Proposed Strategies for Higher Performance in Supercapacitors: Comparison
Please note this is a comparison between Version 2 by Jessie Wu and Version 1 by Freddy Escobar.

The urgent need for efficient energy storage devices (supercapacitors and batteries) has attracted ample interest from scientists and researchers in developing materials with excellent electrochemical properties. Electrode material based on carbon, transition metal oxides, and conducting polymers (CPs) has been used. Among these materials, carbon has gained wide attention in Electrochemical double-layer capacitors (EDLC) due to its variable morphology of pores and structural properties as well as its remarkable electrical and mechanical properties. In this context, the present work summarizes the history of supercapacitors, the type of carbon electrode materials, and the different strategies to improve the performance of these devices. In addition, different approaches to studying the charging mechanism of these devices through different electrochemical techniques are presented, including advantages  and challenges. Since a deeper understanding of the interfacial charge storage mechanisms is also crucial in the elaboration and performance of the electrode material.

  • carbon materials
  • supercapacitors
  • ac-electrogravimetry
  • EQCM (Electrochemical Quartz Crystal Microbalance)
  • NMR (Nuclear Magnetic Resonance)

Ragone plot for supercapacitors and batteries. Reproduced from Ref. [8] with permission from the American Chemical Society (copyright 2017).

2. History

Categorization of supercapacitors: Electrochemical double-layer capacitors (EDLC), Pseudocapacitors and Hybrid capacitors.

  • Nanostructurationas 1018Mysyk, R.; Raymundo-Piñero, E.; Béguin, F. Saturation of subnanometer pores in an electric double-layer ca
  • Electrolyte Composition
  • Pseudocapacitance
  • Hybrid Electrodes
  • Nanocomposite electrodes

Comparison between EDLCs, pseudocapacitors, and hybrid capacitors. Modified from Ref. [42] open access.

Advantages and challenges of main techniques to explain charge storage mechanisms.

