HFOT in the Perioperative Setting and Procedural Sedation: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by LOU'I AL-HUSINAT.

High-flow oxygen therapy (HFOT) is a respiratory support system, through which high flows of humidified and heated gas are delivered to hypoxemic patients.

  • high-flow nasal cannula
  • high-flow nasal oxygen
  • perioperative setting

1. Introduction

Various types of respiratory support systems are applied to enhance oxygenation and ventilation in patients experiencing acute hypoxemic respiratory failure (AHRF) in the perioperative period. Among these, there are low-flow oxygen-delivery systems such as nasal cannulas or facial masks and high-flow-oxygen-delivery systems such as venturi masks or non-rebreathers. High-flow oxygen therapy (HFOT) is a respiratory support system that is gaining growing attention worldwide [1]. HFOT is when high flows of heated and humidified gas are administered to the upper airways at flow rates that are higher than those provided by conventional oxygenation methods. A high flow of heated and humidified air can be utilized either independently or in conjunction with oxygen in order to produce varying levels of inspiratory oxygen fractions (FiO2) that span from 0.21 to 1 [2]. HFOT demonstrated serious advantages in improving gas exchange and enhancing patients’ tolerance to oxygen therapy, sometimes reducing the rate of re-intubation [3].

2. Mechanisms of Action of HFOT

The advantages of employing HFOT are manifold. Firstly, when administered through nasal cannulas, this method provides a simple and comfortable means of delivering oxygen, eliminating the need for a face mask. This allows patients to eat, drink, and speak while receiving therapy, enhancing overall convenience. Additionally, HFOT confers various benefits to the respiratory system, some of which have been extensively studied, while others are not yet fully understood [14][4]. One of the primary benefits is the delivery of oxygen at high flow rates (up to 60 L/min), which effectively reduces the volume of anatomical dead space by flushing out exhaled carbon dioxide from the upper airways. This minimizes the re-breathing of carbon dioxide (CO2) [15,16][5][6]. Furthermore, the high flow rates prevent significant mixing with room air, ensuring a closer match between the supplied and designated fraction of inspired oxygen (FiO2) [17][7]. Moreover, it promotes an enhanced breathing pattern characterized by a lowered respiratory rate and an increased tidal volume [1,18,19][1][8][9]. This effect combined with the preconditioned oxygen, which is preheated to 37 °C and humidified to a level of 44 mg H2O/L (100% relative humidity) by the nasal cannula device, eases resistance during inhalation, resulting in decreased respiratory effort and lower metabolic demand on the patient. Consequently, the work of breathing (WOB) is minimized [20,21][10][11]. Additionally, while HFOT is not a closed system, the substantial flow rate it generates restricts air outflow during exhalation and elevates airway pressure [22][12]. This leads to a greater volume of air remaining in the lungs post exhalation compared to low-flow oxygen therapy. The application of positive pressure assists in the recruitment of alveoli and lessens the mismatch between ventilation and perfusion [21,23,24][11][13][14]. See Table 1.
Table 1.
Summary of the physiological benefits of HFOT and their mechanisms.

References

  1. Park, S.Y. High-flow nasal cannula for respiratory failure in adult patients. Acute Crit. Care. 2021, 36, 275–285.
  2. Cortegiani, A.; Accurso, G.; Mercadante, S.; Giarratano, A.; Gregoretti, C. High flow nasal therapy in perioperative medicine: From operating room to general ward. BMC Anesthesiol. 2018, 18, 166.
  3. Godoy, D.A.; Longhitano, Y.; Fazzini, B.; Robba, C.; Battaglini, D. High flow nasal oxygen and awake prone positioning—Two allies against COVID-19: A systematic review. Respir. Physiol. Neurobiol. 2023, 310, 104015.
  4. Spicuzza, L.; Schisano, M. High-flow nasal cannula oxygen therapy as an emerging option for respiratory failure: The present and the future. Ther. Adv. Chronic Dis. 2020, 11, 2040622320920106.
