Applications of Dendritic Polymers in Dentistry: Comparison
Please note this is a comparison between Version 5 by Catherine Yang and Version 4 by Michael Arkas.

Dendritic polymers represent the well-established 4th class of polymers, next to their conventional linear, branched, and cross-linked counterparts. They are constructed by a central core that is the focal point of radial polymerization and may comprise the same monomeric units as the rest of the macromolecule or a completely different entity that endows the substance with exceptional properties. The main body, i.e., the branched interior, contains the monomers and their characteristic groups. These define the conformation of the cavities and their chemical environment. The periphery contains the end groups that may be decorated with functional groups to adapt to the desired role. 

 

  • dendrimer
  • biomaterial
  • cell scaffold
  • adhesion
  • differentiation
  • osseointegration

1. Biomedical Applications of Dendritic Polymers

The main reason behind the increased scientific interest in this field is the multitude of applications. Among the most recognized are water purification[1][2][3][4][5][6][7], separation systems[8][9], for instance, chromatography[10][11], light harvesting[12][13][14] solvent extraction[15][16], catalysis[17][18][19][20][21], liquid crystals[22][23][24][25][26][27], textiles[28][29][30], dye nanocarriers[31][32], coatings[33][34], membranes[35][36], and gels[37][38], Perhaps the most important implementations derive from a similarity to biological molecules[39]. These include biomimetic synthesis[40][41][42] and biomedical formulations[43][44][45][46][47][48][49] based on the macromolecules themselves and their composites. Some possess intrinsic antimicrobial[50] and antivira[51][52]l properties. Functionalization[53][54][55] or inclusion of metal nanoparticles[56] into their cavities increases their potential. They are also capable of controlled[57], targeted[58], and stimuli-responsive[59] drug release[59][60][61][62][63]. Other nanomedicine[64][65] uses include theranostics[66][67], for example, biosensors[68][69], cancer diagnosis[70][71] and therapy[72], magnetic resonance[73][74] and bioimaging, therapy for inflammatory diseases[75][76], such as rheumatoid arthritis, gene transfection[77][78], treatment of central nervous system conditions[79], antimicrobial coatings for orthopedical implants[80][81], and antigen mimicry for vaccinations[82]. The properties of bio-dendritic polymers are ideally suited for tissue engineering[83][84][85][86] including the field of regenerative dentistry. 

2. Interactions with Odontoblasts and Dental Pulp Cells

Teeth are the second most abundant hard tissue of the human body next to bones  Hydroxyapatite is the most abundant component of both dentine and enamel [87] that are the predominant substances. , Research in the field of teeth reconstitution focuses on materials that interact with cells and inorganic component regeneration. A possible explanation is that, unlike the bone, for the formation of enamel, the tooth does not have the cell equivalent to the osteoblast that forms the organic matrix and mineralizes it. In the case of teeth, the ameloblast dies with the eruption of the tooth.
In this approach, G5 PAMAM was functionalized by peptides incorporating the typical RGD cell adhesion sequence (Arg-Gly-Asp). The ανβ3 integrin binding potential was expressed for human dermal microvessel endothelial cells (HDMEC), human vascular endothelial cells (HUVEC), and odontoblast-like MDPC-23 cells. However, the most important aspect of this work was the targeting capability of these compounds to the RGD receptors of the predentin of human tooth cultures, rendering them appealing carriers for tissue-specific cell delivery [88]. Similar G5 PAMAM RGD peptide composites synthesized by the intervention of fluorescein isothiocyanate also demonstrated a selective binding capacity to dental pulp cells and mouse odontoblast-like cells.  On top of that, they modulated their differentiation toward the improvement of their odontogenic properties[89]. PAMAM derivatives phosphorylated via the Mannich-type reaction may also mediate odontogenic differentiation of the dental pulp stem cells and assist their proliferation [90].

