennig, R.G. Strong anisotropy and magnetostriction in the two-dimensional stoner ferromagnet Fe3GeTe2. Phys. Rev. B 2016, 93, 134407.
  47. Huang, Y.; Pan, Y.H.; Yang, R.; Bao, L.H.; Meng, L.; Luo, H.L.; Cai, Y.Q.; Liu, G.D.; Zhao, W.J.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D Crystals. Nat. Commun. 2020, 11, 2453.
  48. Yu, W.; Wang, C.; Liang, S.J.; Ma, Z.C.; Xu, K.; Liu, X.W.; Zhang, L.L.; Admasu, A.S.; Cheong, S.W.; Wang, L.Z.; et al. Strain-sensitive magnetization reversal of a van der waals magnet. Adv. Mater. 2020, 23, 2004533.
  49. Niu, W.; Cao, Z.; Wang, Y.L.; Wu, Z.Q.; Zhang, X.Q.; Han, W.B.; Wei, L.J.; Wang, L.X.; Xu, Y.B.; Zou, Y.M.; et al. Antisymmetric magnetoresistance in Fe3GeTe2 nanodevices of inhomogeneous thickness. Phys. Rev. B 2021, 104, 125429.
  50. Ma, S.P.; Li, G.H.; Li, Z.; Zhang, Y.W.; Lu, H.L.; Gao, Z.S.; Wu, J.X.; Long, G.K.; Huang, Y. 2D magnetic semiconductor Fe3GeTe2 with few and single layers with a greatly enhanced intrinsic exchange bias by liquid-phase exfoliation. ACS Nano 2022, 16, 19439–19450.
  51. Nair, G.K.R.; Zhang, Z.W.; Hou, F.C.; Abdelaziem, A.; Xu, X.D.; Yang, S.W.Q.; Zhang, N.; Li, W.Q.; Zhu, C.; Wu, Y.; et al. Phase-pure two-dimensional FexGeTe2 magnets with near-room-temperature TC. Nano Res. 2021, 15, 457–464.
  52. Zhou, J.D.; Zhu, C.; Zhou, Y.; Dong, J.C.; Li, P.L.; Zhang, Z.W.; Wang, Z.; Lin, Y.C.; Shi, J.; Zhang, R.W.; et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. 2022, 22, 450–458.
  53. Liu, B.; Liu, S.S.; Yang, L.; Chen, Z.D.; Zhang, E.Z.; Li, Z.H.; Wu, J.; Ruan, X.Z.; Xiu, F.X.; Liu, W.Q.; et al. Light-tunable ferromagnetism in atomically thin Fe3GeTe2 driven by femtosecond laser pulse. Phys. Rev. Lett. 2020, 125, 267205.
  54. Liu, S.S.; Yang, K.; Liu, W.Q.; Zhang, E.Z.; Li, Z.H.; Zhang, X.Q.; Liao, Z.M.; Zhang, W.; Sun, J.B.; Yang, Y.K.; et al. Two-dimensional ferromagnetic superlattices. Nat. Sci. Rev. 2020, 7, 745–754.
  55. Roemer, R.; Liu, C.; Zou, K. Robust ferromagnetism in wafer-scale monolayer and multilayer Fe3GeTe2. npj 2D Mater. Appl. 2020, 4, 33.
  56. Wang, H.Y.; Liu, Y.J.; Wu, P.C.; Hou, W.J.; Jiang, Y.H.; Li, X.H.; Pandey, C.; Chen, D.D.; Yang, Q.; Wang, H.T.; et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator. ACS Nano 2020, 14, 10045–10053.
  57. Chen, X.H.; Wang, H.T.; Liu, H.J.; Wang, C.; Wei, G.S.; Fang, C.; Wang, H.C.; Geng, C.Y.; Liu, S.J.; Li, P.Y.; et al. Generation and control of terahertz spin currents in topology-induced 2D ferromagnetic Fe3GeTe2|Bi2Te3 heterostructures. Adv. Mater. 2022, 34, 2106172.
  58. Zhou, W.Y.; Bishop, A.J.; Zhu, M.L.; Lyalin, I.; Walko, R.; Gupta, J.A.; Hwang, J.; Kawakami, R.K. Kinetically controlled epitaxial growth of Fe3GeTe2 van der Waals ferromagnetic films. ACS Appl. Mater. Interfaces 2022, 4, 3190–3197.
  59. Wang, H.T.; Lu, H.C.; Guo, Z.X.; Li, A.; Wu, P.C.; Li, J.; Xie, W.R.; Sun, Z.M.; Li, P.; Damas, H.; et al. Interfacial engineering of ferromagnetism in wafer-scale van der Waals Fe4GeTe2 far above room temperature. Nat. Commun. 2023, 14, 2483.
  60. Lv, H.; Silva, A.; Figueroa, A.I.; Guillemard, C.; Aguirre, I.F.; Camosi, L.; Aballe, L.; Valvidares, M.; Valenzuela, S.O.; Schubert, J.; et al. Large-area synthesis of ferromagnetic Fe5−XGeTe2/graphene van der Waals heterostructures with curie temperature above room temperature. Small 2023, 19, 2302387.
  61. Seo, J.; Kim, D.Y.; An, E.S.; Kim, K.; Kim, G.Y.; Hwang, S.Y.; Kim, D.W.; Jang, B.G.; Kim, H.; Eom, G.; et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912.
