With the continuous development of nanotechnology and materials science, a variety of nanoscale materials have been developed for purifying complex food matrices or providing response signals for accurate and rapid detection of various mycotoxins in foods. Mycotoxins are highly toxic, widely contaminated, and difficult to remove. They can enter and enrich the food chain through foodstuffs and animal-derived products such as meat, milk, and eggs and ultimately penetrate into organisms, causing reproductive abnormalities, immunosuppression, cancer, and other serious diseases, which pose a serious threat to human health.随着纳米技术和材料科学的不断发展,已经开发出各种纳米级材料,用于复杂食品基质的纯化或提供响应信号,以实现食品中各种霉菌毒素的准确快速检测。霉菌毒素具有剧毒、广泛污染且难以清除。它们可以通过食品和肉、奶、蛋等动物源性产品进入和丰富食物链,最终渗透到生物体内,引起生殖异常、免疫抑制、癌症等严重疾病,对人体健康构成严重威胁。
| The United States美国 | Total amount of 食物中AFB in food: <20 μg/kg; DON: <1000pg/kg, ZEN: <100 pg/kg的总量:<20微克/千克;唐:<1000皮克/公斤,禅宗:<100皮克/公斤; Milk and dairy products: AFM牛奶和乳制品:原子力显微镜1 ≤ 0.5 μg/kg.0.5微克/千克。 |
| European Union欧盟 | 农产品:Agricultural products: Total amount of AFs: <4 μg/kg, F总量:<4微克/千克,AFB1:: <2 μg/kg, OTA: <3 μg/kg, DON:微克/公斤, OTA: <3 微克/公斤, 唐: <1000 μg/kg, ZEN: <50 μg/kg微克/公斤, 禅宗: <50 微克/公斤; Infant foods: Total amount of 婴儿食品:AFB: <2 μg/kg, 总量:<2微克/千克,AFB1 <0.1 μg/kg, AFM微克/千克,原子力显微镜1:: <0.025 μg/kg, OTA:微克/千克, OTA: <0.5 μg/kg, DON:微克/千克, 唐: <150 μg/kg, ZEN: <20 μg/kg微克/千克, 禅宗: <20 微克/千克 |
| China中国 | Corn, peanuts, and their products: AFB玉米、花生及其制品:空军基地1: :< 20 μg/kg, OTA: <5 μg/kg, DON: <1000 μg/kg, ZEN < 60 μg/kg20微克/千克,OTA:<5微克/千克,唐:<1000微克/千克,禅<60微克/千克; Other grains, beans, and fermented foods: AFB其他谷物、豆类和发酵食品:空军基地1:: <5 μg/kg微克/千克; Infant foods: AFB婴儿食品:空军基地1:: 5 μg/kg, AFM微克/千克, 原子力显微镜1:: < 0.5μg/kg微克/千克; Fresh milk and dairy products: AFM鲜奶和乳制品:原子力显微镜1:: < 0.5μg/kg微克/千克; Rice and vegetable oils (except corn oil and peanut oil): AFB大米和植物油(玉米油和花生油除外):空军基地1:: <10 μg/kg微克/千克. |
| Japan日本 | Peanuts and their products: AFB花生及其制品:空军基地1:: <10 μg/kg微克/千克; Wheat: DON: 小麦:唐:<1100 μg/kg微克/千克; Apple juice: Patulin: 苹果汁:棒曲霉素:<50 μg/kg.微克/公斤。 |
Currently, instrumental analysis techniques based on chromatographic separation, mass spectrometry, or spectroscopy remain the primary strategies for accurately detecting mycotoxins in food, widely accepted as standardized methods by international organizations [17][18][19]. Large-scale analytical instruments, typically equipped with sensitive detectors and data analysis modules, can successfully detect trace levels of toxin targets with advantages of accuracy, reproducibility, and reliability [20][21]. However, various mycotoxins may coexist at extremely low concentrations in food, and considering the complexity of food matrices, it is necessary to purify the food matrix during the detection process while achieving the enrichment of low-concentration mycotoxins to meet the requirements of instrument analysis [22]. In response to this challenge, novel purification materials with nanoscale features or exceptional structural characteristics have been continuously developed and used in combination with various large-scale analytical instruments, such as chromatography and mass spectrometry, achieving accurate and sensitive detection of mycotoxins in complex food matrices [23][24][25]. Table
目前,基于色谱分离、质谱或光谱的仪器分析技术仍然是准确检测食品中霉菌毒素的主要策略,被国际组织广泛接受为标准化方法[24,25,26]。大型分析仪器通常配备灵敏的检测器和数据分析模块,可以成功检测痕量毒素靶标,具有准确性、重现性和可靠性等优势[27,28]。然而,各种霉菌毒素可能在食品中极低浓度下共存,考虑到食品基质的复杂性,需要在检测过程中纯化食品基质,同时实现低浓度霉菌毒素的富集,以满足仪器分析的要求[29]。为了应对这一挑战,不断开发具有纳米级特征或卓越结构特性的新型纯化材料,并与色谱和质谱等各种大型分析仪器结合使用,实现对复杂食品基质中霉菌毒素的准确灵敏检测[30,31,32]。表2illustrates the application of various nanoscale materials in solid-phase extraction (SPE) and solid-phase microextraction (SPME) processes for the detection of mycotoxins in food.
