Effects of Chemical/Physical Parameters on Embryo Development: Comparison
Please note this is a comparison between Version 2 by Sirius Huang and Version 1 by Alessandro Bartolacci.

In the field of assisted reproductive technology (ART), human embryo culture plays a pivotal role in the success of in vitro fertilization (IVF) treatments. During human embryo culture, chemical and physical parameters play a crucial role in embryo development and viability.

  • temperature
  • oxygen
  • humidity
  • light
  • oil overlay
  • pH
  • embryo development
  • IVF outcomes

1. Introduction

In the field of assisted reproductive technology (ART), human embryo culture plays a pivotal role in the success of in vitro fertilization (IVF) treatments. The delicate and intricate nature of preimplantation human development demands a meticulously controlled environment. During human embryo culture, chemical and physical parameters play a crucial role in embryo development and viability [1,2,3][1][2][3]. These parameters encompass a range of environmental conditions, including temperature, oxygen concentration, humidity conditions (HC), the use of oil overlay, and light exposure, all of which are carefully regulated within the laboratory setting. Moreover, these parameters directly influence the embryo metabolic activities [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18]. It is well established that temperature ensures proper enzymatic reactions and cellular functions [4]. In addition, oxygen plays a vital role in supporting embryo metabolism and development [5]. While a consensus has been reached regarding the utilization of 5% oxygen levels compared to atmospheric levels (20%) [6], conflicting results have emerged when employing biphasic oxygen conditions (5–2%). Although the use of biphasic oxygen conditions appears to offer advantages in terms of blastulation, inconsistent findings have been reported in relation to clinical pregnancy [7,8][7][8].
Oil overlay has several important functions and benefits: (i) gas exchange, (ii) temperature stability, (iii) pH regulation, (iv) preventing contamination, and (v) minimizing disturbance. The inherent chemical and physical properties of the oil exert a significant influence on this vital aspect. These properties play a crucial role in shaping and determining the outcome, emphasizing the importance of understanding and considering them when working with human embryo culture [9]. Light exposure during mammalian embryo culture has garnered significant interest. However, despite several investigations, the impact of light on embryos remains a subject of ongoing debate, with inconclusive findings [10,11][10][11]. Recently, due to the introduction of dry incubators, several studies have investigated the impact of humidity conditions (HC) and dry conditions (DC) on IVF outcomes. While basic research studies show increased osmolality in culture medium under DC [12[12][13][14],13,14], these conditions do not seem to have negative effects on biological and clinical outcomes such as blastulation and pregnancy rates [16,17][16][17]. By carefully controlling these parameters, embryologists create an environment that mimics the natural conditions required for healthy embryo development. Nevertheless, despite these efforts, our culture conditions are unlikely to mirror precisely the dynamic environment experienced by embryos in vivo. Concerns exist that sub-optimal culture conditions could affect embryo developmental competence. Therefore, the meticulous quality control of these parameters is critical in maximizing the efficiency of treatments.

