Heart Failure after Aortic Valve Replacement: Comparison
Please note this is a comparison between Version 2 by Sirius Huang and Version 1 by Chetan Huded.

Severe aortic stenosis (AS) carries a poor prognosis with the onset of heart failure (HF) symptoms, and surgical or transcatheter aortic valve replacement (AVR) is its only definitive treatment. The management of AS has seen a paradigm shift with the adoption of transcatheter aortic valve replacement (TAVR), allowing for the treatment of AS in patients who would not otherwise be candidates for surgical AVR.

  • aortic stenosis
  • aortic valve replacement
  • heart failure

1. Introduction

Valvular heart disease represents an important global health problem, and its prevalence is expected to rise due to the aging population. Aortic stenosis (AS) is the most common type of valvular heart disease in the western world, and deaths related to it have been on the rise for the last two decades [1,2][1][2]. Degenerative or calcific AS results from progressive valve thickening and calcification [3], which ultimately lead to outflow tract obstruction of the left ventricle (LV). Left untreated, severe AS leads to progressive heart failure and death. Aortic valve replacement (AVR) prolongs survival and is the only definitive therapy for severe symptomatic AS [4]. Calcific AS was associated with an estimated 151,000 global deaths in 2021 and a loss of over 2 million disability-adjusted life years [5]. The classic symptoms of AS are angina, syncope, and dyspnea. Dyspnea is an ominous sign signaling the onset of heart failure (HF) and shift from a compensated to a decompensated phase in the progression of AS.
AVR, the only definitive therapy for severe AS, improves survival and health status. Current guidelines recommend AVR for patients with severe symptomatic AS [6,7][6][7]. Among asymptomatic patients, AVR is indicated in those with severe AS with an LV ejection fraction of <50%, and in those with very high aortic valve gradients (mean gradient > 60 mmHg) and a low operative risk [6,7][6][7]. Both surgical AVR (SAVR) and transcatheter AVR (TAVR) are established therapies for AS. The decision between TAVR and SAVR depends on the patient’s age, frailty, comorbidities, and valve anatomy. While younger patients with a low operative risk may be preferentially treated with SAVR, older patients with comorbidities that increase their surgical risk, such as prior chest radiation or porcelain aorta, may be preferentially treated with TAVR [8]. Multiple randomized controlled trials have established the role of TAVR in high-, intermediate-, and low-risk surgical candidates [9,10,11][9][10][11]. The number of TAVRs performed yearly is on the rise in the US and exceeded the number of SAVRs performed in 2019 [12].

2. Incidence of HF Hospitalization after AVR

The outcomes of TAVR have improved over time with device improvements, refined procedural techniques, and lower-risk patient populations. A study from the Transcatheter Valve Therapy (TVT) registry demonstrated that, among 12,182 patients treated with TAVR in the United States between 2011 and 2013, the rate of HF readmission at 1 year was 14.3% and the 1-year overall mortality was 23.7% [18][13]. However, 1-year overall mortality has decreased substantially in recent years and is now 10% in clinical practice and <2% in recent clinical trials on low-risk patients (Figure 1) [9,10,11,12,19,20,21,22][9][10][11][12][14][15][16][17].
Figure 1. Declining 1-year mortality after TAVR in lower-risk Patients. The 1-year all-cause and cardiovascular mortality after TAVR in major TAVR clinical trials is shown. CV = cardiovascular. PARTNER = Placement of Aortic Transcatheter Valves. SURTAVI = Surgical Replacement and Transcatheter Aortic Valve Implantation [9,10,11,19,20,21,22][9][10][11][14][15][16][17].