  62. Tan, C.; Xie, W.Q.; Zheng, G.L.; Aloufi, N.; Albarakati, S.; Algarni, M.; Li, J.B.; Partridge, J.; Culcer, D.; Wang, X.L.; et al. Gate-controlled magnetic phase transition in a van der Waals magnet Fe5GeTe2. Nano Lett. 2021, 21, 5599–5605.
  63. Yang, X.X.; Zhou, X.D.; Feng, W.X.; Yao, Y.G. Strong magneto-optical effect and anomalous transport in the two-dimensional van der Waals magnets FenGeTe2 (N = 3, 4, 5). Phys. Rev. B 2021, 104, 104427.
  64. Liu, Q.X.; Xing, J.P.; Jiang, Z.; Guo, Y.; Jiang, X.; Qi, Y.; Zhao, J.J. Layer-dependent magnetic phase diagram in FenGeTe2 (3 ≤ N ≤ 7) ultrathin films. Commun. Phys. 2022, 5, 140.
  65. Ghosh, S.; Ershadrad, S.; Borisov, V.; Sanyal, B. Unraveling effects of electron correlation in two-dimensional FenGeTe2 (N = 3, 4, 5) by dynamical mean field theory. npj Comput. Mater. 2023, 9, 86.
  66. Ren, H.T.; Xiang, G. Morphology-dependent room-temperature ferromagnetism in undoped ZnO nanostructures. Nanomaterials 2021, 11, 3199.
  67. Ren, H.T.; Xiang, G. Strain-modulated magnetism in MoS2. Nanomaterials 2022, 12, 1929.
  68. Ren, H.T.; Xiang, G. Strain engineering of intrinsic ferromagnetism in 2D van der Waals materials. Nanomaterials 2023, 13, 2378.
  69. Ren, H.T.; Zhong, J.; Xiang, G. The progress on magnetic material thin films prepared using polymer-assisted deposition. Molecules 2023, 28, 5004.
  70. Joe, M.; Yang, U.; Lee, C.G. First-principles study of ferromagnetic metal Fe5GeTe2. Nano Mater. Sci. 2009, 1, 299–303.
  71. Hu, X.H.; Zhao, Y.H.; Shen, X.D.; Krasheninnikov, A.V.; Chen, Z.F.; Sun, L.T. Enhanced ferromagnetism and tunable magnetism in Fe3GeTe2 monolayer by strain engineering. ACS Appl. Mater. Interfaces 2020, 12, 26367–26373.
  72. Hu, L.; Zhou, J.; Hou, Z.P.; Su, W.T.; Yang, B.Z.; Li, L.W.; Yan, M. Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics. Mater. Horiz. 2021, 8, 3306–3314.
  73. Zhu, M.M.; You, Y.R.; Xu, G.Z.; Tang, J.X.; Gong, Y.Y.; Xu, F. Strain modulation of magnetic coupling in the metallic van der Waals magnet Fe3GeTe2. Intermetallics 2021, 131, 107085.
  74. Lim, M.; Choi, B.; Ghim, M.; Park, J.; Lee, H.W. Robustness of the intrinsic anomalous hall effect in Fe3GeTe2 to a uniaxial strain. Phys. Rev. Mater. 2023, 7, 064003.
  75. Miao, X.Y.; Li, S.; Jiang, Z.Y.; Zhang, C.M.; Du, A.J. A strain induced polar metal phase in a ferromagnetic Fe3GeTe2 monolayer. Phys. Chem. Chem. Phys. 2023, 25, 18826–18832.
  76. Wang, X.Q.; Li, Z.Y.; Zhang, M.; Hou, T.; Zhao, J.G.; Li, L.; Rahman, A.; Xu, Z.L.; Gong, J.B.; Chi, Z.H.; et al. Pressure-induced modification of the anomalous hall effect in layered Fe3GeTe2. Phys. Rev. B 2019, 100, 014407.
  77. O’Hara, D.J.; Brubaker, Z.E.; Stillwell, R.L.; O’Bannon, E.F.; Baker, A.A.; Weber, D.; Aji, L.B.B.; Goldberger, J.E.; Kawakami, R.K.; Zieve, R.J.; et al. Suppression of magnetic ordering in Fe-deficient Fe3−xGeTe2 from application of pressure. Phys. Rev. B 2020, 102, 014407.
  78. Wang, H.S.; Xu, R.Z.; Liu, C.; Wang, L.; Zhang, Z.; Su, H.M.; Wang, S.M.; Zhao, Y.S.; Liu, Z.J.; Yu, D.P.; et al. Pressure-dependent intermediate magnetic phase in thin Fe3GeTe2 flakes. J. Phys. Chem. Lett. 2020, 11, 7313–7319.
  79. Ding, S.L.; Liang, Z.Y.; Yang, J.; Yun, C.; Zhang, P.J.; Li, Z.F.; Xue, M.Z.; Liu, Z.; Tian, G.; Liu, F.Y.; et al. Ferromagnetism in two-dimensional Fe3GeTe2; tunability by hydrostatic pressure. Phys. Rev. B 2021, 103, 094429.