  5. Möller, W.; Celik, G.; Feng, S.; Bartenstein, P.; Meyer, G.; Eickelberg, O.; Schmid, O.; Tatkov, S.; Biselli, P.J.C.; Kirkness, J.P.; et al. Nasal high flow clears anatomical dead space in upper airway models. J. Appl. Physiol. 2015, 118, 1525–1532.
  6. Benchetrit, G. Breathing pattern in humans: Diversity and individuality. Respir. Physiol. 2000, 122, 23–129.
  7. Renda, T.; Corrado, A.; Iskandar, G.; Pelaia, G.; Abdalla, K.; Navalesi, P. High-flow nasal oxygen therapy in intensive care and anaesthesia. Br. J. Anaesth. 2018, 120, 18–27.
  8. Corley, A.; Caruana, L.; Barnett, A.; Tronstad, O.; Fraser, J. Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients. Br. J. Anaesth. 2011, 107, 998–1004.
  9. Riera, J.; Pérez, P.; Cortés, J.; Roca, O.; Masclans, J.R.; Rello, J. Effect of high-flow nasal cannula and body position on end-expiratory lung volume: A cohort study using electrical impedance tomography. Respir. Care 2013, 58, 589–596.
  10. Nolasco, S.; Manti, S.; Leonardi, S.; Vancheri, C.; Spicuzza, L. High-Flow Nasal Cannula Oxygen Therapy: Physiological Mechanisms and Clinical Applications in Children. Front. Med. 2022, 9, 920549.
  11. Kotwinski, D.; Paton, L.; Langford, R. The role of high flow nasal oxygen therapy in anaesthesia. Br. J. Hosp. Med. 2018, 79, 620–627.
  12. Spoletini, G.; Cortegiani, A.; Critical, C.G.-T. Physiopathological rationale of using high-flow nasal therapy in the acute and chronic setting: A narrative review. Trends Anaesth. Crit. Care 2019, 26–27, 22–29.
  13. Parke, R.; McGuinness, S.; Eccleston, M. Nasal high-flow therapy delivers low level positive airway pressure. Br. J. Anaesth. 2009, 103, 886–890.
  14. Groves, N.; Tobin, A. High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust. Crit. Care 2007, 20, 126–131.
  15. Natalini, D.; Grieco, D.L.; Santantonio, M.T.; Mincione, L.; Toni, F.; Anzellotti, G.M.; Eleuteri, D.; Di Giannatale, P.; Antonelli, M.; Maggiore, S.M. Physiological effects of high-flow oxygen in tracheostomized patients. Ann. Intensive Care 2019, 9, 114.
  16. Gander, S.; Frascarolo, P.; Suter, M.; Spahn, D.R.; Magnusson, L. Positive end-expiratory pressure during induction of general anesthesia increases duration of nonhypoxic apnea in morbidly obese patients. Obstet. Anesth. Dig. 2005, 100, 580–584.
  17. Nishimura, M. High-flow nasal cannula oxygen therapy in adults: Physiological benefits, indication, clinical benefits, and adverse effects. Respir. Care 2016, 61, 529–541.
  18. Ashraf-Kashani, N.; Kumar, R. High-flow nasal oxygen therapy. BJA Educ. 2017, 17, 63–67.
  19. Jaber, S.; Michelet, P.; Chanques, G. Role of non-invasive ventilation (NIV) in the perioperative period. Best. Pract. Res. Clin. Anaesthesiol. 2010, 24, 253–265.
  20. Raineri, S.M.; Cortegiani, A.; Accurso, G.; Procaccianti, C.; Vitale, F.; Caruso, S.; Giarrjatano, A.; Gregoretti, C. Efficacy and Safety of Using High-Flow Nasal Oxygenation in Patients Undergoing Rapid Sequence Intubation. Turk. J. Anaesthesiol. Reanim. 2017, 45, 335–339.
  21. Badiger, S.; John, M.; Fearnley, R.; Ahmad, I. Optimizing oxygenation and intubation conditions during awake fibre-optic intubation using a high-flow nasal oxygen-delivery system. Br. J. Anaesth. 2015, 115, 629–632.