Despite these improvements in survival post-TAVR, the incidence of HF hospitalization after TAVR remains a concern. The incidence of HF after TAVR reported in various registries and clinical trials ranges from 7 to 24% [14,16,18,23,24,25,26][13][18][19][20][21][22][23] (Table 1). This is comparable to the incidence of HF hospitalization in clinical trials on chronic systolic heart failure patients [27,28][24][25]. The HF rate post-AVR is higher in observational studies from registries compared to clinical trials. The difference between these trial and real-world practice HF rates may be due to the frequency of follow-ups, the intensity of medical therapy, or the Hawthorne effect, where study participants have lower rates as a result of being observed in a trial setting [29][26]. In the TVT Registry, HF was the most common reason for readmission within the first year after TAVR [26][23]. A recent post hoc analysis of 3403 TAVR and SAVR patients included in the PARTNER (Placement of Aortic Transcatheter Valves) I, II, and III trials demonstrated that HF hospitalizations within 1 year after AVR are associated with an increased mortality and worse 1-year health status, irrespective of the type of AVR (TAVR or SAVR) [14][18].
Table 1.
Incidence of heart failure hospitalization after aortic valve replacement.

References

  1. Coffey, S.; Roberts-Thomson, R.; Brown, A.; Carapetis, J.; Chen, M.; Enriquez-Sarano, M.; Zühlke, L.; Prendergast, B.D. Global epidemiology of valvular heart disease. Nat. Rev. Cardiol. 2021, 18, 853–864.
  2. Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639.
  3. Pawade, T.A.; Newby, D.E.; Dweck, M.R. Calcification in Aortic Stenosis: The Skeleton Key. J. Am. Coll. Cardiol. 2015, 66, 561–577.
  4. Schwarz, F.; Baumann, P.; Manthey, J.; Hoffmann, M.; Schuler, G.; Mehmel, H.C.; Schmitz, W.; Kübler, W. The effect of aortic valve replacement on survival. Circulation 1982, 66, 1105–1110.
  5. Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk. J. Am. Coll. Cardiol. 2022, 80, 2361–2371.
  6. Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227.
  7. Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 43, 561–632.
  8. Plonska-Gosciniak, E.; Piotrowski, G.; Wojakowski, W.; Gosciniak, P.; Olszowska, M.; Lesiak, M.; Klotzka, A.; Grygier, M.; Deja, M.; Kasprzak, J.D.; et al. Management of valvular heart disease in patients with cancer: Multidisciplinary team, cancer-therapy related cardiotoxicity, diagnosis, transcatheter intervention, and cardiac surgery. Expert opinion of the Association on Valvular Heart Disease, Association of Cardiovascular Interventions, and Working Group on Cardiac Surgery of the Polish Cardiac Society. Kardiol. Pol. 2023, 81, 82–101.
  9. Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620.
  10. Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705.
  11. Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients. N. Engl. J. Med. 2011, 364, 2187–2198.
  12. Carroll, J.D.; Mack, M.J.; Vemulapalli, S.; Herrmann, H.C.; Gleason, T.G.; Hanzel, G.; Deeb, G.M.; Thourani, V.H.; Cohen, D.J.; Desai, N.; et al. STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2020, 76, 2492–2516.
  13. Holmes, D.R., Jr.; Brennan, J.M.; Rumsfeld, J.S.; Dai, D.; O’Brien, S.M.; Vemulapalli, S.; Edwards, F.H.; Carroll, J.; Shahian, D.; Grover, F.; et al. Clinical Outcomes at 1 Year Following Transcatheter Aortic Valve Replacement. JAMA 2015, 313, 1019–1028.
  14. Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715.
  15. Adams, D.H.; Popma, J.J.; Reardon, M.J.; Yakubov, S.J.; Coselli, J.S.; Deeb, G.M.; Gleason, T.G.; Buchbinder, M.; Hermiller, J.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Prosthesis. N. Engl. J. Med. 2014, 370, 1790–1798.
  16. Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607.
  17. Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331.