  80. Li, Z.Y.; Tang, M.; Huang, J.W.; Qin, F.; Ao, L.Y.; Shen, Z.W.; Zhang, C.R.; Chen, P.; Bi, X.Y.; Qiu, C.Y.; et al. Magnetic anisotropy control with curie temperature above 400 K in a van der Waals ferromagnet for spintronic device. Adv. Mater. 2022, 34, 2201209.
  81. Dang, N.T.; Kozlenko, D.P.; Lis, O.N.; Kichanov, S.E.; Lukin, Y.V.; Golosova, N.O.; Savenko, B.N.; Duong, D.L.; Phan, T.L.; Tran, T.A.; et al. High pressure-driven magnetic disorder and structural transformation in Fe3GeTe2: Emergence of a magnetic quantum critical point. Adv. Sci. 2023, 10, 2206842.
  82. Tengdin, P.; Gentry, C.; Blonsky, A.; Zusin, D.; Gerrity, M.; Hellbrück, L.; Hofherr, M.; Shaw, J.; Kvashnin, Y.; Delczeg-Czirjak, E.K.; et al. Direct light–induced spin transfer between different elements in a spintronic Heusler material via femtosecond laser excitation. Sci. Adv. 2020, 6, eaaz1100.
  83. Wang, Y.P.; Chen, X.Y.; Long, M.Q. Modifications of magnetic anisotropy of Fe3GeTe2 by the electric field effect. Appl. Phys. Lett. 2020, 116, 092404.
  84. Zhao, M.T.; Zhao, Y.Y.; Xi, Y.L.; Xu, H.; Feng, H.F.; Xu, X.; Hao, W.C.; Zhou, S.; Zhao, J.J.; Dou, S.X.; et al. Electric-field-driven negative differential conductance in 2D van der Waals ferromagnet Fe3GeTe2. Nano Lett. 2021, 21, 9233–9239.
  85. Zhang, L.M.; Huang, X.Y.; Dai, H.W.; Wang, M.S.; Cheng, H.; Tong, L.; Li, Z.; Han, X.T.; Wang, X.; Ye, L.; et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der Waals heterostructures. Adv. Mater. 2020, 34, 2002032.
  86. Chen, Q.; Liang, J.; Fang, B.; Zhu, Y.H.; Wang, J.C.; Lv, W.M.; Lv, W.X.; Cai, J.L.; Huang, Z.C.; Zhai, Y.; et al. Proximity effect of a two-dimensional van der Waals magnet Fe3GeTe2 on nickel films. Nanoscale 2021, 13, 14688–14693.
  87. Tu, Z.Y.; Zhou, T.; Ersevim, T.; Arachchige, H.S.; Hanbicki, A.T.; Friedman, A.L.; Mandrus, D.; Ouyang, M.; Žutić, I.; Gong, C. Spin–orbit coupling proximity effect in MoS2/Fe3GeTe2 heterostructures. Appl. Phys. Lett. 2022, 120, 043102.
  88. Zhang, L.M.; Song, L.Y.; Dai, H.W.; Yuan, J.H.; Wang, M.S.; Huang, X.Y.; Qiao, L.; Cheng, H.; Wang, X.; Ren, W.; et al. Substrate-modulated ferromagnetism of two-dimensional Fe3GeTe2. Appl. Phys. Lett. 2020, 116, 042402.
  89. Kim, S.J.; Choi, D.; Kim, K.M.; Lee, K.Y.; Kim, D.H.; Hong, S.; Suh, J.; Lee, C.; Kim, S.K.; Park, T.E.; et al. Interface engineering of magnetic anisotropy in van der Waals ferromagnet-based heterostructures. ACS Nano 2021, 15, 16395–16403.
  90. Xu, M.Q.; Kendrick, L.H.; Kale, A.; Gang, Y.Q.; Ji, G.; Scalettar, R.T.; Lebrat, M.; Greiner, M. Frustration- and doping-induced magnetism in a fermi–hubbard simulator. Nature 2023, 620, 971–976.
  91. Verchenko, V.Y.; Sokolov, S.S.; Tsirlin, A.A.; Sobolev, A.V.; Presniakov, I.A.; Bykov, M.A.; Kirsanova, M.A.; Shevelkov, A.V. New Fe-based layered telluride Fe3−δAs1−YTe2: Synthesis, crystal structure and physical properties. Dalton Trans. 2016, 45, 16938–16947.
  92. Yuan, D.D.; Jin, S.F.; Liu, N.; Shen, S.J.; Lin, Z.P.; Li, K.K.; Chen, X.L. Tuning magnetic properties in quasi-two-dimensional ferromagnetic Fe3-YGe1−XAsxTe2 (0 ≤ X ≤ 0.85). Mater. Res. Express 2017, 4, 036103.
  93. Tian, C.K.; Wang, C.; Ji, W.; Wang, J.C.; Xia, T.L.; Wang, L.; Liu, J.J.; Zhang, H.X.; Cheng, P. Domain wall pinning and hard magnetic phase in Co-doped bulk single crystalline Fe3GeTe2. Phys. Rev. B 2019, 99, 094429.
  94. Jang, S.W.; Yoon, H.; Jeong, M.Y.; Ryee, S.; Kim, H.S.; Han, M.J. Origin of ferromagnetism and the effect of doping on Fe3GeTe2. Nanoscale 2020, 12, 13501–13506.