2. Oxygen

Oxygen plays a vital role in supporting embryo metabolism and development. In the female reproductive tract, oxygen concentration is typically around 2–8% [18]. Thus, in vivo, the oxygen concentration is different from the atmospheric levels. Several studies have investigated oxygen concentration during human embryo culture. One study showed higher blastulation, pregnancy, and live birth rates using 5% oxygen concentration [19], in contrast to another study that showed no improvements on fertilization, blastulation, and pregnancy rates [20]. Previous studies showed no significant difference in terms of fertilization, pregnancy, and implantation rates between 5% and 20% oxygen concentrations at the cleavage stage [21,22][21][22]. On the other hand, several studies showed higher top quality embryos, blastulation rate, and live birth in favor of 5% oxygen than 20% [23,24,25][23][24][25]. No difference was found in fertilization rate between 5% and 20% oxygen tension, but an increased number of top quality embryos on day 3, higher blastocyst formation, clinical pregnancy, and implantation rates in favor of 5% [26], according to one study that showed an overall increase in live birth when embryos were cultured in low oxygen tension [27]. Finally, a meta-analysis showed an improvement in the live birth rate of 43% during embryo culture in 5% oxygen concentration [6]. Accordingly, the latest recommendations provided from the ESHRE guidelines suggest the use of low oxygen concentration [1]. Interestingly, recent studies investigated the use of sequential oxygen tension (5% until day 3 and, subsequently, 2% from day 3 to day 5). This is probably to mimic the natural conditions of in vivo embryo development. A sibling zygote randomized control trial showed, although a small sample size, better blastulation rate when oxygen tension is reduced from 5% to 2% on day 3 for extended embryo culture (day 5) [7], in contrast to two studies that showed a similar blastocyst formation rate between 2%, 5% and 20% oxygen tension [8,28][8][28]. One report showed that blastocyst utilization rate is higher in 2% oxygen tension group [29], according to another study that showed improvement in blastocyst formation but only in low-quality human embryos cultured with 2% oxygen [30]. No significant difference were found between 5% and 3% oxygen tension in fertilization, blastulation and euploid blastocyst [31]. Recently, two studies suggested that biphasic oxygen culture could be an alternative strategy to increase the euploid blastocyst [32], blastocyst formation, and cumulative live birth rate [33]. Researchers analyzed 18 studies for the LS calculation, 10 focused on comparing between 5% and a 20% oxygen concentration, resulting in a LS of 7. Additionally, eight studies examined the comparison between monophasic (5%) and biphasic (5–2%) culture oxygen tension, resulting in a LS of 5. These findings suggest there is no evidence that biphasic culture (5–2%) is better than monophasic culture (5%), especially in terms of clinical outcomes (Table 1).
Table 1.
Literature score of different chemical and physical parameters.

References

  1. ESHRE Guideline Group on Good Practice in IVF Labs; De los Santos, M.J.; Apter, S.; Coticchio, G.; Debrock, S.; Lundin, K.; Plancha, C.E.; Prados, F.; Rienzi, L.; Verheyen, G.; et al. Revised guidelines for good practice in IVF laboratories (2015). Hum. Reprod. 2016, 31, 685–686.
  2. Wale, P.L.; Gardner, D.K. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum. Reprod. Update 2016, 22, 2–22.
  3. Swain, J.E.; Carrell, D.; Cobo, A.; Meseguer, M.; Rubio, C.; Smith, G.D. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil. Steril. 2016, 105, 571–587.
  4. Leese, H.J.; Baumann, C.G.; Brison, D.R.; McEvoy, T.G.; Sturmey, R.G. Metabolism of the viable mammalian embryo: Quietness revisited. Mol. Hum. Reprod. 2008, 14, 667–672.
  5. Bedaiwy, M.A.; Falcone, T.; Mohamed, M.S.; Aleem, A.A.; Sharma, R.K.; Worley, S.E.; Thornton, J.; Agarwal, A. Differential growth of human embryos in vitro: Role of reactive oxygen species. Fertil. Steril. 2004, 82, 593–600.
  6. Bontekoe, S.; Mantikou, E.; van Wely, M.; Seshadri, S.; Repping, S.; Mastenbroek, S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst. Rev. 2012, 11, CD008950.
  7. Kaser, D.J.; Bogale, B.; Sarda, V.; Farland, L.V.; Williams, P.L.; Racowsky, C. Randomized controlled trial of low (5%) versus ultralow (2%) oxygen for extended culture using bipronucleate and tripronucleate human preimplantation embryos. Fertil. Steril. 2018, 109, 1030–1037.
  8. Yang, Y.; Xu, Y.; Ding, C.; Khoudja, R.Y.; Lin, M.; Awonuga, A.O.; Dai, J.; Puscheck, E.E.; Rappolee, D.A.; Zhou, C. Comparison of 2, 5, and 20 % O2 on the development of post-thaw human embryos. J. Assist. Reprod. Genet. 2016, 33, 919–927.
  9. Scarica, C.; Monaco, A.; Borini, A.; Pontemezzo, E.; Bonanni, V.; De Santis, L.; Zacà, C.; Coticchio, G. Use of mineral oil in IVF culture systems: Physico-chemical aspects, management, and safety. J. Assist. Reprod. Genet. 2022, 39, 883–892.