  18. Huded, C.P.; Arnold, S.V.; Chhatriwalla, A.K.; Saxon, J.T.; Kapadia, S.; Yu, X.; Webb, J.G.; Thourani, V.H.; Kodali, S.K.; Smith, C.R.; et al. Rehospitalization Events After Aortic Valve Replacement: Insights From the PARTNER Trial. Circ. Cardiovasc. Interv. 2022, 15, e012195.
  19. Guedeney, P.; Huchet, F.; Manigold, T.; Rouanet, S.; Balagny, P.; Leprince, P.; Lebreton, G.; Letocart, V.; Barthelemy, O.; Vicaut, E.; et al. Incidence of, risk factors for and impact of readmission for heart failure after successful transcatheter aortic valve implantation. Arch. Cardiovasc. Dis. 2019, 112, 765–772.
  20. Durand, E.; Doutriaux, M.; Bettinger, N.; Tron, C.; Fauvel, C.; Bauer, F.; Dacher, J.-N.; Bouhzam, N.; Litzler, P.-Y.; Cribier, A.; et al. Incidence, Prognostic Impact, and Predictive Factors of Readmission for Heart Failure After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2017, 10, 2426–2436.
  21. Harbaoui, B.; Durand, E.; Dupré, M.; Rabilloud, M.; Souteyrand, G.; Courand, P.-Y.; Boussel, L.; Lefevre, T.; Eltchaninoff, H.; Lantelme, P. Significance of the CAPRI risk score to predict heart failure hospitalization post-TAVI: The CAPRI-HF study. Int. J. Cardiol. 2019, 296, 98–102.
  22. Nazzari, H.; Hawkins, N.M.; Ezekowitz, J.; Lauck, S.; Ding, L.; Polderman, J.; Yu, M.; Boone, R.H.; Cheung, A.; Ye, J.; et al. The Relationship Between Heart-Failure Hospitalization and Mortality in Patients Receiving Transcatheter Aortic Valve Replacement. Can. J. Cardiol. 2019, 35, 413–421.
  23. Vemulapalli, S.; Dai, D.; Hammill, B.G.; Baron, S.J.; Cohen, D.J.; Mack, M.J.; Holmes, D.R., Jr. Hospital Resource Utilization Before and After Transcatheter Aortic Valve Replacement: The STS/ACC TVT Registry. J. Am. Coll. Cardiol. 2019, 73, 1135–1146.
  24. McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004.
  25. Moss, A.J.; Hall, W.J.; Cannom, D.S.; Klein, H.; Brown, M.W.; Daubert, J.P.; Estes, N.A.M.; Foster, E.; Greenberg, H.; Higgins, S.L.; et al. Cardiac-Resynchronization Therapy for the Prevention of Heart-Failure Events. N. Engl. J. Med. 2009, 361, 1329–1338.
  26. McCarney, R.; Warner, J.; Iliffe, S.; van Haselen, R.; Griffin, M.; Fisher, P. The Hawthorne Effect: A randomised, controlled trial. BMC Med. Res. Methodol. 2007, 7, 30.
  27. Auffret, V.; Bakhti, A.; Leurent, G.; Bedossa, M.; Tomasi, J.; Soulami, R.B.; Verhoye, J.-P.; Donal, E.; Galli, E.; Loirat, A.; et al. Determinants and Impact of Heart Failure Readmission Following Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2020, 13, e008959.
  28. Forcillo, J.; Condado, J.F.; Binongo, J.N.; Lasanajak, Y.; Caughron, H.; Babaliaros, V.; Devireddy, C.; Leshnower, B.; Guyton, R.A.; Block, P.C.; et al. Readmission rates after transcatheter aortic valve replacement in high- and extreme-risk patients with severe aortic stenosis. J. Thorac. Cardiovasc. Surg. 2017, 154, 445–452.
  29. Green, C.P.; Porter, C.B.; Bresnahan, D.R.; Spertus, J.A. Development and evaluation of the Kansas City Cardiomyopathy Questionnaire: A new health status measure for heart failure. J. Am. Coll. Cardiol. 2000, 35, 1245–1255.