  95. May, A.F.; Du, M.H.; Cooper, V.R.; McGuire, M.A. Tuning magnetic order in the van der Waals metal Fe5GeTe2 by cobalt substitution. Phys. Rev. Mater. 2020, 4, 074008.
  96. Tian, C.K.; Pan, F.H.; Xu, S.; Ai, K.; Xia, T.L.; Cheng, P. Tunable magnetic properties in van der Waals crystals (Fe1−XCox)5GeTe2. Appl. Phys. Lett. 2020, 116, 202402.
  97. Zhang, S.Z.; Liang, X.; Zhao, H.Y.; Chen, Y.H.; He, Q.; Liu, J.; Lv, L.; Yang, J.H.; Wu, H.L.; Chen, L. Tuning the magnetic properties of Fe3GeTe2 by doping with 3d transition-metals. Phys. Lett. A 2021, 396, 127219.
  98. May, A.F.; Yan, J.Q.; Hermann, R.; Du, M.H.; McGuire, M.A. Tuning the room temperature ferromagnetism in Fe5GeTe2 by arsenic substitution. 2D Mater. 2022, 9, 015013.
  99. Yang, J.; Quhe, R.; Liu, S.Q.; Peng, Y.X.; Sun, X.T.; Zha, L.; Wu, B.C.; Shi, B.W.; Yang, C.; Shi, J.J.; et al. Gate-tunable high magnetoresistance in monolayer Fe3GeTe2 spin valves. Phys. Chem. Chem. Phys. 2020, 22, 25730–25739.
  100. Zheng, G.L.; Xie, W.Q.; Albarakati, S.; Algarni, M.; Tan, C.; Wang, Y.H.; Peng, J.Y.; Partridge, J.; Farrar, L.; Yi, J.B.; et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 2020, 125, 047202.
  101. Chen, G.Y.; Zhang, Y.; Qi, S.M.; Chen, J.H. Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate. Chin. Phys. B 2021, 30, 097504.
  102. Tang, M.; Huang, J.W.; Qin, F.; Zhai, K.; Ideue, T.; Li, Z.Y.; Meng, F.H.; Nie, A.M.; Wu, L.L.; Bi, X.Y.; et al. Continuous manipulation of magnetic anisotropy in a van der Waals ferromagnet via electrical gating. Nat. Electron. 2023, 6, 28–36.
  103. Stahl, J.; Pomjakushin, V.; Johrendt, D. Ferromagnetism in Fe3−X−YNixGeTe2. Z. Naturforsch. 2016, 71, 273–276.
  104. Hwang, I.; Coak, M.J.; Lee, N.; Ko, D.S.; Oh, Y.; Jeon, I.; Son, S.; Zhang, K.X.; Kim, J.; Park, J.G. Hard ferromagnetic van-der-Waals metal (Fe,Co)(3)GeTe2: A new platform for the study of low-dimensional magnetic quantum criticality. J. Phys. Condens. Matter. 2019, 31, 50LT01.
  105. Shen, Z.X.; Bo, X.Y.; Cao, K.; Wan, X.G.; He, L.X. Magnetic ground state and electron-doping tuning of curie temperature in Fe3GeTe2: First-principles studies. Phys. Rev. B 2021, 103, 085102.
  106. Zhao, M.T.; Chen, B.B.; Xi, Y.L.; Zhao, Y.Y.; Xu, H.; Zhang, H.R.; Cheng, N.Y.; Feng, H.F.; Zhuang, J.C.; Pan, F.; et al. Kondo holes in the two-dimensional itinerant ising ferromagnet Fe3GeTe2. Nano Lett. 2021, 21, 6117–6123.
  107. Weber, D.; Trout, A.H.; McComb, D.W.; Goldberger, J.E. Decomposition-induced room-temperature magnetism of the Na-intercalated layered ferromagnet Fe3−xGeTe2. Nano Lett. 2019, 19, 5031–5035.
  108. Wu, Y.S.; Hu, Y.X.; Wang, C.; Zhou, X.; Hou, X.F.; Xia, W.; Zhang, Y.W.; Wang, J.H.; Ding, Y.F.; He, J.D.; et al. Fe-intercalation dominated ferromagnetism of van der Waals Fe3GeTe2. Adv. Mater. 2023, 35, 2302568.
  109. Yang, M.M.; Li, Q.; Chopdekar, R.V.; Stan, C.; Cabrini, S.; Choi, J.W.; Wang, S.; Wang, T.Y.; Gao, N.; Scholl, A.; et al. Highly enhanced curie temperature in Ga-implanted Fe3GeTe2 van der Waals material. Adv. Quantum Technol. 2020, 3, 2000017.
  110. Chen, D.; Sun, W.; Wang, W.X.; Li, X.N.; Li, H.; Cheng, Z.X. Twist-stacked 2D bilayer Fe3GeTe2 with tunable magnetism. J. Mater. Chem. C 2022, 10, 12741–12750.
  111. Ko, E. Hybridized bands and stacking-dependent band edges in ferromagnetic Fe3GeTe2/CrGeTe3 moiré heterobilayer. Sci. Rep. 2022, 12, 5101.
  112. Li, X.L.; Lu, J.T.; Zhang, J.; You, L.; Su, Y.R.; Tsymbal, E.Y. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 2019, 19, 5133–5139.