  10. Soares, C.A.; Annes, K.; Dreyer, T.R.; Magrini, T.; Sonoda, M.T.; da Silva Martinho, H.; Nichi, M.; Ortiz d’Àvila Assumpção, M.E.; Milazzotto, M.P. Photobiological effect of low-level laser irradiation in bovine embryo production system. J. Biomed. Opt. 2014, 19, 35006.
  11. Bognar, Z.; Csabai, T.J.; Pallinger, E.; Balassa, T.; Farkas, N.; Schmidt, J.; Görgey, E.; Berta, G.; Szekeres-Bartho, J.; Bodis, J. The effect of light exposure on the cleavage rate and implantation capacity of preimplantation murine embryos. J. Reprod. Immunol. 2019, 132, 21–28.
  12. Swain, J.E. Decisions for the IVF laboratory: Comparative analysis of embryo culture incubators. Reprod. Biomed. Online 2014, 28, 535–547.
  13. Holmes, R.; Swain, J.E. Humidification of a dry benchtop IVF incubator: Impact on culture media parameters. Fertil. Steril. 2018, 110, 52–53.
  14. Yumoto, K.; Iwata, K.; Sugishima, M.; Yamauchi, J.; Nakaoka, M.; Tsuneto, M.; Shimura, T.; Flaherty, S.; Mio, Y. Unstable osmolality of microdrops cultured in non-humidified incubators. J. Assist. Reprod. Genet. 2019, 36, 1571–1577.
  15. Fawzy, M.; AbdelRahman, M.Y.; Zidan, M.H.; Abdel Hafez, F.F.; Abdelghafar, H.; Al-Inany, H.; Bedaiwy, M.A. Humid versus dry incubator: A prospective, randomized, controlled trial. Fertil. Steril. 2017, 108, 277–283.
  16. Valera, M.Á.; Albert, C.; Marcos, J.; Larreategui, Z.; Bori, L.; Meseguer, M. A propensity score-based, comparative study assessing humid and dry time-lapse incubation, with single-step medium, on embryo development and clinical outcomes. Hum. Reprod. 2022, 37, 1980–1993.
  17. Bartolacci, A.; Borini, A.; Cimadomo, D.; Fabozzi, G.; Maggiulli, R.; Lagalla, C.; Pignataro, D.; dell’Aquila, M.; Parodi, F.; Patria, G.; et al. Humidified atmosphere in a time-lapse embryo culture system does not improve ongoing pregnancy rate: A retrospective propensity score model study derived from 496 first ICSI cycles. J. Assist. Reprod. Genet. 2023, 40, 1429–1435.
  18. Fischer, B.; Bavister, B.D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 1993, 99, 673–679.
  19. Waldenström, U.; Engström, A.B.; Hellberg, D.; Nilsson, S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil. Steril. 2009, 91, 2461–2465.
  20. Kea, B.; Gebhardt, J.; Watt, J.; Westphal, L.M.; Lathi, R.B.; Milki, A.A.; Behr, B. Effect of reduced oxygen concentrations on the outcome of in vitro fertilization. Fertil. Steril. 2007, 87, 213–216.
  21. Dumoulin, J.C.; Vanvuchelen, R.C.; Land, J.A.; Pieters, M.H.; Geraedts, J.P.; Evers, J.L. Effect of oxygen concentration on in vitro fertilization and embryo culture in the human and the mouse. Fertil. Steril. 1995, 63, 115–119.
  22. Dumoulin, J.C.; Meijers, C.J.; Bras, M.; Coonen, E.; Geraedts, J.P.; Evers, J.L. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum. Reprod. 1999, 14, 465–469.
  23. Ciray, H.N.; Aksoy, T.; Yaramanci, K.; Karayaka, I.; Bahceci, M. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: A prospective randomized survey on sibling oocytes. Fertil. Steril. 2009, 91, 1459–1461.
  24. Kovacic, B.; Vlaisavljević, V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: A prospective study on sibling oocytes. Reprod. Biomed. Online 2008, 17, 229–236.
  25. Kovacic, B.; Sajko, M.C.; Vlaisavljević, V. A prospective, randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil. Steril. 2010, 94, 511–519.
