Nanoscale Materials for Instrumental Analysis of Mycotoxins: Comparison
Please note this is a comparison between Version 3 by Camila Xu and Version 2 by Mingfei Pan.

With the continuous development of nanotechnology and materials science, a variety of nanoscale materials have been developed for purifying complex food matrices or providing response signals for accurate and rapid detection of various mycotoxins in foods. Mycotoxins are highly toxic, widely contaminated, and difficult to remove . They can enter and enrich the food chain through foodstuffs and animal-derived products such as meat, milk, and eggs and ultimately penetrate into organisms, causing reproductive abnormalities, immunosuppression, cancer, and other serious diseases, which pose a serious threat to human health.

  • mycotoxins
  • nanoscale materials
  • accurate and rapid detection
  • food

1. Introduction

To date, food safety remains one of the major issues of widespread concern worldwide. The presence of toxic and hazardous substances in food is an important aspect that contributes to food safety problems [1,2][1][2]. Foods such as grains, oils, and fats are prone to contamination by fungi such as Aspergillus, Penicillium, and Fusarium at various stages, including production, processing, storage, and transportation [3–5][3][4][5]. Under conditions of high temperature and humidity, these microorganisms can produce and accumulate mycotoxins and secondary metabolites that serve as typical food contaminants. Mycotoxins are highly toxic, widely contaminated, and difficult to remove [6–8][6][7][8]. They can enter and enrich the food chain through foodstuffs and animal-derived products such as meat, milk, and eggs and ultimately penetrate into organisms, causing reproductive abnormalities, immunosuppression, cancer, and other serious diseases, which pose a serious threat to human health [9,10][9][10]. In addition, most fungi are capable of producing multiple toxins simultaneously, making the co-contamination of food with multiple toxins highly common. The cumulative or synergistic effects of these toxins can lead to more significant toxic effects than single toxins [11[11][12],12], further highlighting the importance of controlling and monitoring mycotoxins in food. Consequently, the World Health Organization (WHO), the European Food Safety Authority (EFSA), the Food and Agriculture Organization of the United Nations (FAO), and the Codex Alimentaria Commission (Codex Alimentaria) have jointly established limits and detection requirements for biotoxins, including mycotoxins [13,14][13][14] (Table 1). It is essential to strengthen the research on specific, sensitive, rapid, and reliable strategies for mycotoxins detection in food to safeguard human health effectively [15,16][15][16].
Table 1.Maximum permissible limits for mycotoxins in foods of different countries or organizations.
Maximum permissible limits for mycotoxins in foods of different countries or organizations.
The United States Total amount of AFB in food: <20 μg/kg; DON: <1000pg/kg, ZEN: <100 pg/kg;

Milk and dairy products: AFM1 ≤ 0.5 μg/kg.
European Union Agricultural products: Total amount of AFs: <4 μg/kg, AFB1: <2 μg/kg, OTA: <3 μg/kg, DON: <1000 μg/kg, ZEN: <50 μg/kg;

Infant foods: Total amount of AFB: <2 μg/kg, AFB1 <0.1 μg/kg, AFM1: <0.025 μg/kg, OTA: <0.5 μg/kg, DON: <150 μg/kg, ZEN: <20 μg/kg
China Corn, peanuts, and their products: AFB1: < 20 μg/kg, OTA: <5 μg/kg, DON: <1000 μg/kg, ZEN < 60 μg/kg;

Other grains, beans, and fermented foods: AFB1: <5 μg/kg;

Infant foods: AFB1: 5 μg/kg, AFM1: < 0.5μg/kg;

Fresh milk and dairy products: AFM1: < 0.5μg/kg;

Rice and vegetable oils (except corn oil and peanut oil): AFB1: <10 μg/kg.
Japan Peanuts and their products: AFB1: <10 μg/kg;

Wheat: DON: <1100 μg/kg;

Apple juice: Patulin: <50 μg/kg.