3. Dentin Reconstitution

Established agents, such as the carboxy-terminated PAMAMs, are employed in a biomimetic attempt to imitate the role of non-collagenous proteins in the hierarchical intrafibrillar mineralization of dentine. Both in vitro and in vivo experiments in mice highlighted the effectiveness of G4 PAMAM-COOH in the sequestration of calcium and phosphate ions and the intrafibrillar templating of hydroxyapatite from amorphous calcium phosphate (ACP) [91]. The results were confirmed in vivo for G3.5 PAMAM-COOH and incubation in mice saliva after incorporation into the rat’s cheeks. On the side, the produced hydroxyapatite exhibited increased microhardness [92].
There are many variants of the above standard pattern, such as pretreatment of dentin samples with Ca(OH)2 solution [93], or using amorphous Ca3(PO4)2 nanoparticles [94]. The latter, in combination with G3 PAMAM-NH2 [95], or G3 PAMAM-COOH [96] in an artificial saliva-lactic acid solution, release Ca2+ and PO43− ions that strengthen the hardness of the restored dentin to the level of the healthy tissue. An extra beneficial effect of Ca3(PO4)2 nanoparticles is that they may effectively neutralize an acidic environment (pH 4). Incorporated in a dental adhesive comprising pyromellitic glycerol dimethacrylate, 2-hydroxyethyl methacrylate, and ethoxylated bisphenol A dimethacrylate, they may be employed to cure conditions that involve an acidic oral environment, for instance, dry mouth [97][98]. The composition of the adhesive may be upgraded by inorganic fillers such as barium-boro aluminosilicate glass particles to yield templates with recharging capability and superb nucleation properties [99][100][101]. Other formulations for Ca3(PO4)2 Nps have also been developed, such as a protein-repellent “bioactive multifunctional composite” comprising 2-methacryloyloxyethyl phosphorylcholine, dimethylamino hexadecyl methacrylate and silver nanoparticles for antimicrobial protection [102].
In a slightly different strategy, the phosphate functionalities were directly bound to the dendritic polymer in an attempt to imitate the role of phosphophoryn. This protein and dentin sialoprotein represent the two most abundant non-collagenous proteins of the dentin matrix [103]. G3 or G4 PAMAM-PO3H2 were initially chosen because they present similar topological architecture and size. Remineralization of intrafibrillar and interfibrillar reconstituted type I collagen [104] and demineralized human dentin was established in artificial saliva or amorphous calcium phosphate stabilizing, polyacrylic acid (PAA) solution [105] and in vivo in the oral cavity of rats [106] To more effectively simulate the operation of non-collagenous dentine matrix protein, phosphorylated G4 PAMAM was combined with the respective carboxylated counterpart. The mechanical properties of hydroxyapatite produced by this blend during the mineralization process of collagen fibrils of natural dentin [107] and recombinant type I collagen fibrils [108] were further improved, resembling at the nanoscale level those of the natural tissues.
Regardless of the remineralization mechanism, a common practice is the inclusion of drugs or other active ingredients into the cavities of the dendritic polymers. Loading of G4 PAMAM-COOH with triclosan antibiotic was proposed for synchronous and protracted antimicrobial protection of the damaged dentin substrate [109]. Phosphorylated G3 and G4 PAMAM proved able to solubilize hydrophobic antibacterial apigenin in its cavities to address dental caries. This was attained by preventing the erosion of dentine caused by Streptococcus mutans and simultaneous reparation [110]. In another example, chlorhexidine was combined with G4-PAMAM-COOH to lessen its cytotoxicity. The mixture was applied as a first coating. The dental adhesive formulation of the second layer was amorphous calcium phosphate nanoparticle adhesive fillers stabilized poly aspartic acid [111]. It was additionally revealed that chlorhexidine reversed the undesired excitatory effect of G4-PAMAM-COOH on matrix metalloproteinase and inhibited its activity [112]. Besides drugs, G3 PAMAM was applied to mechanically exposed pulp teeth to act as a host substrate for pulpine. Clinical trials in 12 patients lasting one and a half years revealed that this gradual layering procedure, apart from more effective dentin mineralization, also enhanced the restoration of the injured pulp tissue [113].

4. Enamel

Enamel, the other major hard tissue of the tooth, was submitted to treatment approaches similar to dentin with analogous successful results [114]. An investigation for both components was conducted synchronously and side by side, beginning with anionic carboxylated PAMAM. The third [115] and the fourth generation [116] counterparts induced the crystallization of rod-like hydroxyapatite crystals on the etched enamel surface in the same orientation as the long axis of enamel crystals. In contrast to dentin, the different PAMAM terminal groups produced a differentiation in the enamel lesion remineralization percentage: (PAMAM-NH2 76.42 ± 3.32%), (PAMAM-COOH 60.07 ± 5.92%), and (PAMAM-OH 54.52 ± 7.81%) was quantified in bovine enamel specimens in a simulated oral environment [117]. The enamel surfaces, remineralized by the fifth generation of the two best-performing organic templates (PAMAM-NH2, PAMAM-COOH), were subsequently tested against adhesion and biofilm formation from Streptococcus mutans. Both dendrimers resisted bacterial attacks, highlighting their potential to prevent secondary caries [118].
The phosphorylated PAMAM option was also implemented on human tooth enamel. The G4 counterpart possesses the same peripheral phosphate groups and size as those of amelogenin, the most important protein in the natural process of enamel. For this reason, G4 PAMAM-PO3H2 is tightly adsorbed on the enamel substrate and the bioinspired remineralization process in artificial saliva or the oral cavity of rats proceeds more efficiently in comparison to PAMAM-COOH, with a crystalline hydroxyapatite layer thickness of about 11.23 μm instead of 6.02 μm [119]. Another amphiphilic PAMAM dendron bonded with stearic acid at the focal point and coupled peripherally with aspartic acid moieties forms spherical organizations in solution. These undergo further aggregation as a function of concentration to linear chains such as amelogenin. In this way, HAP nucleation may follow desired orientations similar to those encountered in enamel [120]. Even a simple carboxy G4.0 PAMAM-COOH derivative may present a microribbon hierarchical organization similar to the amelogenin prototype, with a suitable ion chelating cation, such as in an aqueous ferric chloride solution [121]. A similar decoration of G3.5 PAMAM-COOH with alendronate groups bearing two phosphate functionalities was made to enhance the adsorption of the dendrimer to the enamel layer [122].
In a contiguous attempt to imitate the role of another protein (salivary statherin), G4 PAMAM was modified by the N-15 peptide. Then, it was incorporated into formulations containing calcium phosphate nanoparticles and the same adhesive resin used as described above [97] for the remineralization of dentin, with equally successful performance [123]. An enamel-specific water-insoluble antibacterial and antibiofilm agent, honokiol, may also be included in PAMAM-COOH and then released in a controlled profile. Anticaries’ activity was established through planktonic growth assays and in vivo in male Sprague Dawley rats [124]. The research on the potential of dendritic polymers for use in dentistry is summarized in Table 1.
Table 1. Dendritic polymers in Dentistry.