  113. Su, Y.R.; Li, X.L.; Zhu, M.; Zhang, J.; You, L.; Tsymbal, E.Y. Van der Waals multiferroic tunnel junctions. Nano Lett. 2021, 21, 175–181.
  114. Lin, Z.Z.; Chen, X. Ultrathin scattering spin filter and magnetic tunnel junction implemented by ferromagnetic 2D van der Waals material. Adv. Electron. Mater. 2020, 6, 1900968.
  115. Wang, Z.A.; Xue, W.S.; Yan, F.G.; Zhu, W.K.; Liu, Y.; Zhang, X.H.; Wei, Z.M.; Chang, K.; Yuan, Z.; Wang, K.Y. Selectively controlled ferromagnets by electric fields in van der Waals ferromagnetic heterojunctions. Nano Lett. 2023, 23, 710–717.
  116. Hu, C.; Zhang, D.; Yan, F.G.; Li, Y.C.; Lv, Q.S.; Zhu, W.K.; Wei, Z.M.; Chang, K.; Wang, K.Y. From two- to multi-state vertical spin valves without spacer layer based on Fe3GeTe2 van der Waals homo-junctions. Sci. Bull. 2020, 65, 1072–1077.
  117. Zhu, W.K.; Lin, H.L.; Yan, F.G.; Hu, C.; Wang, Z.A.; Zhao, L.X.; Deng, Y.C.; Kudrynskyi, Z.R.; Zhou, T.; Kovalyuk, Z.D.; et al. Large tunneling magnetoresistance in van der Waals ferromagnet/semiconductor heterojunctions. Adv. Mater. 2021, 7, 2104658.
  118. Zhao, B.; Ngaloy, R.; Ghosh, S.; Ershadrad, S.; Gupta, R.; Ali, K.; Hoque, A.M.; Karpiak, B.; Khokhriakov, D.; Polley, C.; et al. A room-temperature spin-valve with van der Waals ferromagnet Fe5GeTe2/graphene heterostructure. Adv. Mater. 2023, 35, 2209113.
  119. Wang, X.; Tang, J.; Xia, X.X.; He, C.L.; Zhang, J.W.; Liu, Y.Z.; Wan, C.H.; Fang, C.; Guo, C.Y.; Yang, W.L.; et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904.
  120. Li, G.H.; Ma, S.P.; Li, Z.; Zhang, Y.W.; Diao, J.L.; Xia, L.; Zhang, Z.W.; Huang, Y. High-quality ferromagnet Fe3GeTe2 for high-efficiency electromagnetic wave absorption and shielding with wideband radar cross section reduction. ACS Nano 2022, 16, 7861–7879.
  121. Zhang, Y.; Lu, H.Y.; Zhu, X.G.; Tan, S.Y.; Feng, W.; Liu, Q.; Zhang, W.; Chen, Q.Y.; Liu, Y.; Luo, X.B.; et al. Emergence of kondo lattice behavior in a van der Waals itinerant ferromagnet Fe3GeTe2. Sci. Adv. 2018, 4, eaao6791.
  122. Canfield, P.C.; Fisk, Z. Growth of single crystals from metallic fluxes. Philos. Mag. B 1992, 65, 1117–1123.
  123. Canfield, P.C.; Fisher, I.R. High-temperature solution growth of intermetallic single crystals and quasicrystals. J. Cryst. Growth 2001, 225, 155–161.
  124. Yan, J.Q.; Sales, B.C.; Susner, M.A.; McGuire, M.A. Flux growth in a horizontal configuration: An analog to vapor transport growth. Phys. Rev. Mater. 2017, 1, 023402.
  125. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666.
  126. Chahal, S.; Ranjan, P.; Motlag, M.; Yamijala, S.S.R.K.C.; Late, D.J.; Sadki, E.H.S.; Cheng, G.J.; Kumar, P. Borophene via micromechanical exfoliation. Adv. Mater. 2021, 33, 2102039.
  127. Hsu, C.L.; Lin, C.T.; Huang, J.H.; Chu, C.W.; Wei, K.H.; Li, L.J. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 2012, 6, 5031–5039.
  128. Moon, J.Y.; Kim, M.; Kim, S.I.; Xu, S.G.; Choi, J.H.; Whang, D.; Watanabe, K.; Taniguchi, T.; Park, D.S.; Seo, J.; et al. Layer-engineered large-area exfoliation of graphene. Sci. Adv. 2020, 6, eabc6601.
  129. Magda, G.Z.; Pető, J.; Dobrik, G.; Hwang, C.; Biró, L.P.; Tapasztó, L. Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 2015, 5, 14714.
  130. Ding, D.; Wang, S.; Xia, Y.P.; Li, P.; He, D.L.; Zhang, J.Q.; Zhao, S.W.; Yu, G.H.; Zheng, Y.H.; Cheng, Y.; et al. Atomistic insight into the epitaxial growth mechanism of single-crystal two-dimensional transition-metal dichalcogenides on Au (111) substrate. ACS Nano 2022, 16, 17356–17364.
  131. Yang, P.F.; Zhang, S.Q.; Pan, S.Y.; Tang, B.; Liang, Y.; Zhao, X.X.; Zhang, Z.P.; Shi, J.P.; Huan, Y.H.; Shi, Y.P.; et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111). ACS Nano 2020, 14, 5036–5045.