2. Nanoscale Materials for Instrumental Analysis of Mycotoxins

Currently, instrumental analysis techniques based on chromatographic separation, mass spectrometry, or spectroscopy remain the primary strategies for accurately detecting mycotoxins in food, widely accepted as standardized methods by international organizations [24–26][17][18][19]. Large-scale analytical instruments, typically equipped with sensitive detectors and data analysis modules, can successfully detect trace levels of toxin targets with advantages of accuracy, reproducibility, and reliability [27,28][20][21]. However, various mycotoxins may coexist at extremely low concentrations in food, and considering the complexity of food matrices, it is necessary to purify the food matrix during the detection process while achieving the enrichment of low-concentration mycotoxins to meet the requirements of instrument analysis [29][22]. In response to this challenge, novel purification materials with nanoscale features or exceptional structural characteristics have been continuously developed and used in combination with various large-scale analytical instruments, such as chromatography and mass spectrometry, achieving accurate and sensitive detection of mycotoxins in complex food matrices [30–32][23][24][25]. TableTable 2 2 illustrates the application of various nanoscale materials in solid-phase extraction (SPE) and solid-phase microextraction (SPME) processes for the detection of mycotoxins in food.

Table 2.Application of various nanoscale materials in SPE and SPME processes for the detection of mycotoxin in food.
Application of various nanoscale materials in SPE and SPME processes for the detection of mycotoxin in food.