4. Summary and Perspectives

References

  1. M.J.B. Kabeyi, O.A. Olanrewaju, Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply, Frontiers in Energy Research 9 (2022).
  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat Mater 7 (2008) 845-854.
  3. H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, P. Simon, Nanoporous carbon for electrochemical capacitive energy storage, Chemical Society Reviews 49 (2020) 3005-3039.
  4. F. Escobar-Teran, H. Perrot, O. Sel, Ion Dynamics at the Carbon Electrode/Electrolyte Interface: Influence of Carbon Nanotubes Types, Materials 15 (2022) 1867.
  5. F. Escobar-Teran, H. Perrot, O. Sel, Single Wall Carbon Nanotubes/Polypyrrole Composite Thin Film Electrodes: Investigation of Interfacial Ion Exchange Behavior, Journal of Composites Science 5 (2021) 25.
  6. S. Banerjee, B. De, P. Sinha, J. Cherusseri, K.K. Kar, Applications of Supercapacitors, in: K.K. Kar (Ed.), Handbook of Nanocomposite Supercapacitor Materials I: Characteristics, Springer International Publishing, Cham, 2020, pp. 341-350.
  7. S.B. Devi, V. Vignesh, P.V. Kumar, M.S. Oh, R. Navamathavan, Chapter 19 - Transport supercapacitors, in: C.M. Hussain, M.B. Ahamed (Eds.), Smart Supercapacitors, Elsevier2023, pp. 503-534.
  8. B. Evanko, S.W. Boettcher, S.J. Yoo, G.D. Stucky, Redox-Enhanced Electrochemical Capacitors: Status, Opportunity, and Best Practices for Performance Evaluation, ACS Energy Letters 2 (2017) 2581-2590.
  9. B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Conversion, Handbook of Clean Energy Systems, John Wiley & Sons, Ltd2015.
  10. Z. Zhai, L. Zhang, T. Du, B. Ren, Y. Xu, S. Wang, J. Miao, Z. Liu, A review of carbon materials for supercapacitors, Materials & Design 221 (2022) 111017.
  11. R. Lin, FORMULATION OF ELECTROLYTES BASED ON IONIC LIQUIDS FOR SUPERCAPACITOR APPLICATIONS. Ph. D. Thesis., Sciences de la Matiére, Université de Toulouse, 2012, pp. 202.
  12. L. BENHADDAD, Elaboration et caractérisation de poudres nanostructurées de MnO2 et de polypyrrole : Application comme materiaux delectrodes dans des dispositifs de stockage de lenergie. Ph.D. Thesis., Chimie Physique et Chimie Analytique de Paris-Centre, UNIVERSITE PIERRE ET MARIE CURIE, 2014, pp. 217.
  13. T. Shiferaw, Investigation of the interfaces of solid electrolyte based supercapacitors and batteries. Ph.D. Thesis., Technischen Fakultät der Christian-Albrechts, Universität zu Kiel, 2008.
  14. M.A.A. Mohd Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors, Materials & Design 186 (2020) 108199.
  15. A.G. Olabi, Q. Abbas, M.A. Abdelkareem, A.H. Alami, M. Mirzaeian, E.T. Sayed, Carbon-Based Materials for Supercapacitors: Recent Progress, Challenges and Barriers, Batteries 9 (2023) 19.
  16. H. Pan, J. Li, Y. Feng, Carbon Nanotubes for Supercapacitor, Nanoscale Research Letters 5 (2010) 654 - 668.
  17. C. Zhou, S. Kumar, C.D. Doyle, J.M. Tour, Functionalized Single Wall Carbon Nanotubes Treated with Pyrrole for Electrochemical Supercapacitor Membranes, Chemistry of Materials 17 (2005) 1997-2002.
  18. Y.K. Zhou, B.L. He, W.J. Zhou, H.L. Li, Preparation and Electrochemistry of SWNT/PANI composite films for electrochemical capacitors, Journal of the Electrochemical Society 151 (2004) A1052-A1057.
  19. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and Electrolytes for Advanced Supercapacitors, Advanced Materials 26 (2014) 2219-2251.
  20. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat Mater 8 (2009) 621-629.
  21. R. Lin, P.-L. Taberna, S. Fantini, V. Presser, C.R. Pérez, F. Malbosc, N.L. Rupesinghe, K.B.K. Teo, Y. Gogotsi, P. Simon, Capacitive Energy Storage from −50 to 100 °C Using an Ionic Liquid Electrolyte, The Journal of Physical Chemistry Letters 2 (2011) 2396-2401.
  22. B. Alresheedi, SUPERCAPACITORS BASED ON CARBON NANOTUBE FUZZY FABRIC STRUCTURAL COMPOSITES. Ph.D. Thesis., School of Engineering, UNIVERSITY OF DAYTON, 2012.
  23. J. SEGALINI, Etude de l’adsorption des ions dans des carbones microporeux ; application aux supercondensateurs. Ph.D. Thesis., Sciences de la Matiére Université de Toulouse 2012.
  24. F. Yao, D.T. Pham, Y.H. Lee, Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices, ChemSusChem (2015) n/a-n/a.