  132. Reidy, K.; Varnavides, G.; Thomsen, J.D.; Kumar, A.; Pham, T.; Blackburn, A.M.; Anikeeva, P.; Narang, P.; LeBeau, J.M.; Ross, F.M. Direct imaging and electronic structure modulation of moiré superlattices at the 2D/3D interface. Nat. Commun. 2021, 12, 1290.
  133. Gao, Y.; Hong, Y.L.; Yin, L.C.; Wu, Z.T.; Yang, Z.Q.; Chen, M.L.; Liu, Z.B.; Ma, T.; Sun, D.M.; Ni, Z.H. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 2017, 29, 1700990.
  134. May, A.F.; Yan, J.Q.; McGuire, M.A. A practical guide for crystal growth of van der Waals layered materials. J. Appl. Phys. 2020, 128, 051101.
  135. Wang, X.W.; Wu, P.Y. Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films. ACS Appl. Mater. Interfaces 2018, 10, 2504–2514.
  136. Liu, S.S.; Li, Z.H.; Yang, K.; Zhang, E.Z.; Narayan, A.; Zhang, X.Q.; Zhu, J.Y.; Liu, W.Q.; Liao, Z.M.; Kudo, M.; et al. Tuning 2D magnetism in Fe3+XGeTe2 films by element doping. Nat. Sci. Rev. 2021, 9, 117.
  137. Ly, T.T.; Park, J.; Kim, K.; Ahn, H.B.; Lee, N.J.; Kim, K.; Park, T.E.; Duvjir, G.; Lam, N.H.; Jang, K.; et al. Direct observation of Fe-Ge ordering in Fe5−XGeTe2 crystals and resultant helimagnetism. Adv. Funct. Mater. 2021, 31, 2009758.
  138. Lv, X.W.; Pei, K.; Yang, C.D.; Qin, G.; Liu, M.; Zhang, J.C.; Che, R.C. Controllable topological magnetic transformations in the thickness-tunable van der Waals ferromagnet Fe5GeTe2. ACS Nano 2022, 16, 19319–19327.
  139. Yamagami, K.; Fujisawa, Y.; Driesen, B.; Hsu, C.H.; Kawaguchi, K.; Tanaka, H.; Kondo, T.; Zhang, Y.; Wadati, H.; Araki, K.; et al. Itinerant ferromagnetism mediated by giant spin polarization of the metallic ligand band in the van der Waals magnet Fe5GeTe2. Phys. Rev. B 2021, 103, L060403.
  140. Wu, X.C.; Lei, L.; Yin, Q.W.; Zhao, N.N.; Li, M.; Wang, Z.L.; Liu, Q.X.; Song, W.H.; Ma, H.; Ding, P.F.; et al. Direct observation of competition between charge order and itinerant ferromagnetism in the van der Waals crystal Fe5−xGeTe2. Phys. Rev. B 2021, 104, 165101.
  141. Ohta, T.; Tokuda, M.; Iwakiri, S.; Sakai, K.; Driesen, B.; Okada, Y.; Kobayashi, K.; Niimi, Y. Butterfly-shaped magnetoresistance in van der Waals ferromagnet Fe5GeTe2. AIP Adv. 2021, 11, 025014.
  142. Zhang, H.R.; Chen, R.; Zhai, K.; Chen, X.; Caretta, L.; Huang, X.X.; Chopdekar, R.V.; Cao, J.H.; Sun, J.R.; Yao, J.; et al. Itinerant ferromagnetism in van der Waals Fe5−xGeTe2 crystals above room temperature. Phys. Rev. B 2020, 102, 144425.
  143. Stahl, J.; Shlaen, E.; Johrendt, D. The van der Waals ferromagnets Fe5−δGeTe2 and Fe5−δ−xNixGeTe2—Crystal structure, stacking faults, and magnetic properties. Z. Anorg. Allg. Chem. 2018, 644, 1923–1929.
  144. Li, Z.X.; Xia, W.; Su, H.; Yu, Z.H.; Fu, Y.P.; Chen, L.M.; Wang, X.; Yu, N.; Zou, Z.Q.; Guo, Y.F. Magnetic critical behavior of the van der Waals Fe5GeTe2 crystal with near room temperature ferromagnetism. Sci. Rep. 2020, 10, 15345.
  145. Sun, Y.F.; Liu, K. Strain engineering in functional 2-dimensional materials. J. Appl. Phys. 2019, 125, 082402.
  146. Ren, H.T.; Xiang, G.; Lu, J.T.; Zhang, X.; Zhang, L. Biaxial strain-mediated room temperature ferromagnetism of ReS2 web buckles. Adv. Electron. Mater. 2019, 5, 1900814.
  147. Pajda, M.; Kudrnovský, J.; Turek, I.; Drchal, V.; Bruno, P. Ab initio calculations of exchange interactions, spin-wave stiffness constants, and curie temperatures of Fe, Co, and Ni. Phys. Rev. B 2001, 64, 174402.
  148. Wang, Q.H.; Bedoya-Pinto, A.; Blei, M.; Dismukes, A.H.; Hamo, A.; Jenkins, S.; Koperski, M.; Liu, Y.; Sun, Q.C.; Telford, E.J.; et al. The magnetic genome of two-dimensional van der Waals materials. ACS Nano 2022, 16, 6960–7079.