  26. Guo, N.; Li, Y.; Ai, J.; Gu, L.; Chen, W.; Liu, Q. Two different concentrations of oxygen for culturing precompaction stage embryos on human embryo development competence: A prospective randomized sibling-oocyte study. Int. J. Clin. Exp. Pathol. 2014, 15, 6191–6198.
  27. Meintjes, M.; Chantilis, S.J.; Douglas, J.D.; Rodriguez, A.J.; Guerami, A.R.; Bookout, D.M.; Barnett, B.D.; Madden, J.D. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum. Reprod. 2009, 24, 300–307.
  28. De Munck, N.; Janssens, R.; Segers, I.; Tournaye, H.; Van de Velde, H.; Verheyen, G. Influence of ultra-low oxygen (2%) tension on in-vitro human embryo development. Hum. Reprod. 2019, 34, 228–234.
  29. Ferrieres-Hoa, A.; Roman, K.; Mullet, T.; Gala, A.; Hamamah, S. Ultra-low (2%) oxygen tension significantly improves human blastocyst development and quality. Hum. Reprod. 2017, 32, i26.
  30. Li, M.; Xue, X.; Shi, J. Ultralow Oxygen Tension (2%) Is Beneficial for Blastocyst Formation of In Vitro Human Low-Quality Embryo Culture. Biomed. Res. Int. 2022, 1, 9603185.
  31. Papadopoulou, M.I.; Karagianni, M.; Vorniotaki, A.; Oraiopoulou, C.; Christophoridis, N.; Papatheodorou, A.; Chatziparasidou, A. Low 5% vs. ultra-low 3% O2 concentration on embryo culture: Is there any difference in quality and ploidy? Hum. Reprod. 2022, 37, 270.
  32. Chen, H.H.; Lee, C.I.; Huang, C.C.; Cheng, E.H.; Lee, T.H.; Lin, P.Y.; Chen, C.H.; Lee, M.S. Biphasic oxygen tension promotes the formation of transferable blastocysts in patients without euploid embryos in previous monophasic oxygen cycles. Sci. Rep. 2023, 13, 4330.
  33. Brouillet, S.; Baron, C.; Barry, F.; Andreeva, A.; Haouzi, D.; Gala, A.; Ferriéres-Hoa, A.; Loup, V.; Anahory, T.; Ranisavljevic, N.; et al. Biphasic (5–2%) oxygen concentration strategy significantly improves the usable blastocyst and cumulative live birth rates in in vitro fertilization. Sci. Rep. 2021, 11, 22461.
  34. Bahat, A.; Eisenbach, M.; Tur-Kaspa, I. Periovulatory increase in temperature difference within the rabbit oviduct. Hum. Reprod. 2005, 20, 2118–2121.
  35. Higdon, H.L.; Blackhurst, D.W.; Boone, W.R. Incubator management in an assisted reproductive technology laboratory. Fertil. Steril. 2008, 89, 703–710.
  36. Zenzes, M.T.; Bielecki, R.; Casper, R.F.; Leibo, S.P. Effects of chilling to 0 degrees C on the morphology of meiotic spindles in human metaphase II oocytes. Fertil. Steril. 2001, 75, 769–777.
  37. Wang, W.H.; Meng, L.; Hackett, R.J.; Oldenbourg, R.; Keefe, D.L. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil. Steril. 2002, 77, 1274–1277.
  38. Wang, W.H.; Meng, L.; Hackett, R.J.; Odenbourg, R.; Keefe, D.L. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum. Reprod. 2001, 16, 2374–2378.
  39. Hong, K.H.; Lee, H.; Forman, E.J.; Upham, K.M.; Scott, R.T. Examining the temperature of embryo culture in in vitro fertilization: A randomized controlled trial comparing traditional core temperature (37 °C) to a more physiologic, cooler temperature (36 °C). Fertil. Steril. 2014, 102, 767–773.
  40. De Munck, N.; Janssens, R.; Santos-Ribeiro, S.; Tournaye, H.; Van de Velde, H.; Verheyen, G. The effect of different temperature conditions on human embryosin vitro: Two sibling studies. Reprod. Biomed. Online 2019, 38, 508–515.