  22. Jaber, S.; Monnin, M.; Girard, M.; Conseil, M.; Cisse, M.; Carr, J.; Mahul, M.; Delay, J.M.; Belafia, F.; Chanques, G.; et al. Apnoeic oxygenation via high-flow nasal cannula oxygen combined with non-invasive ventilation preoxygenation for intubation in hypoxaemic patients in the intensive care unit: The single-centre, blinded, randomised controlled OPTINIV trial. Intensive Care Med. 2016, 42, 1877–1887.
  23. Vourc’h, M.; Asfar, P.; Volteau, C.; Bachoumas, K.; Clavieras, N.; Egreteau, P.Y.; Asehnoune, K.; Mercat, A.; Reignier, J.; Jaber, S.; et al. High-flow nasal cannula oxygen during endotracheal intubation in hypoxemic patients: A randomized controlled clinical trial. Intensive Care Med. 2015, 41, 1538–1548.
  24. Guitton, C.; Ehrmann, S.; Volteau, C.; Colin, G.; Maamar, A.; Jean-Michel, V.; Mahe, P.J.; Landais, M.; Brule, N.; Bretonnière, C.; et al. Nasal high-flow preoxygenation for endotracheal intubation in the critically ill patient: A randomized clinical trial. Intensive Care Med. 2019, 45, 447–458.
  25. Lopez-Delgado, J.C.; Esteve, F.; Manez, R.; Torrado, H.; Carrio, M.L.; Rodríguez-Castro, D.; Farrero, E.; Javierre, C.; Skaltsa, K.; Ventura, J.L. The influence of body mass index on outcomes in patients undergoing cardiac surgery: Does the obesity paradox really exist? PLoS ONE 2015, 10, e0118858.
  26. Littleton, S.; Tulaimat, A. The effects of obesity on lung volumes and oxygenation. Respir. Med. 2017, 124, 15–20.
  27. Zhou, R.; Wang, H.T.; Gu, W. Efficacy of High-Flow Nasal Cannula versus Conventional Oxygen Therapy in Obese Patients during the Perioperative Period: A Systematic Review and Meta. Can. Respir. J. 2022, 2022, 1531.
  28. Wu, Y.-M.; Li, C.-C.; Huang, S.-Y.; Su, Y.-H.; Wang, C.-W.; Chen, J.-T.; Shen, S.C.; Lo, P.H.; Yang, Y.L.; Cherng, Y.G. A Comparison of Oxygenation Efficacy between High-Flow Nasal Cannulas and Standard Facemasks during Elective Tracheal Intubation for Patients with Obesity: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 1700.
  29. Schutzer-Weissmann, J.; Wojcikiewicz, T.; Karmali, A.; Lukosiute, A.; Sun, R.; Kanji, R.; Ahmed, A.R.; Purkayastha, S.; Brett, S.J.; Cousins, J. Apnoeic oxygenation in morbid obesity: A randomised controlled trial comparing facemask and high-flow nasal oxygen delivery. Br. J. Anaesth. 2023, 130, 103–110.
  30. Rosén, J.; Frykholm, P.; Fors, D. High-flow nasal cannula versus face mask for preoxygenation in obese patients: A randomised controlled trial. Wiley Online Libr. 2021, 65, 1381–1389.
  31. Zhou, S.; Zhou, Y.; Cao, X.; Ni, X.; Du, W.; Xu, Z.; Liu, Z. The efficacy of high flow nasal oxygenation for maintaining maternal oxygenation during rapid sequence induction in pregnancy: A prospective randomised clinical trial. Eur. J. Anaesthesiol. 2021, 38, 1052–1058.
  32. Mushambi, M.C.; Kinsella, S.M.; Popat, M.; Swales, H.; Ramaswamy, K.K.; Winton, A.L.; Quinn, A.C. Obstetric Anaesthetists’ Association and Difficult Airway Society guidelines for the management of difficult and failed tracheal intubation in obstetrics. Anaesthesia 2015, 70, 1286–1306.