  149. Torelli, D.; Olsen, T. Calculating critical temperatures for ferromagnetic order in two-dimensional materials. 2D Mater. 2019, 6, 015028.
  150. Evans, R.F.L.; Atxitia, U.; Chantrell, R.W. Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium properties of elemental ferromagnets. Phys. Rev. B 2015, 91, 144425.
  151. Asselin, P.; Evans, R.F.L.; Barker, J.; Chantrell, R.W.; Yanes, R.; Chubykalo-Fesenko, O.; Hinzke, D.; Nowak, U. Constrained Monte Carlo method and calculation of the temperature dependence of magnetic anisotropy. Phys. Rev. B 2010, 82, 054415.
  152. Lin, Z.S.; Lohmann, M.; Ali, Z.A.; Tang, C.; Li, J.X.; Xing, W.Y.; Zhong, J.N.; Jia, S.; Han, W.; Coh, S.; et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6. Phys. Rev. Mater. 2018, 2, 051004.
  153. Sun, Y.; Xiao, R.C.; Lin, G.T.; Zhang, R.R.; Ling, L.S.; Ma, Z.W.; Luo, X.; Lu, W.J.; Sun, Y.P.; Sheng, Z.G. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Appl. Phys. Lett. 2018, 112, 072409.
  154. Song, T.C.; Fei, Z.Y.; Yankowitz, M.; Lin, Z.; Jiang, Q.N.; Hwangbo, K.; Zhang, Q.; Sun, B.S.; Taniguchi, T.; Watanabe, K.; et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302.
  155. Yang, L.Y.; Sinitsyn, N.A.; Chen, W.B.; Yuan, J.T.; Zhang, J.; Lou, J.; Crooker, S.A. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 2015, 11, 830–834.
  156. Jones, A.M.; Yu, H.Y.; Ghimire, N.J.; Wu, S.F.; Aivazian, G.; Ross, J.S.; Zhao, B.; Yan, J.Q.; Mandrus, D.G.; Xiao, D.; et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.
  157. Weisheit, M.; Fähler, S.; Marty, A.; Souche, Y.; Poinsignon, C.; Givord, D. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 2007, 315, 349–351.
  158. Chiba, D.; Fukami, S.; Shimamura, K.; Ishiwata, N.; Kobayashi, K.; Ono, T. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater. 2011, 10, 853–856.
  159. Ovchinnikov, I.V.; Wang, K.L. Theory of electric-field-controlled surface ferromagnetic transition in metals. Phys. Rev. B 2009, 79, 020402.
  160. Maruyama, T.; Shiota, Y.; Nozaki, T.; Ohta, K.; Toda, N.; Mizuguchi, M.; Tulapurkar, A.A.; Shinjo, T.; Shiraishi, M.; Mizukami, S.; et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 2009, 4, 158–161.
  161. Tong, Q.J.; Chen, M.X.; Yao, W. Magnetic proximity effect in a van der Waals moire superlattice. Phys. Rev. Appl. 2019, 12, 024031.
  162. Dolui, K.; Petrovic, M.D.; Zollner, K.; Plechac, P.; Fabian, J.; Nikolic, B.K. Proximity spin-orbit torque on a two-dimensional magnet within van der Waals heterostructure: Current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI3. Nano Lett. 2020, 20, 2288–2295.
  163. Karpiak, B.; Cummings, A.W.; Zollner, K.; Vila, M.; Khokhriakov, D.; Hoque, A.M.; Dankert, A.; Svedlindh, P.; Fabian, J.; Roche, S.; et al. Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene. 2D Mater. 2020, 7, 015026.
  164. Tang, C.L.; Zhang, Z.W.; Lai, S.; Tan, Q.H.; Gao, W.B. Magnetic proximity effect in graphene/CrBr3 van der Waals heterostructures. Adv. Mater. 2020, 32, 1908498.
  165. Zhong, D.; Seyler, K.L.; Linpeng, X.Y.; Wilson, N.P.; Taniguchi, T.; Watanabe, K.; McGuire, M.A.; Fu, K.C.; Xiao, D.; Yao, W.; et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 2020, 15, 187–191.
  166. Liu, N.S.; Zhou, S.; Zhao, J.J. High-curie-temperature ferromagnetism in bilayer CrI3 on bulk semiconducting substrates. Phys. Rev. Mater. 2020, 4, 094003.
  167. Dong, X.J.; You, J.Y.; Zhang, Z.; Gu, B.; Su, G. Great enhancement of curie temperature and magnetic anisotropy in two-dimensional van der Waals magnetic semiconductor heterostructures. Phys. Rev. B 2020, 102, 144443.
  168. Ren, H.T.; Xiang, G. Recent progress in research on ferromagnetic rhenium disulfide. Nanomaterials 2022, 19, 3451.
  169. Ren, H.T.; Xiang, G.; Gu, G.X.; Zhang, X. Enhancement of ferromagnetism of ZnO: Co nanocrystals by post-annealing treatment: The role of oxygen interstitials and zinc vacancies. Mater. Lett. 2014, 122, 256–260.