References

  1. King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.M.; Hill, J.P. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 2017, 68, 160–175.
  2. Fu, Y.H.; Yin, S.T.; Zhao, C.; Fan, L.H.; Hu, H.B. Combined toxicity of food-borne mycotoxins and heavy metals or pesticides. Toxicon 2022, 217, 148–154.
  3. Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154.
  4. Sharma, V.; Patial, V. Food mycotoxins: Dietary interventions implicated in the prevention of mycotoxicosis. ACS Food Sci. Technol. 2021, 1, 1719–1739.
  5. Haque, A.; Wang, Y.H.; Shen, Z.Q.; Li, X.H.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095.
  6. Ben Amara, A.; Mehrez, A.; Ragoubi, C.; Romero-Gonzalez, R.; Frenich, A.G.; Landoulsi, A.; Maatouk, I. Fungal mycotoxins reduction by gamma irradiation in naturally contaminated sorghum. J. Food Process. Preserv. 2022, 46, e16345.
  7. Wang, Y.; Shang, J.; Cai, M.; Liu, Y.; Yang, K. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: A review of the past five years. Crit. Rev. Food Sci. Nutr. 2022, 12, 2095554.
  8. Jing, G.X.; Wang, Y.Y.; Wu, M.P.; Liu, W.J.; Xiong, S.F.; Yu, J.N.; Li, W.S.; Liu, W.; Jiang, Y.M. Photocatalytic degradation and pathway from mycotoxins in food: A review. Food Rev. Int. 2023, 17, 2166062.
  9. Kepinska-Pacelik, J.; Biel, W. Alimentary risk of mycotoxins for humans and animals. Toxins 2021, 13, 822.
  10. Skrzydlewski, P.; Twaruzek, M.; Grajewski, J. Cytotoxicity of mycotoxins and their combinations on different cell lines: A review. Toxins 2022, 14, 244.
  11. Guo, H.Y.; Ji, J.; Wang, J.S.; Sun, X.L. Co-contamination and interaction of fungal toxins and other environmental toxins. Trends Food Sci. Technol. 2020, 103, 162–178.
  12. Jacobs, M. The adoption of AI in the core scientific cycle of feed research. J. Anim. Sci. 2021, 99, 42–43.
  13. Eskola, M.; Altieri, A.; Galobart, J. Overview of the activities of the European food safety authority on mycotoxins in food and feed. World Mycotoxin J. 2018, 11, 277–289.
  14. Eskola, M.; Kos, G.; Elliott, C.T.; Hajslova, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789.
  15. Morales-de la Pena, M.; Welti-Chanes, J.; Martin-Belloso, O. Novel technologies to improve food safety and quality. Curr. Opin. Food Sci. 2019, 30, 1–7.
  16. Shkembi, X.; Svobodova, M.; Skouridou, V.; Bashammakh, A.S.; Alyoubi, A.O.; O’Sullivan, C.K. Aptasensors for mycotoxin detection: A review. Anal. Biochem. 2022, 644, 114156.
  17. Zhang, K.; Banerjee, K. A review: Sample preparation and chromatographic technologies for detection of aflatoxins in foods. Toxins 2020, 12, 539.
  18. Medina, M.L.J.; Lafarga, T.; Frenich, A.G.; Romero-Gonzalez, R. Natural occurrence, legislation, and determination of aflatoxins using chromatographic methods in food: A review (from 2010 to 2019). Food Rev. Int. 2021, 37, 244–275.
  19. Woo, S.Y.; Ok, H.E.; Lee, S.Y.; Jeong, A.Y.; Jeong, T.K.; Chun, H.S. Simple chromatographic determination of aflatoxins in Korean fermented soybean products doenjang, ganjang, and gochujang, with comparison of derivatization methods. Food Sci. Biotechnol. 2022, 31, 475–482.
  20. Bi, S.Y.; Xu, J.B.; Yang, X.S.; Zhang, P.; Lian, K.Q.; Ma, L. An HPLC-MS/MS method using a multitoxin clean up column for analysis of seven mycotoxins in aquafeeds. J. AOAC Int. 2022, 105, 107–114.
  21. Fan, Y.Y.; Liu, F.J.; He, W.Z.; Qin, Q.M.; Hu, D.Q.; Wu, A.B.; Jiang, W.B.; Wang, C. Screening of multi-mycotoxins in fruits by ultra-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry. Food Chem. 2022, 368, 130858.
  22. Nualkaw, K.; Poapolathep, S.; Zhang, Z.W.; Zhang, Q.; Giorgi, M.; Li, P.W.; Logrieco, A.F.; Poapolathep, A. Simultaneous determination of multiple mycotoxins in swine, poultry and dairy feeds using ultra high performance liquid chromatography-tandem mass spectrometry. Toxins 2020, 12, 253.