  33. Singh, A.; Dhir, A.; Jain, K.; Obstetric, A.T.-J. Role of high flow nasal cannula (HFNC) for pre-oxygenation among pregnant patients: Current evidence and review of literature. J. Obstet. Anaesth. Crit. Care 2022, 12, 99–104.
  34. Tan, P.C.F.; Millay, O.J.; Leeton, L.; Dennis, A.T. High-flow humidified nasal preoxygenation in pregnant women: A prospective observational study. Br. J. Anaesth. 2019, 122, 86–91.
  35. Au, K.; Shippam, W.; Taylor, J.; Albert, A.; Chau, A. Determining the effective pre-oxygenation interval in obstetric patients using high-flow nasal oxygen and standard flow rate facemask: A biased-coin up-down sequential allocation trial. Anaesthesia 2020, 75, 609–616.
  36. Pillai, A.; Daga, V.; Lewis, J.; Mahmoud, M.; Mushambi, M.; Bogod, D. High-flow humidified nasal oxygenation vs. standard face mask oxygenation. Anaesthesia 2016, 71, 1280–1283.
  37. Osman, Y.; Abd El-Raof, R. High flow nasal cannula oxygen preventing deoxygenation during induction of general anaesthesia in caesarean section: A randomized controlled trial. Trends Anaesth. Crit. Care 2021, 40, 23–27.
  38. Sjöblom, A.; Hedberg, M.; Johansson, S.; Henningsson, R.; Soumpasis, I.; Lafrenz, H.; Törnberg, D.; Lodenius, Å.; Fagerlund, M.J. Pre-oxygenation using high-flon section in general anaesthesia: A prospective, multi-centre, pilot study. Acta Anaesthesiol. Scand. 2023, 67, 1028–1036.
  39. Weiser, T.G.; Regenbogen, S.E.; Thompson, K.D.; Haynes, A.B.; Lipsitz, S.R.; Berry, W.R.; Gawande, A.A. An estimation of the global volume of surgery: A modelling strategy based on available data. Lancet 2008, 372, 139–144.
  40. Shiho, D.; Kusaka, Y.; Nakano, S.; Umegaki, O. The short-term efficacy of high flow nasal oxygen therapy on cardiovascular surgical patients: A randomized crossover trial. BMC Anesthesiol. 2022, 22, 331.
  41. Maggiore, S.M.; Idone, F.A.; Vaschetto, R.; Festa, R.; Cataldo, A.; Antonicelli, F.; Montini, L.; De Gaetano, A.; Navalesi, P.; Antonelli, M. Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am. J. Respir. Crit. Care Med. 2014, 190, 282–288.
  42. Cour, M.; Guérin, C.; Degivry, F.; Argaud, L.; Louis, B. Delivery of high flow oxygen through nasal vs. tracheal cannulas: A bench study. Front. Med. 2023, 9, 1068428.
  43. Cabrini, L.; Moizo, E.; Nicelli, E.; Licini, G.; Turi, S.; Landoni, G.; Turi, S.; Landoni, G.; Silvani, P.; Zangrillo, A. Noninvasive ventilation outside the intensive care unit from the patient point of view: A pilot study. Respir. Care 2012, 57, 704–709.
  44. Stéphan, F.; Barrucand, B.; Petit, P.; Rézaiguia-Delclaux, S.; Médard, A.; Delannoy, B.; Cosserant, B.; Flicoteaux, G.; Imbert, A.; Pilorge, C.; et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: A randomized clinical trial. JAMA 2015, 313, 2331–2339.
  45. Zhu, Y.; Yin, H.; Zhang, R.; Wei, J. High-flow nasal cannula oxygen therapy vs conventional oxygen therapy in cardiac surgical patients: A meta-analysis. J. Crit. Care 2017, 38, 123–128.
  46. Licker, M.; Widikker, I.; Robert, J.; Frey, J.-G.; Spiliopoulos, A.; Ellenberger, C.; Schweizer, A.; Tschopp, J.-M. Operative mortality and respiratory complications after lung resection for cancer: Impact of chronic obstructive pulmonary disease and time trends. Ann. Thorac. Surg. 2006, 81, 1830–1837.