  25. D. Majumdar, T. Maiyalagan, Z. Jiang, Recent Progress in Ruthenium Oxide-Based Composites for Supercapacitor Applications, ChemElectroChem 6 (2019) 4343-4372.
  26. C.R. Arias, C. Debiemme-Chouvy, C. Gabrielli, C. Laberty-Robert, A. Pailleret, H. Perrot, O. Sel, New Insights into Pseudocapacitive Charge-Storage Mechanisms in Li-Birnessite Type MnO2Monitored by Fast Quartz Crystal Microbalance Methods, The Journal of Physical Chemistry C 118 (2014) 26551-26559.
  27. A. Laforgue, P. Simon, J.F. Fauvarque, Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage, Synth. Met. 123 (2001) 311-319.
  28. K. Naoi, S. Suematsu, A. Manago, Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials, J. Electrochem. Soc. 147 (2000) 420-426.
  29. M. Conte, Supercapacitors Technical Requirements for New Applications, Fuel Cells 10 (2010) 806-818.
  30. M.S.E. Halper, James C., Supercapacitors: A Brief Overview, The MITRE Corporation, McLean, Virginia, USA., 2006.
  31. C. Merlet, Modelisation de ladsorption des ions dans les carbones nanoporeux. Ph.D. Thesis., Theoretical and physical chemistry, Université Pierre et Marie Curie, 2013.
  32. P. Odru, Le stockage de lenergie, Paris, France, 2013.
  33. Z. Cao, B. Wei, A perspective: carbon nanotube macro-films for energy storage, Energy & Environmental Science 6 (2013) 3183-3201.
  34. A. Imani, G. Farzi, Facile route for multi-walled carbon nanotube coating with polyaniline: tubular morphology nanocomposites for supercapacitor applications, Journal of Materials Science: Materials in Electronics 26 (2015) 7438-7444.
  35. Y. Zhou, H. Xu, N. Lachman, M. Ghaffari, S. Wu, Y. Liu, A. Ugur, K.K. Gleason, B.L. Wardle, Q.M. Zhang, Advanced asymmetric supercapacitor based on conducting polymer and aligned carbon nanotubes with controlled nanomorphology, Nano Energy 9 (2014) 176-185.
  36. M. Tahir, L. He, W.A. Haider, W. Yang, X. Hong, Y. Guo, X. Pan, H. Tang, Y. Li, L. Mai, Co-Electrodeposited porous PEDOT–CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life, Nanoscale 11 (2019) 7761-7770.
  37. Y. Chen, L. Du, P. Yang, P. Sun, X. Yu, W. Mai, Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole, Journal of Power Sources 287 (2015) 68-74.
  38. C. Fu, H. Zhou, R. Liu, Z. Huang, J. Chen, Y. Kuang, Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites, Materials Chemistry and Physics 132 (2012) 596-600.
  39. M. El-Shahat, M. Mochtar, M.M. Rashad, M.A. Mousa, Single and ternary nanocomposite electrodes of Mn3O4/TiO2/rGO for supercapacitors, Journal of Solid State Electrochemistry 25 (2021) 803-819.
  40. S. Satpathy, S. Debbarma, B. Kumar Bhattacharyya, An integration of the review of electrode’s materials and a new gamma function-based charging methodology of supercapacitor for high current applications, Materials Today: Proceedings 26 (2020) 2151-2156.
  41. I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Conducting polymer-based flexible supercapacitor, Energy Science & Engineering 3 (2015) 2-26.
  42. D. Lemian, F. Bode, Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review, Energies 15 (2022) 5683.
  43. F. Escobar-Teran, A. Arnau, J.V. Garcia, Y. Jiménez, H. Perrot, O. Sel, Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry, Electrochemistry Communications 70 (2016) 73-77.
  44. S. Sigalov, M.D. Levi, G. Salitra, D. Aurbach, J. Maier, EQCM as a unique tool for determination of ionic fluxes in microporous carbons as a function of surface charge distribution, Electrochemistry Communications 12 (2010) 1718-1721.
  45. J.M. Griffin, A.C. Forse, W.-Y. Tsai, P.-L. Taberna, P. Simon, C.P. Grey, In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors, Nat Mater advance online publication (2015).
  46. F. Escobar-Teran, H. Perrot, O. Sel, Ion Dynamics at the Single Wall Carbon Nanotube Based Composite Electrode/Electrolyte Interface: Influence of the Cation Size and the Electrolyte pH, The Journal of Physical Chemistry C (2019).
  47. H. Goubaa, F. Escobar-Teran, I. Ressam, W. Gao, A. El Kadib, I.T. Lucas, M. Raihane, M. Lahcini, H. Perrot, O. Sel, Dynamic Resolution of Ion Transfer in Electrochemically Reduced Graphene Oxides Revealed by Electrogravimetric Impedance, The Journal of Physical Chemistry C 121 (2017) 9370-9380.
More
Video Production Service