说明了各种纳米级材料在固相萃取(SPE)和固相微萃取(SPME)工艺中检测食品中霉菌毒素的应用。| Materials材料/Methods方法 | Mycotoxins霉菌毒素 | Substrates基质 | Properties of Materials材料的性质 | Results结果 | Ref.裁判。 |
|---|---|---|---|---|---|
| SPE | |||||
| PDA-IL-NFsM SPE coupled with 与UPLC-MS/MS耦合 |
AFB空军基地1,, AFB空军基地2,, AFG1,, AFG2,, ST,, FB1,, FB2,, OTA, ZEN, HT-2, T-2, DON, 3-AcDON, NIV, 15-AcDON太田, 禅宗, HT-2, T-2, 唐, 3-阿克顿, NIV, 15-阿克唐 | Corn, wheat玉米、小麦 | Various通过氢键、π interception mechanisms with the target through hydrogen bonding, π-π interaction, and electrostatic or hydrophobic interaction; good simultaneous adsorption performance; significantly reducing the matrix effectπ相互作用、静电或疏水相互作用与靶材的各种截获机理;良好的同时吸附性能;显著降低基质效应 | Linear range: 线性范围:1.0–2000 μg/kg; LOD:: 0.04–4.21 μg/kg微克/千克; LOQ:: 0.13–14.03 μg/kg微克/千克; Recovery:回收率: 80.79–112.37 % ((RSD:: 2.91–14.82 %,, n = 4)) |
[26][33] |
| Fe铁3O4@COF Magnetic@COF 磁性 SPE coupled with 与 UHPLC-MS/MS 耦合 |
AFB空军基地1,, OTA, ZEN, TEN, ALT, ALS, AME, AOH, TEA太田, 禅宗, 十, 阿尔特, 阿尔特, 阿美, 奥赫, 茶 | Fruits水果 | Abundant aromatic rings and carbonyl groups in Fe中丰富的芳环和羰基3O4@COF structure结构; through the strong π-π interaction and hydrogen bond between mycotoxin and Fe to realize effective enrichment of target mycotoxin通过霉菌毒素与铁之间强π π相互作用和氢键,实现目标霉菌毒素的有效富集 | Linear range: 线性范围:0.05–200 μg/kg; LOD:: 0.01–0.50 μg/kg微克/千克; LOQ:: 0.10–1.00 μg/kg微克/千克; Recovery:回收率: 74.25–111.75 % ((RSD:: 2.08–9.01 %,, n = 5)) |
[27][34] |
| PDA@Fe3O4-MWCNTs Magnetic 磁性SPE coupled with 与HPLC-FLD耦合 |
AFB空军基地1,, AFB空军基地2,, AFG1,, AFG2, 、OTA, 、OTB | Edible vegetable oils食用植物油 | Good water solubility and dispersibility良好的水溶性和分散性; largely eliminating the influence of matrix effect在很大程度上消除了基质效应的影响 | Linear range: 线性范围:1–100 μg/L微克/升; LOD:: 0.2–0.5 μg/kg微克/千克; LOQ:: 0.6–1.5 μg/kg微克/千克; Recovery:回收率: 70.15–89.25 % ((RSD:: ≤ 6.4 %,, n = 6)) |
[28][35] |
| rGO/AuNPs SPE coupled与 with UHPLC-MS/MS 耦合 |
AFB1, AFM1, OTA, ZEA, α-ZOL, β-ZOL, ZAN, α-ZAL, β-ZAL | Milk牛奶 | Good adsorbability吸附性好; adding AuNPs increases the distance between graphene layers and minimizes agglomeration添加AuNP可增加石墨烯层之间的距离并最大限度地减少团聚 | Linear range: 线性范围:0.02–200 ng/mL纳克/毫升; LOD: 最低载荷:0.01–0.07 ng/mL纳克/毫升; LOQ:: 0.02–0.18 ng/mL纳克/毫升; Recovery:回收率: 70.1–111.1 % ((RSD:: 2.0–11.1 %,, n = 5)) |
[29][36] |
| MIL-101(Cr)@Fe3O4 Magnetic SPE coupled with UHPLC-MS/MS |
AFB1, AFB2, AFG1, AFG2, OTA, OTB, T-2, HT-2, DAS | Maize, wheat, watermelon, and melon | Magnetic separation and adsorption capabilities involving polar or nonpolar forces, hydrogen bonding forces, and π-π conjugation with mycotoxin-rich functional groups | Linear range: 0.2–100 ng/mL LOD: 0.02–0.06 μg/kg; LOQ: 0.08–0.2 μg/kg Recovery: 83.5–108.5 % (RSD: 1.6–10.4 %, n = 5) |
[30][37] |
| Fe3O4@SiO2-NH2 Magnetic SPE coupled with ELISA |
AFB1 | Pixian douban | Rapid separation and enrichment under the external magnetic field; strong chemical stability, storage stability, and specificity combined with aptamer | Linear range: 0.5–2.0 ng/mL; LOD: 0.17 ng/mL; LOQ: 0.48 ng/mL; Recovery: 80.19–113.92 % (RSD: 2.30–7.28 %, n = 3) |