  23. Chen, H.; Huang, C.H.; Zhang, W.M.; Ding, Q.Q.; Gao, J.; Zhang, L. Ultrastable nitrogen-doped carbon nanotube encapsulated cobalt nanoparticles for magnetic solid-phase extraction of okadaic acid from aquatic samples. J. Chromatogr. A 2019, 1608, 460404.
  24. Tittlemier, S.A.; Brunkhorst, J.; Cramer, B.; DeRosa, M.C.; Lattanzio, V.M.T.; Malone, R.; Maragos, C.; Stranska, M.; Sumarah, M.W. Developments in mycotoxin analysis: An update for 2019-2020. World Mycotoxin J. 2021, 14, 3–26.
  25. Garcia-Nicolas, M.; Arroyo-Manzanares, N.; Campillo, N.; Reyes-Palomo, C.; Sanz-Fernandez, S.; Fenoll, J.; Rodriguez-Estevez, V.; Vinas, P. Use of polypyrrole ferrite microparticles and liquid chromatography-mass spectrometry for testing natural grass contamination by multiclass mycotoxins. Microchim. Acta 2023, 190, 178.
  26. Yang, H.; Dai, H.; Wan, X.; Shan, D.; Zhang, Q.; Li, J.; Xu, Q.; Wang, C. Simultaneous determination of multiple mycotoxins in corn and wheat by high efficiency extraction and purification based on polydopamine and ionic liquid bifunctional nanofiber mat. Anal. Chim. Acta 2023, 1267, 341361.
  27. Wang, J.; Huang, Q.W.; Guo, W.B.; Guo, D.K.; Han, Z.; Nie, D.X. Fe3O4@COF(TAPT-DHTA) nanocomposites as magnetic solid-phase extraction adsorbents for simultaneous determination of 9 mycotoxins in fruits by UHPLC-MS/MS. Toxins 2023, 15, 117.
  28. Xu, H.; Sun, J.; Wang, H.; Zhang, Y.; Sun, X. Adsorption of aflatoxins and ochratoxins in edible vegetable oils with dopamine-coated magnetic multi-walled carbon nanotubes. Food Chem. 2021, 365, 130409.
  29. Jiang, K.Q.; Huang, Q.W.; Fan, K.; Wu, L.D.; Nie, D.X.; Guo, W.B.; Wu, Y.J.; Han, Z. Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chem. 2018, 264, 218–225.
  30. Guo, D.K.; Huang, Q.W.; Zhao, R.; Guo, W.B.; Fan, K.; Han, Z.; Zhao, Z.H.; Nie, D.X. MIL-101(Cr)@Fe3O4 nanocomposites as magnetic solid-phase extraction adsorbent for the determination of multiple mycotoxins in agricultural products by ultra-high-performance liquid chromatography tandem mass spectrometry. Food Control 2023, 146, 109540.
  31. Zeng, C.Y.; Xu, C.; Tian, H.Y.; Shao, K.; Song, Y.N.; Yang, X.; Che, Z.M.; Huang, Y.K. Determination of aflatoxin B1 in Pixian Douban based on aptamer magnetic solid-phase extraction. RSC Adv. 2022, 12, 19528–19536.
  32. Yuan, D.; Zhang, L.X.; Ma, F.; Li, P.W. Simultaneous determination of aflatoxins and benzo(a)pyrene in vegetable oils using humic acid-bonded silica SPE HPLC-PHRED-FLD. Toxins 2022, 14, 352.
  33. Liang, Y.T.; He, J.; Huang, Z.P.; Li, H.Y.; Zhang, Y.X.; Wang, H.G.; Rui, C.F.; Li, Y.Y.; You, L.Q.; Li, K.; et al. An amino-functionalized zirconium-based metal-organic framework of type UiO-66-NH2 covered with a molecularly imprinted polymer as a sorbent for the extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from grain. Microchim. Acta 2020, 187, 32.
  34. Jiang, D.M.; Wei, D.Z.; Wang, L.Q.; Ma, S.; Du, Y.F.; Wang, M. Multiwalled carbon nanotube for one-step cleanup of 21 mycotoxins in corn and wheat prior to ultraperformance liquid chromatography-tandem mass spectrometry analysis. Toxins 2018, 10, 409.
  35. Wang, H.G.; He, J.; Song, L.X.; Zhang, Y.X.; Xu, M.H.; Huang, Z.P.; Jin, L.B.; Ba, X.; Li, Y.N.; You, L.Q.; et al. Etching of halloysite nanotubes hollow imprinted materials as adsorbent for extracting of zearalenone from grain samples. Microchem. J. 2020, 157, 104953.
  36. Zhang, Q.C.; Yang, Y.Q.; Zhang, C.B.; Zheng, Y.G.; Wu, Y.; Wang, X.Y. Development of an aptamer-functionalized capillary monolithic column for the highly-selective and highly-efficient recognition of patulin. Food Control 2021, 119, 107461.