  30. Arnold, S.V.; Spertus, J.A.; Lei, Y.; Allen, K.B.; Chhatriwalla, A.K.; Leon, M.B.; Smith, C.R.; Reynolds, M.R.; Webb, J.G.; Svensson, L.G.; et al. Use of the Kansas City Cardiomyopathy Questionnaire for Monitoring Health Status in Patients with Aortic Stenosis. Circ. Heart Fail. 2013, 6, 61–67.
  31. Spertus, J.A.; Jones, P.G.; Sandhu, A.T.; Arnold, S.V. Interpreting the Kansas City Cardiomyopathy Questionnaire in Clinical Trials and Clinical Care: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 2379–2390.
  32. Arnold, S.V.; Spertus, J.A.; Lei, Y.; Green, P.; Kirtane, A.J.; Kapadia, S.; Thourani, V.H.; Herrmann, H.C.; Beohar, N.; Zajarias, A.; et al. How to Define a Poor Outcome After Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 591–597.
  33. Reynolds, M.R.; Magnuson, E.A.; Wang, K.; Thourani, V.H.; Williams, M.; Zajarias, A.; Rihal, C.S.; Brown, D.L.; Smith, C.R.; Leon, M.B.; et al. Health-related quality of life after transcatheter or surgical aortic valve replacement in high-risk patients with severe aortic stenosis: Results from the PARTNER (Placement of AoRTic TraNscathetER Valve) Trial (Cohort A). J. Am. Coll. Cardiol. 2012, 60, 548–558.
  34. Arnold, S.V.; Reynolds, M.R.; Wang, K.; Magnuson, E.A.; Baron, S.J.; Chinnakondepalli, K.M.; Reardon, M.J.; Tadros, P.N.; Zorn, G.L.; Maini, B.; et al. Health Status After Transcatheter or Surgical Aortic Valve Replacement in Patients With Severe Aortic Stenosis at Increased Surgical Risk: Results From the CoreValve US Pivotal Trial. JACC Cardiovasc. Interv. 2015, 8, 1207–1217.
  35. Baron, S.J.; Magnuson, E.A.; Lu, M.; Wang, K.; Chinnakondepalli, K.; Mack, M.; Thourani, V.H.; Kodali, S.; Makkar, R.; Herrmann, H.C.; et al. Health Status After Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Aortic Stenosis. J. Am. Coll. Cardiol. 2019, 74, 2833–2842.
  36. Tuttle, M.K.; Kiaii, B.; Van Mieghem, N.M.; Laham, R.J.; Deeb, G.M.; Windecker, S.; Chetcuti, S.; Yakubov, S.J.; Chawla, A.; Hockmuth, D.; et al. Functional Status After Transcatheter and Surgical Aortic Valve Replacement: 2-Year Analysis From the SURTAVI Trial. JACC Cardiovasc. Interv. 2022, 15, 728–738.
  37. Arnold, S.V.; Cohen, D.J.; Dai, D.; Jones, P.G.; Li, F.; Thomas, L.; Baron, S.J.; Frankel, N.Z.; Strong, S.; Matsouaka, R.A.; et al. Predicting Quality of Life at 1 Year After Transcatheter Aortic Valve Replacement in a Real-World Population. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004693.
  38. Arnold, S.V.; Reynolds, M.R.; Lei, Y.; Magnuson, E.A.; Kirtane, A.J.; Kodali, S.K.; Zajarias, A.; Thourani, V.H.; Green, P.; Rodés-Cabau, J.; et al. Predictors of poor outcomes after transcatheter aortic valve replacement: Results from the PARTNER (Placement of Aortic Transcatheter Valve) trial. Circulation 2014, 129, 2682–2690.
  39. Arnold, S.V.; Afilalo, J.; Spertus, J.A.; Tang, Y.; Baron, S.J.; Jones, P.G.; Reardon, M.J.; Yakubov, S.J.; Adams, D.H.; Cohen, D.J. Prediction of Poor Outcome After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2016, 68, 1868–1877.