  47. Alam, N.; Park, B.; Wilton, A.; Seshan, V.; Bains, M.S.; Downey, R.J.; Flores, R.M.; Rizk, N.; Rusch, V.W.; Amar, D. Incidence and risk factors for lung injury after lung cancer resection. Ann. Thorac. Surg. 2007, 84, 1085–1091.
  48. Yu, Y.; Qian, X.; Liu, C.; Zhu, C. Effect of High-Flow Nasal Cannula versus Conventional Oxygen Therapy for Patients with Thoracoscopic Lobectomy after Extubation. Can. Respir. J. 2017, 2017, 7894631.
  49. Pennisi, M.A.; Bello, G.; Congedo, M.T.; Montini, L.; Nachira, D.; Ferretti, G.M.; Meacci, E.; Gualtieri, E.; De Pascale, G.; Grieco, D.L.; et al. Early nasal high-flow versus Venturi mask oxygen therapy after lung resection: A randomized trial. Crit. Care. 2019, 23, 68.
  50. Karalapillai, D.; Weinberg, L.; Peyton, P.; Ellard, L.; Hu, R.; Pearce, B.; Tan, C.O.; Story, D.; O’Donnell, M.; Hamilton, P.; et al. Effect of Intraoperative Low Tidal Volume vs Conventional Tidal Volume on Postoperative Pulmonary Complications in Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA 2020, 324, 848–858.
  51. Pearse, R.; Ranieri, M.; Abbott, T.; Pakats, M.L.; Piervincenzi, E.; Patel, A.; Kahan, B.; Rhodes, A.; Dias, P.; Hewson, R.; et al. Postoperative continuous positive airway pressure to prevent pneumonia, re-intubation, and death after major abdominal surgery (PRISM): A multicentre, open-label, randomised, phase 3 trial. Lancet Respir. Med. 2021, 9, 1221–1230.
  52. Futier, E.; Paugam-Burtz, C.; Godet, T.; Khoy-Ear, L.; Rozencwajg, S.; Delay, J.M.; Verzilli, D.; Dupuis, J.; Chanques, G.; Bazin, J.E.; et al. Effect of early postextubation high-flow nasal cannula vs conventional oxygen therapy on hypoxaemia in patients after major abdominal surgery: A French multicentre randomised controlled trial (OPERA). Intensive Care Med. 2016, 42, 1888–1898.
  53. Jin, B.; Yao, M.; Shen, W.; Fu, L.; Liu, P.; Zheng, X.; Zhan, T.; Luo, L. Effect of post-extubation high-flow nasal cannula combined with respiratory training versus conventional oxygen therapy on postoperative pulmonary complications in patients after major abdominal surgery: Protocol for a single-centre randomized controlled. Trials 2023, 24, 396.
  54. Gaspari, R.; Spinazzola, G.; Ferrone, G.; Soave, P.M.; Pintaudi, G.; Cutuli, S.L.; Avolio, A.W.; Conti, G.; Antonelli, M. High-flow nasal cannula versus standard oxygen therapy after extubation in liver transplantation: A matched controlled study. Respir. Care 2020, 65, 21–28.
  55. Zhu, Y.; Yin, H.; Zhang, R.; Ye, X.; Wei, J. High-flow nasal cannula oxygen therapy versus conventional oxygen therapy in patients after planned extubation: A systematic review and meta-analysis. Crit. Care 2019, 23, 180.
  56. Granton, D.; Chaudhuri, D.; Wang, D.; Einav, S.; Helviz, Y.; Mauri, T.; Mancebo, J.; Frat, J.-P.; Jog, S.; Hernandez, G.; et al. High-Flow Nasal Cannula Compared with Conventional Oxygen Therapy or Noninvasive Ventilation Immediately Postextubation: A Systematic Review and Meta-Analysis. Crit. Care Med. 2020, 48, E1129–E1136.
  57. Vicari, J.J. Sedation in the Ambulatory Endoscopy Center: Optimizing Safety, Expectations and Throughput. Gastrointest. Endosc. Clin. N. Am. 2016, 26, 539–552.