  37. Wu, F.L.; Xu, C.S.; Jiang, N.; Wang, J.B.; Ding, C.F. Poly (methacrylic acid-co-diethenyl-benzene) monolithic microextraction column and its application to simultaneous enrichment and analysis of mycotoxins. Talanta 2018, 178, 1–8.
  38. Rezaei, F.; Masrournia, M.; Pordel, M. Simultaneous determination of four aflatoxins using dispersive micro solid phase extraction with magnetic bimetallic MOFs composite as a sorbent and high-performance liquid chromatography with fluorescence detection. Microchem. J. 2023, 189, 108506.
  39. Mohebbi, A.; Nemati, M.; Farajzadeh, M.A.; Mogaddam, M.R.A.; Lotfipour, F. High performance liquid chromatography-tandem mass spectrometry determination of patulin and ochratoxin a in commercial fruit juices after their extraction with a green synthesized metal organic framework-based dispersive micro solid phase extraction procedure. Microchem. J. 2022, 179, 107558.
  40. Mohebbi, A.; Nemati, M.; Mogaddam, M.R.A.; Farajzadeh, M.A.; Lotfipour, F. Dispersive micro-solid-phase extraction of aflatoxins from commercial soy milk samples using a green vitamin-based metal-organic framework as an efficient sorbent followed by high performance liquid chromatography-tandem mass spectrometry determination. J. Chromatogr. A 2022, 1673, 463099.
  41. Madikizela, L.M.; Ncube, S.; Chimuka, L. Recent developments in selective materials for solid phase extraction. Chromatographia 2019, 82, 1171–1189.
  42. Hu, T.L.; Chen, R.; Wang, Q.; He, C.Y.; Liu, S.R. Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis. J. Sep. Sci. 2021, 44, 274–309.
  43. Khatibi, S.A.; Hamidi, S.; Siahi-Shadbad, M.R. Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3361–3382.
  44. Tang, Z.T.; Liu, F.; Fang, F.; Ding, X.L.; Han, Q.R.; Tan, Y.Z.; Peng, C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J. Sep. Sci. 2022, 45, 2273–2300.
  45. Er, E.O.; Bozyigit, G.D.; Buyukpinar, C.; Bakirdere, S. Magnetic nanoparticles based solid phase extraction methods for the determination of trace elements. Crit. Rev. Anal. Chem. 2022, 52, 231–249.
  46. Chen, B.H.; Inbaraj, B.S. Recent trends in analysis of mycotoxins in food using carbon-based nanomaterials. J. Food Drug Anal. 2022, 30, 562–589.
  47. Rajabi, M.; Rahimi, M.; Hemmati, M.; Najafi, F. Chemically functionalized silica nanoparticles-based solid-phase extraction for effective pre-concentration of highly toxic metal ions from food and water samples. Appl. Organomet. Chem. 2018, 32, e4012.
  48. Chao, Y.H.; Pang, J.Y.; Bai, Y.; Wu, P.W.; Luo, J.; He, J.; Jin, Y.; Li, X.W.; Xiong, J.; Li, H.M.; et al. Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of rhodamine B and rhodamine 6G from food samples. Food Chem. 2020, 320, 126666.
  49. BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2018, 119, 94–119.
  50. Dong, C.Y.; Shi, H.X.; Han, Y.R.; Yang, Y.Y.; Wang, R.X.; Men, J.Y. Molecularly imprinted polymers by the surface imprinting technique. Eur. Polym. J. 2021, 145, 110231.
  51. Bui, B.T.S.; Auroy, T.; Haupt, K. Fighting antibiotic-resistant bacteria: Promising strategies orchestrated by molecularly imprinted polymers. Angew. Chem. Int. Edit. 2022, 61.
  52. Ashley, J.; Shahbazi, M.A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron. 2017, 91, 606–615.
  53. Villa, C.C.; Sanchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutierrez, T.J. Molecularly imprinted polymers for food applications: A review. Trends Food Sci. Technol. 2021, 111, 642–669.
  54. Song, Z.H.; Li, J.H.; Lu, W.H.; Li, B.W.; Yang, G.Q.; Bi, Y.; Arabi, M.; Wang, X.Y.; Ma, J.P.; Chen, L.X. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. TrAC Trends Anal. Chem. 2022, 146, 116504.