  41. Fawzy, M.; Emad, M.; Gad, M.A.; Sabry, M.; Kasem, H.; Mahmoud, M.; Bedaiwy, M.A. Comparing 36.5 °C with 37 °C for human embryo culture: A prospective randomized controlled trial. Reprod. Biomed. Online 2018, 36, 620–626.
  42. Baak, N.A.; Cantineau, A.E.; Farquhar, C.; Brison, D.R. Temperature of embryo culture for assisted reproduction. Cochrane Database Syst. Rev. 2019, 9, CD012192.
  43. Geraghty, R.J.; Capes-Davis, A.; Davis, J.M.; Downward, J.; Freshney, R.I.; Knezevic, I.; Lovell-Badge, R.; Masters, J.R.W.; Meredith, J.; Stacey, J.N.; et al. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer 2014, 111, 1021–1046.
  44. Fujiwara, M.; Takahashi, K.; Izuno, M.; Duan, Y.R.; Kazono, M.; Kimura, F.; Noda, Y. Effect of micro-environment maintenance on embryo culture after in-vitro fertilization: Comparison of top-load mini incubator and conventional front-load incubator. J. Assist. Reprod. Genet. 2007, 24, 5–9.
  45. Chi, H.J.; Park, J.S.; Yoo, C.S.; Kwak, S.J.; Son, H.J.; Kim, S.G.; Sim, C.H.; Lee, K.H.; Koo, D.B. Effect of evaporation-induced osmotic changes in culture media in a dry-type incubator on clinical outcomes in in vitro fertilization-embryo transfer cycles. Clin. Exp. Reprod. Med. 2020, 47, 284–292.
  46. Swain, J.E.; Graham, C.; Kile, R.; Schoolcraft, W.B.; Krisher, R.L. Media evaporation in a dry culture incubator; effect of dish, drop size and oil on media osmolality. Fertil. Steril. 2018, 110, e363–e364.
  47. Mestres, E.; García-Jiménez, M.; Casals, A.; Cohen, J.; Acacio, M.; Villamar, A.; Matia-Alguè, Q.; Calderón, G.; Costa-Borges, N. Factors of the human embryo culture system that may affect media evaporation and osmolality. Hum. Reprod. 2021, 36, 605–613.
  48. Swain, J.E.; Schoolcraft, W.B.; Bossert, N.; Batcheller, A.E. Media osmolality changes over 7 days following culture in a non-humidified benchtop incubator. Fertil. Steril. 2016, 106, 362.
  49. Del Gallego, R.; Albert, C.; Marcos, J.; Larreategui, Z.; Alegre, L.; Meseguer, M. Humid vs. dry embryo culture conditions on embryo development: A continuous embryo monitoring assessment. Fertil. Steril. 2018, 110, e362–e363.
  50. Swain, J.E. Controversies in ART: Considerations and risks for uninterrupted embryo culture. Reprod. Biomed. Online 2019, 39, 19–26.
  51. Mestres, E.; Matia-Algué, Q.; Villamar, A.; Casals, A.; Acacio, M.; García-Jiménez, M.; Martínez-Casado, A.; Castelló, C.; Calderón, G.; Costa-Borges, N. Characterization and comparison of commercial oils used for human embryo culture. Hum. Reprod. 2022, 37, 212–225.
  52. Schumacher, A.; Kesdogan, J.; Fischer, B. DNA ploidy abnormalities in rabbit preimplantation embryos are not increased by conditions associated with in vitro culture. Mol. Reprod. Dev. 1998, 50, 30–34.
  53. Fischer, B.; Schumacher, A.; Hegele-Hartung, C.; Beier, H.M. Potential risk of light and room temperature exposure to preimplantation embryos. Fertil. Steril. 1988, 50, 938–944.
  54. Barlow, P.; Puissant, F.; Van der Zwalmen, P.; Vandromme, J.; Trigaux, P.; Leroy, F. In vitro fertilization, development, and implantation after exposure of mature mouse oocytes to visible light. Mol. Reprod. Dev. 1992, 33, 297–302.
  55. Bedford, J.M.; Dobrenis, A. Light exposure of oocytes and pregnancy rates after their transfer in the rabbit. J. Reprod. Fertil. 1989, 85, 477–481.