  58. Tobias, J.D.; Leder, M. Procedural sedation: A review of sedative agents, monitoring, and management of complications. Saudi J. Anaesth. 2011, 5, 395–410.
  59. Amornyotin, S. Sedation-related complications in gastrointestinal endoscopy. World J. Gastrointest. Endosc. 2013, 5, 527–533.
  60. Qadeer, M.A.; Lopez, A.R.; Dumot, J.A.; Vargo, J.J. Hypoxemia during moderate sedation for gastrointestinal endoscopy: Causes and associations. Digestion 2011, 84, 37–45.
  61. Holm, C.; Christensen, M.; Rasmussen, V.; Schulze, S.; Rosenberg, J. Hypoxaemia and myocardial ischaemia during colonoscopy. Scand. J. Gastroenterol. 1998, 33, 769–772.
  62. Bell, G.D.; Morden, A.; Bown, S.; Coady, T.; Logan, R.F.A. Prevention of hypoxaemia during upper-gastrointestinal endoscopy by means of oxygen via nasal cannulae. Lancet 1987, 329, 1022–1024.
  63. Lin, Y.; Zhang, X.; Li, L.; Wei, M.; Zhao, B.; Wang, X.; Pan, Z.; Tian, J.; Yu, W.; Su, D. High-flow nasal cannula oxygen therapy and hypoxia during gastroscopy with propofol sedation: A randomized multicenter clinical trial. Gastrointest. Endosc. 2019, 90, 591–601.
  64. Nay, M.A.; Fromont, L.; Eugene, A.; Marcueyz, J.L.; Mfam, W.S.; Baert, O.; Remerand, F.; Ravry, C.; Auvet, A.; Boulain, T. High-flow nasal oxygenation or standard oxygenation for gastrointestinal endoscopy with sedation in patients at risk of hypoxaemia: A multicentre randomised controlled trial (ODEPHI trial). Br. J. Anaesth. 2021, 127, 133–142.
  65. Thiruvenkatarajan, V.; Dharmalingam, A.; Arenas, G.; Wahba, M.; Steiner, R.; Kadam, V.R.; Tran, A.; Currie, J.; Van Wijk, R.; Quail, A.; et al. High-flow nasal cannula versus standard oxygen therapy assisting sedation during endoscopic retrograde cholangiopancreatography in high risk cases (OTHER): Study protocol of a randomised multicentric trial. Trials 2020, 21, 8.
  66. Rigg, J.D.; Watt, T.C.; Tweedle, D.E.F.; Martin, D.F. Oxygen saturation during endoscopic retrograde cholangiopancreatography: A comparison of two protocols of oxygen administration. Gut 1994, 35, 408–411.
  67. Chainaki, I.G. Deep sedation for endoscopic retrograde cholangiopacreatography. World J. Gastrointest. Endosc. 2011, 3, 34.
  68. Ferreira, L.E.; Baron, T.H. Comparison of safety and efficacy of ERCP performed with the patient in supine and prone positions. Gastrointest. Endosc. 2008, 67, 1037–1043.
  69. Kim, S.H.; Bang, S.; Lee, K.Y.; Park, S.W.; Park, J.Y.; Lee, H.S.; Oh, H.; Oh, Y.J. Comparison of high flow nasal oxygen and conventional nasal cannula during gastrointestinal endoscopic sedation in the prone position: A randomized trial. Can. J. Anesth. 2021, 68, 460–466.
  70. Khanna, P.; Haritha, D.; Das, A.; Sarkar, S.; Roy, A. Utility of high-flow nasal oxygen in comparison to conventional oxygen therapy during upper gastrointestinal endoscopic procedures under sedation: A systematic review and meta-analyses. Indian. J. Gastroenterol. 2023, 42, 53–63.
  71. Douglas, N.; Ng, I.; Nazeem, F.; Lee, K.; Mezzavia, P.; Krieser, R.; Steinfort, D.; Irving, L.; Segal, R. A randomised controlled trial comparing high-flow nasal oxygen with standard management for conscious sedation during bronchoscopy. Anaesthesia 2018, 73, 169–176.