  55. Lhotska, I.; Gajdosova, B.; Solich, P.; Satinsky, D. Molecularly imprinted vs. reversed-phase extraction for the determination of zearalenone: A method development and critical comparison of sample clean-up efficiency achieved in an on-line coupled SPE chromatography system. Anal. Bioanal. Chem. 2018, 410, 3265–3273.
  56. Razavi, S.A.A.; Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 2019, 399, 213023.
  57. Hu, M.L.; Masoomi, M.Y.; Morsali, A. Template strategies with MOFs. Coord. Chem. Rev. 2019, 387, 415–435.
  58. Hu, Y.L.; Dai, L.M.; Liu, D.H.; Du, W.; Wang, Y.J. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renew. Sust. Energ. Rev. 2018, 91, 793–801.
  59. Wang, D.G.; Liang, Z.B.; Gao, S.; Qu, C.; Zou, R.G. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 2020, 404, 213093.
  60. Barreto, I.S.; Andrade, S.I.E.; Cunha, F.A.S.; Lima, M.B.; Araujo, M.C.U.; Almeida, L.F. A robotic magnetic nanoparticle solid phase extraction system coupled to flow-batch analyzer and GFAAS for determination of trace cadmium in edible oils without external pretreatment. Talanta 2018, 178, 384–391.
  61. Hamidi, S. Recent advances in solid-phase extraction as a platform for sample preparation in biomarker assay. Crit. Rev. Anal. Chem. 2023, 53, 199–210.
  62. Maya, F.; Cabello, C.P.; Frizzarin, R.M.; Estela, J.M.; Palomino, G.T.; Cerda, V. Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC Trends Anal. Chem. 2017, 90, 142–152.
  63. Soylak, M.; Ozalp, O.; Uzcan, F. Magnetic nanomaterials for the removal, separation and preconcentration of organic and inorganic pollutants at trace levels and their practical applications: A review. Trends Environ. Anal. Chem. 2021, 29, e00109.
  64. Salve, S.; Bahiram, Y.; Jadhav, A.; Rathod, R.; Tekade, R.K. Nanoplatform-integrated miniaturized solid-phase extraction techniques: A critical review. Crit. Rev. Anal. Chem. 2023, 53, 46–68.
  65. Lohse, M.S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.
  66. Tran, Q.N.; Lee, H.J.; Tran, N. Covalent organic frameworks: From structures to applications. Polymers 2023, 15, 1279.
  67. Li, J.; Xu, X.L.; Guo, W.; Zhang, Y.; Feng, X.S.; Zhang, F. Synthesis of a magnetic covalent organic framework as sorbents for solid-phase extraction of aflatoxins in food prior to quantification by liquid chromatography-mass spectrometry. Food Chem. 2022, 387, 132821.
  68. Wei, D.; Pan, A.; Zhang, C.; Guo, M.; Lou, C.Y.; Zhang, J.; Wu, H.Z.; Wang, X. Fast extraction of aflatoxins, ochratoxins and enniatins from maize with magnetic covalent organic framework prior to HPLC-MS/MS detection. Food Chem. 2023, 404, 134464.
  69. Liu, S.Q.; Huang, Y.Q.; Qian, C.Y.; Xiang, Z.M.; Ouyang, G.F. Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. TrAC Trends Anal. Chem. 2020, 128, 115916.
  70. Delinska, K.; Rakowska, P.W.; Kloskowski, A. Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives. TrAC Trends Anal. Chem. 2021, 143, 116386.
  71. Zambonin, C.; Aresta, A. Recent applications of solid phase microextraction coupled to liquid chromatography. Separations 2021, 8, 34.
  72. Reinholds, I.; Jansons, M.; Pugajeva, I.; Bartkevics, V. Recent applications of carbonaceous nanosorbents in solid phase extraction for the determination of pesticides in food samples. Crit. Rev. Anal. Chem. 2019, 49, 439–458.
  73. Dal Bosco, C.; De Cesaris, M.G.; Felli, N.; Lucci, E.; Fanali, S.; Gentili, A. Carbon nanomaterial-based membranes in solid-phase extraction. Microchim. Acta 2023, 190, 175.
  74. Hou, F.Y.; Chang, Q.Y.; Wan, N.N.; Li, J.; Zang, X.H.; Zhang, S.H.; Wang, C.; Wang, Z. A novel porphyrin-based conjugated microporous nanomaterial for solid-phase microextraction of phthalate esters residues in children’s food. Food Chem. 2022, 388, 133015.