  40. Hioki, H.; Watanabe, Y.; Kozuma, K.; Nara, Y.; Kawashima, H.; Nagura, F.; Nakashima, M.; Kataoka, A.; Yamamoto, M.; Naganuma, T.; et al. Timing of Susceptibility to Mortality and Heart Failure in Patients With Preexisting Atrial Fibrillation After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2017, 120, 1618–1625.
  41. Salaun, E.; Clavel, M.A.; Hahn, R.T.; Jaber, W.A.; Asch, F.M.; Rodriguez, L.; Weissman, N.J.; Gertz, Z.M.; Herrmann, H.C.; Dahou, A.; et al. Outcome of Flow-Gradient Patterns of Aortic Stenosis After Aortic Valve Replacement: An Analysis of the PARTNER 2 Trial and Registry. Circ. Cardiovasc. Interv. 2020, 13, e008792.
  42. Yoshijima, N.; Saito, T.; Inohara, T.; Anzai, A.; Tsuruta, H.; Shimizu, H.; Fukuda, K.; Naganuma, T.; Mizutani, K.; Yamawaki, M.; et al. Predictors and clinical outcomes of poor symptomatic improvement after transcatheter aortic valve replacement. Open Heart 2021, 8, e001742.
  43. Pibarot, P.; Hahn, R.T.; Weissman, N.J.; Arsenault, M.; Beaudoin, J.; Bernier, M.; Dahou, A.; Khalique, O.K.; Asch, F.M.; Toubal, O.; et al. Association of Paravalvular Regurgitation With 1-Year Outcomes After Transcatheter Aortic Valve Replacement With the SAPIEN 3 Valve. JAMA Cardiol. 2017, 2, 1208–1216.
  44. Herrmann, H.C.; Daneshvar, S.A.; Fonarow, G.C.; Stebbins, A.; Vemulapalli, S.; Desai, N.D.; Malenka, D.J.; Thourani, V.H.; Rymer, J.; Kosinski, A.S. Prosthesis-Patient Mismatch in Patients Undergoing Transcatheter Aortic Valve Replacement: From the STS/ACC TVT Registry. J. Am. Coll. Cardiol. 2018, 72, 2701–2711.
  45. Fallon, J.M.; DeSimone, J.P.; Brennan, J.M.; O’Brien, S.; Thibault, D.P.; DiScipio, A.W.; Pibarot, P.; Jacobs, J.P.; Malenka, D.J. The Incidence and Consequence of Prosthesis-Patient Mismatch After Surgical Aortic Valve Replacement. Ann. Thorac. Surg. 2018, 106, 14–22.
  46. Faroux, L.; Chen, S.; Muntané-Carol, G.; Regueiro, A.; Philippon, F.; Sondergaard, L.; Jørgensen, T.H.; Lopez-Aguilera, J.; Kodali, S.; Leon, M.; et al. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: A systematic review and meta-analysis. Eur. Heart J. 2020, 41, 2771–2781.
  47. Chamandi, C.; Barbanti, M.; Munoz-Garcia, A.; Latib, A.; Nombela-Franco, L.; Gutiérrez-Ibanez, E.; Veiga-Fernandez, G.; Cheema, A.N.; Cruz-Gonzalez, I.; Serra, V.; et al. Long-Term Outcomes in Patients With New Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2018, 11, 301–310.
  48. Hejjaji, V.; Cohen, D.J.; Carroll, J.D.; Li, Z.; Manandhar, P.; Vemulapalli, S.; Nelson, A.J.; Malik, A.O.; Mack, M.J.; Spertus, J.A.; et al. Practical Application of Patient-Reported Health Status Measures for Transcatheter Valve Therapies. Circ. Cardiovasc. Qual. Outcomes 2021, 14, e007187.
More
ScholarVision Creations