  170. Chen, M.Y.; Hu, C.; Luo, X.F.; Hong, A.J.; Yu, T.; Yuan, C.L. Ferromagnetic behaviors in monolayer MoS2 introduced by nitrogen-doping. Appl. Phys. Lett. 2020, 116, 073102.
  171. Tan, H.; Hu, W.; Wang, C.; Ma, C.; Duan, H.L.; Yan, W.S.; Cai, L.; Guo, P.; Sun, Z.H.; Liu, Q.H.; et al. Intrinsic ferromagnetism in Mn-substituted MoS2 nanosheets achieved by supercritical hydrothermal reaction. Small 2017, 13, 1701389.
  172. Wang, J.Q.; Sun, F.; Yang, S.; Li, Y.T.; Zhao, C.; Xu, M.W.; Zhang, Y.; Zeng, H. Robust ferromagnetism in Mn-doped MoS2 nanostructures. Appl. Phys. Lett. 2016, 109, 092401.
  173. Gweon, H.K.; Lee, S.Y.; Kwon, H.Y.; Jeong, J.; Chang, H.J.; Kim, K.W.; Qiu, Z.Q.; Ryu, H.; Jang, C.; Choi, J.W. Exchange bias in weakly interlayer-coupled van der Waals magnet Fe3GeTe2. Nano Lett. 2021, 21, 1672–1678.
  174. Jiang, P.; Wang, C.; Chen, D.; Zhong, Z.; Yuan, Z.; Lu, Z.-Y.; Ji, W. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 2019, 99, 144401.
  175. Sivadas, N.; Satoshi Okamoto, S.; Xu, X.D.; Fennie, C.J.; Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 2018, 18, 7658–7664.
  176. Cao, Y.; Fatemi, V.; Fang, S.A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.
  177. Akram, M.; Erten, O. Skyrmions in twisted van der Waals magnets. Phys. Rev. B 2021, 103, L140406.
  178. Tong, Q.J.; Liu, F.; Xiao, J.; Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 2018, 18, 7194–7199.
  179. Wang, C.; Gao, Y.; Lv, H.Y.; Xu, X.D.; Xiao, D. Stacking domain wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 2020, 125, 247201.
  180. Ghader, D. Magnon magic angles and tunable hall conductivity in 2D twisted ferromagnetic bilayers. Sci. Rep. 2020, 10, 15069.
  181. Xie, H.C.; Luo, X.P.; Ye, G.H.; Ye, Z.P.; Ge, H.W.; Sung, S.H.; Rennich, E.; Yan, S.H.; Fu, Y.; Tian, S.J.; et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat. Phys. 2021, 18, 30–36.
  182. Guo, H.W.; Hu, Z.; Liu, Z.B.; Tian, J.G. Stacking of 2D materials. Adv. Funct. Mater. 2020, 31, 2007810.
  183. Nguyen, G.D.; Lee, J.; Berlijn, T.; Zou, Q.; Hus, S.M.; Park, J.; Gai, Z.; Lee, C.; Li, A.P. Visualization and manipulation of magnetic domains in the quasi-two-dimensional material Fe3GeTe2. Phys. Rev. B 2018, 97, 014425.
  184. Yin, S.Q.; Zhao, L.; Song, C.; Huang, Y.; Gu, Y.D.; Chen, R.Y.; Zhu, W.X.; Sun, Y.M.; Jiang, W.J.; Zhang, X.Z.; et al. Evolution of domain structure in Fe3GeTe2. Chin. Phys. B 2021, 30, 027505.
  185. Moriya, T. Theory of itinerant electron magnetism. J. Magn. Magn. Mater. 1991, 100, 261–271.
  186. Wu, B.C.; Fang, S.B.; Yang, J.; Liu, S.Q.; Peng, Y.X.; Li, Q.H.; Lin, Z.C.; Shi, J.J.; Yang, W.Y.; Luo, Z.C.; et al. High-performance FexGeTe2-based (X = 4 or 5) van der Waals magnetic yunnel junctions. Phys. Rev. Appl. 2023, 19, 024037.
  187. Wang, H.Y.; Wu, H.; Zhang, J.; Liu, Y.J.; Chen, D.D.; Pandey, C.; Yin, J.L.; Wei, D.H.; Lei, N.; Shi, S.Y.; et al. Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators. Nat. Commun. 2023, 14, 5173.
  188. Ding, B.; Li, Z.F.; Xu, G.Z.; Li, H.; Hou, Z.P.; Liu, E.K.; Xi, X.K.; Xu, F.; Yao, Y.; Wang, W.H. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 2020, 20, 868–873.
  189. Park, T.E.; Peng, L.C.; Liang, J.H.; Hallal, A.; Yasin, F.S.; Zhang, X.C.; Song, K.M.; Kim, S.J.; Kim, K.; Weigand, M.; et al. Neel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Phys. Rev. B 2021, 103, 104410.
  190. Liu, C.; Jiang, J.W.; Zhang, C.H.; Wang, Q.P.; Zhang, H.; Zheng, D.X.; Li, Y.; Ma, Y.C.; Algaidi, H.; Gao, X.S.; et al. Controllable skyrmionic phase transition between Néel skyrmions and Bloch skyrmionic bubbles in van der Waals ferromagnet Fe3−δGeTe2. Adv. Sci. 2023, 10, 2303443.
More
Video Production Service