  75. Chen, H.; Zhou, K.; Zhao, G.H. Gold nanoparticles: From synthesis, properties to their potential application as colorimetric sensors in food safety screening. Trends Food Sci. Technol. 2018, 78, 83–94.
  76. Hua, Z.; Yu, T.; Liu, D.H.; Xianyu, Y.L. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021, 179, 113076.
  77. Hou, S.L.; Ma, J.J.; Cheng, Y.Q.; Wang, Z.F.; Yan, Y.X. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Crit. Rev. Food Sci. Nutr. 2022, 16, 2095973.
  78. Wu, F.L.; Xu, C.S.; Jiang, N.; Wang, J.B.; Ding, C.F. Poly (methacrylic acid-co-diethenyl-benzene) monolithic microextraction column and its application to simultaneous enrichment and analysis of mycotoxins. Talanta 2018, 178, 1–8.
  79. Justyna, P.-W.; Natalia, S.; de la Miguel, G.; Jacek, N. Miniaturized solid-phase extraction techniques. TrAC Trends Anal. Chem. 2015, 73, 19–38.
  80. Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive solid phase microextraction. TrAC Trends Anal. Chem. 2019, 118, 793–808.
  81. Soares da Silva Burato, J.; Vargas Medina, D.A.; de Toffoli, A.L.; Vasconcelos Soares Maciel, E.; Mauro Lanças, F. Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci. 2019, 43, 202–225.
  82. Vállez-Gomis, V.; Grau, J.; Benedé, J.L.; Giokas, D.L.; Chisvert, A.; Salvador, A. Fundamentals and applications of stir bar sorptive dispersive microextraction: A tutorial review. Anal. Chim. Acta 2021, 1153, 338271.
  83. Yu-Xin, G.; Tian-Ci, Y.; Zi-Xuan, Y.; Fang-Ming, L.; Jun, C.; Li-Hong, Y. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem. J. 2022, 176, 107241.
  84. Xu, F.; Gong, B.; Xu, Z.; Wang, J. Reverse-phase/phenylboronic-acid-type magnetic microspheres to eliminate the matrix effects in amatoxin and phallotoxin determination via ultrahigh-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2020, 332, 127394.
  85. Gonzalez-Salamo, J.; Socas-Rodriguez, B.; Hernandez-Borges, J.; Rodriguez-Delgado, M.A. Core-shell poly(dopamine) magnetic nanoparticles for the extraction of estrogenic mycotoxins from milk and yogurt prior to LC-MS analysis. Food Chem. 2017, 215, 362–368.
  86. Atapattu, S.N.; Poole, C.F. Recent advances in analytical methods for the determination of citrinin in food matrices. J. Chromatogr. A 2020, 1627, 461399.
  87. Rezaeefar, A.; Nemati, M.; Farajzadeh, M.A.; Mogaddam, M.R.A.; Lotfipour, F. Development of N and S doped carbon sorbent-based dispersive micro solid phase extraction method combined with dispersive liquid-liquid microextraction for selected mycotoxins from soymilk samples. Microchem. J. 2022, 173, 107039.
  88. Hou, X.D.; Tang, S.; Wang, J. Recent advances and applications of graphene-based extraction materials in food safety. TrAC Trends Anal. Chem. 2019, 119, 115603.
  89. Kori, A.H.; Jagirani, M.S.; Soylak, M. Graphene-based nanomaterials: A sustainable material for solid-phase microextraction (SPME) for environmental applications. Anal. Lett. 2023, 56, 2385–2400.
  90. Tanveer, Z.I.; Huang, Q.W.; Liu, L.; Jiang, K.Q.; Nie, D.X.; Pan, H.Y.; Chen, Y.; Liu, X.S.; Luan, L.J.; Han, Z.; et al. Reduced graphene oxide-zinc oxide nanocomposite as dispersive solid-phase extraction sorbent for simultaneous enrichment and purification of multiple mycotoxins in coptidis rhizoma (Huanglian) and analysis by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2020, 1630, 461515.
  91. Wang, S.W.; Shao, R.; Li, W.W.; Li, X.; Sun, J.L.; Jiao, S.S.; Dai, S.J.; Dou, M.H.; Xu, R.M.; Li, Q.J.; et al. Three-dimensional ordered macroporous magnetic inverse photonic crystal microsphere-based molecularly imprinted polymer for selective capture of aflatoxin B-1. ACS Appl. Mater. Interfaces 2022, 14, 18845–18853.
More
ScholarVision Creations