  72. Sampsonas, F.; Karamouzos, V.; Karampitsakos, T.; Papaioannou, O.; Katsaras, M.; Lagadinou, M.; Zarkadi, E.; Malakounidou, E.; Velissaris, D.; Stratakos, G.; et al. High-Flow vs. Low-Flow Nasal Cannula in Reducing Hypoxemic Events During Bronchoscopic Procedures: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 815799.
  73. Su, C.L.; Chiang, L.L.; Tam, K.W.; Chen, T.T.; Hu, M.C. High-flow nasal cannula for reducing hypoxemic events in patients undergoing bronchoscopy: A systematic review and metaanalysis of randomized trials. PLoS ONE 2021, 16, e0260716.
  74. Saksitthichok, B.; Petnak, T.; Songern, A.; Boonsarngsuk, V. A prospective randomized comparative study of high-flow nasal cannula oxygen and non-invasive ventilation in hypoxemic patients undergoing diagnostic flexible bronchoscopy. J. Thorac. Dis. 2019, 11, 1929–1939.
  75. Ben-Menachem, E.; McKenzie, J.; O’Sullivan, C.; Havryk, A.P. High-flow Nasal Oxygen Versus Standard Oxygen during Flexible Bronchoscopy in Lung Transplant Patients: A Randomized Controlled Trial. J. Bronchol. Interv. Pulmonol. 2020, 27, 259–265.
  76. Nakajima, T.; Yasufuku, K.; Yoshino, I. Current status and perspective of EBUS-TBNA. Gen. Thorac. Cardiovasc. Surg. 2013, 61, 390–396.
  77. Irfan, M.; Ahmed, M.; Breen, D. Assessment of High Flow Nasal Cannula Oxygenation in Endobronchial Ultrasound Bronchoscopy: A Randomized Controlled Trial. J. Bronchol. Interv. Pulmonol. 2021, 28, 130–137.
  78. Roy, A.; Khanna, P.; Chowdhury, S.R.; Haritha, D.; Sarkar, S. The Impact of High-flow Nasal Cannula vs Other Oxygen Delivery Devices during Bronchoscopy under Sedation: A Systematic Review and Meta-analyses. Indian. J. Crit. Care Med. 2022, 26, 1131–1140.
  79. Supino, P.; Borer, J.; Preibisz, J.; Bornstein, A. The epidemiology of valvular heart disease: A growing public health problem. Hear. Fail. Clin. 2006, 2, 379–393.
  80. Arora, S.; Misenheimer, J.A.; Ramaraj, R. Transcatheter aortic valve replacement: Comprehensive review and present status. Tex. Hear. Inst. J. 2017, 44, 29–38.
  81. Howard, C.; Jullian, L.; Joshi, M.; Noshirwani, A.; Bashir, M.; Harky, A. TAVI and the future of aortic valve replacement. J. Card. Surg. 2019, 34, 1577–1590.
  82. Mayr, N.P.; Michel, J.; Bleiziffer, S.; Tassani, P.; Martin, K. Sedation or general anesthesia for transcatheter aortic valve implantation (TAVI). J. Thorac. Dis. 2015, 7, 1518.
  83. Ehret, C.; Rossaint, R.; Foldenauer, A.; Stoppe, C.; Stevanovic, A.; Dohms, K.; Hein, M.; Schälte, G. Is local anaesthesia a favourable approach for transcatheter aortic valve implantation? A systematic review and meta-analysis comparing local and general anaesthesia. BMJ Open 2017, 7, e016321.
  84. Scheuermann, S.; Tan, A.; Govender, P.; Mckie, M.; Pack, J.; Martinez, G.; Falter, F.; George, S.; Klein, A.A. High-flow nasal oxygen vs. standard oxygen therapy for patients undergoing transcatheter aortic valve replacement with conscious sedation: A randomised controlled trial. Perioper. Med. 2023, 12, 11.
More
Video Production Service