  56. Kruger, T.F.; Stander, F.S. The effect on cleavage of two-cell mouse embryos after a delay in embryo retrieval in a human in vitro fertilization programme. S. Afr. Med. J. 1985, 68, 743–744.
  57. Hegele-Hartung, C.; Schumacher, A.; Fischer, B. Ultrastructure of preimplantation rabbit embryos exposed to visible light and room temperature. Anat. Embryol. 1988, 178, 229–241.
  58. Nakayama, T.; Noda, Y.; Goto, Y.; Mori, T. Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology 1994, 41, 499–510.
  59. Hegele-Hartung, C.; Schumacher, A.; Fischer, B. Effects of visible light and room temperature on the ultrastructure of preimplantation rabbit embryos: A time course study. Anat. Embryol. 1991, 183, 559–571.
  60. Li, R.; Pedersen, K.S.; Liu, Y.; Pedersen, H.S.; Lægdsmand, M.; Rickelt, L.F.; Kühl, M.; Callesen, H. Effect of red light on the development and quality of mammalian embryos. J. Assist. Reprod. Genet. 2014, 31, 795–801.
  61. Bodis, J.; Gödöny, K.; Várnagy, Á.; Kovács, K.; Koppán, M.; Nagy, B.; Erostyák, J.; Herczeg, R.; Szekeres-Barthó, J.; Gyenesei, A.; et al. How to reduce the potential harmful effects of light on blastocyst development during IVF. Med. Princ. Pract. 2020, 29, 558–564.
  62. Daniel, J.C. Clevage of mammalian ova inhibited by visible light. Nature 1964, 201, 316–317.
  63. Korhonen, K.; Sjövall, S.; Viitanen, J.; Ketoja, E.; Makarevich, A.; Peippo, J. Viability of bovine embryos following exposure to the green filtered or wider bandwidth light during in vitro embryo production. Hum. Reprod. 2009, 24, 308–314.
  64. Oh, S.J.; Gong, S.P.; Lee, S.T.; Lee, E.J.; Lim, J.M. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil. Steril. 2007, 88, 1150–1157.
  65. Sakharova, N.Y.; Mezhevikina, L.M.; Smirnov, A.A.; Vikhlyantseva, E.F. Analysis of the effects of blue light on morphofunctional status of in vitro cultured blastocysts from mice carrying gene of enhanced green fluorescent protein (EGFP). Bull. Exp. Biol. Med. 2014, 157, 162–166.
  66. Jeon, Y.R.; Baek, S.; Lee, E.S.; Lee, S.T. Effects of light wavelength exposure during in vitro blastocyst production on preimplantation development of mouse embryos. Reprod. Fertil. Dev. 2022, 34, 1052–1057.
  67. Dinkins, M.B.; Stallknecht, D.E.; Howerth, E.W.; Brackett, B.G. Photosensitive chemical and laser light treatments decrease epizootic hemorrhagic disease virus associated with in vitro produced bovine embryos. Theriogenology 2001, 55, 1639–1655.
  68. Squirrell, J.M.; Lane, M.; Bavister, B.D. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol. Reprod. 2001, 64, 1845–1854.
  69. Dale, B.; Menezo, Y.; Cohen, J.; Di Matteo, L.; Wilding, M. Intracellular pH regulation in the human oocyte. Hum. Reprod. 1998, 13, 964–970.
  70. Phillips, K.P.; Léveillé, M.C.; Claman, P.; Baltz, J.M. Intracellular pH regulation in human preimplantation embryos. Hum. Reprod. 2000, 15, 896–904.
  71. Lane, M.; Bavister, B.D. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol. Reprod. Dev. 1999, 54, 396–401.
  72. Hentemann, M.; Mousavi, K.; Bertheussen, K. Differential pH in embryo culture. Fertil. Steril. 2011, 95, 1291–12944.
  73. Edwards, L.J.; Williams, D.A.; Gardner, D.K. Intracellular pH of the mouse preimplantation embryo: Amino acids act as buffers of intracellular pH. Hum. Reprod. 1998, 13, 3441–3448.
More
ScholarVision Creations