[31][38] |
| HAS SPE coupled with HPLC-PHRED-FLD |
AFB1 | Vegetable oils | Outstanding adsorption properties due to the large number of functional group hydrogen bonding, hydrophobicity, and π-π interactions; minimizing the pretreatment time and the amounts of organic solvents | Linear range: 0.10–50 μg/kg; LOD: 0.03–0.09 μg/kg; LOQ: 0.1–0.3 μg/kg; Recovery: 66.9–118.4 % (RSD: ≤ 7.2 %, n = 6) |
[32][39] |
| UIO-66-NH2@MIPs SPE coupled with HPLC |
AFB1, AFB2, AFG1, AFG2 | Wheat, rice, corn, soybean | Uniform and stable; the unique pore structure effectively improving the selective adsorption capacity; excellent affinity and selectivity | Linear range: 0.20–45 μg/kg; LOD: 0.06–0.13 μg/kg; LOQ: 0.24–0.45 μg/kg; Recovery: 74.3–98.6 % (RSD: 1.0–5.9 %, n = 6) |
[33][40] |
| MWCNT-COOH + C18 SPE coupled with UPLC-MS/ MS |
21 mycotoxins (AFs, OTA, OTB, ZEN, T-2, ZEN et al.) | Corn, wheat | Significantly reducing the matrix effect; high-throughput screening of various targets; greatly improving the detection efficiency | LOQ: 0.5–25 μg/L; Recovery: 75.6–110.3 % (RSD: 0.3–10.7 %, n = 5) |
[34][41] |
| HNTs-HMIPs SPE coupled with HPLC-FD (Figure 1a) |
ZEN | Rice corn, red beans, oats, wheat | Hollow imprinted polymer; excellent adsorption due to the loose and porous characteristics | LOD: 0.5 μg/kg; LOQ: 4.17 μg/kg (Oat), 1.8 μg/kg (Wheat); Recovery: 77.13–102.4 % (RSD: ≤ 5.59 %, n = 6) |
[35][42] |
| SPME | |||||
| AuNPs SPME coupled with UHPLC-MS/MS |
PAT | Apple juice, fresh apple, apple baby food, orange juice | Capillary monolithic column directly modified by AuNPs; high specificity and high affinity | Linear range: 8.11–8.11 × 103 pmol/L; LOD: 2.17 pmol/L; Recovery: 85.4–106 % (RSD: 4.1–7.3 %, n = 5) |
[36][43] |
| MAA-co-DVB SPME coupled with HPLC |
AFB1, ZEN, STEH | Rice | High-strength micro/nanostructure containing a large number of acrylic groups forming hydrogen bonds with groups in the target structure; effectively overcoming the matrix effect | Linear range: 0.01–1.0 mg/kg; LOD: 0.689–2.030 μg/kg; LOQ: 5.36–14.4 μg/kg Recovery: 86.0–102.8 % (RSD: ≤ 4.8 %, n = 4) |
[37][44] |
| Fe3O4@SiO2@Cu/Ni-NH2BDC Dispersive SPME coupled with HPLC-FLD |
AFB1, AFB2, AFG1, AFG2 | River water, well water, rice | Chemical bonds formed between three components making the adsorbent more stable and magnetic; rapid separation | Linear range: 0.11–79.2 ng/mL; LOD: 0.01–0.04 ng/mL; LOQ: 0.04–0.15 ng/mL; Recovery: 92.0–97.8 % (RSD: 4.1–7.6 %) |
[38][45] |
| MOF+VB3 Dispersive SPME coupled with HPLC-FLD |
PAT, OTA, AFB1, AFB2, AFG1, AFG2 | Fruit juices, milk |
Green organic linker; high surface area, high adsorption capacity, and excellent porosity to form a new green adsorbent | Linear range: 42.8–1 × 106 ng/L; LOD: 11.3–48.2 ng/L; LOQ: 42.8–161.6 ng/L; Recovery: 64.0–87.0 % (RSD: ≤5 %, n = 3) |
[39][40][46,47] |