References

  1. Nora Savage; Mamadou S. Diallo; Nanomaterials and Water Purification: Opportunities and Challenges. J. Nanoparticle Res. 2005, 7, 331-342.
  2. Michael Arkas; Dimitris Tsiourvas; Constantinos M. Paleos; Functional Dendritic Polymers for the Development of Hybrid Materials for Water Purification. Macromol. Mater. Eng. 2010, 295, 883-898.
  3. Athena Tsetsekou; Michael Arkas; Anna Kritikaki; Spyridon Simonetis; Dimitris Tsiourvas; Optimization of hybrid hyperbranched polymer/ceramic filters for the efficient absorption of polyaromatic hydrocarbons from water. J. Membr. Sci. 2007, 311, 128-135.
  4. Michael Arkas; Lazaros Eleades; Constantinos M. Paleos; Dimitris Tsiourvas; Alkylated hyperbranched polymers as molecular nanosponges for the purification of water from polycyclic aromatic hydrocarbons. J. Appl. Polym. Sci. 2005, 97, 2299-2305.
  5. Ioannis Ioannidis; Ioannis Pashalidis; Michael Arkas; Actinide Ion (Americium-241 and Uranium-232) Interaction with Hybrid Silica–Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. Gels 2023, 9, 690.
  6. Michael Arkas; Theofanis Bompotis; Konstantinos Giannakopoulos; Evangelos P. Favvas; Marina Arvanitopoulou; Konstantinos Arvanitopoulos; Labros Arvanitopoulos; Georgia Kythreoti; Michail Vardavoulias; Dimitrios A. Giannakoudakis; et al.Laura CastellsaguésSara Maria Soto González Hybrid Silica Xerogel and Titania/Silica Xerogel Dispersions Reinforcing Hydrophilicity and Antimicrobial Resistance of Leathers. Gels 2023, 9, 685.
  7. Michael Arkas; Konstantinos Giannakopoulos; Evangelos P. Favvas; Sergios Papageorgiou; George V. Theodorakopoulos; Artemis Giannoulatou; Michail Vardavoulias; Dimitrios A. Giannakoudakis; Konstantinos S. Triantafyllidis; Efthalia Georgiou; et al.Ioannis Pashalidis Comparative Study of the U(VI) Adsorption by Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. Nanomater. 2023, 13, 1794.
  8. Xiao Zhang; Tian-Hui Chen; Fang-Fang Chen; Hao Wu; Chun-Yang Yu; Li-Fen Liu; Cong-Jie Gao; Structure adjustment for enhancing the water permeability and separation selectivity of the thin film composite nanofiltration membrane based on a dendritic hyperbranched polymer. J. Membr. Sci. 2020, 618, 118455.
  9. Rainer Haag; Alexander Sunder; André Hebel; Sebastian Roller; Dendritic Aliphatic Polyethers as High-Loading Soluble Supports for Carbonyl Compounds and Parallel Membrane Separation Techniques. J. Comb. Chem. 2002, 4, 112-119.
  10. Guhan Jayaraman; Yu-Fei Li; J.A. Moore; Steven M. Cramer; Ion-exchange displacement chromatography of proteins Dendritic polymers as novel displacers. J. Chromatogr. A 1995, 702, 143-155.
  11. Kiyoshi Sakai; Tan Chun Teng; Aya Katada; Tomomi Harada; Kayo Yoshida; Kentarou Yamanaka; Yukio Asami; Masayo Sakata; Chuichi Hirayama; Masashi Kunitake; et al. Designable Size Exclusion Chromatography Columns Based on Dendritic Polymer-Modified Porous Silica Particles. Chem. Mater. 2003, 15, 4091-4097.
  12. Arpornrat Nantalaksakul; D. Raghunath Reddy; Christopher J. Bardeen; S. Thayumanavan; Light Harvesting Dendrimers. Photosynth. Res. 2006, 87, 133-150.
  13. Vincenzo Balzani; Paola Ceroni; Mauro Maestri; Veronica Vicinelli; Light-harvesting dendrimers. Curr. Opin. Chem. Biol. 2003, 7, 657-665.
  14. Alex Adronov; Jean M. J. Fréchet; Light-harvesting dendrimers. Chem. Commun. 2000, 1, 1701-1710.
  15. Matthias Seiler; Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilibria 2006, 241, 155-174.
  16. Urszula Domańska; Zuzanna Żołek-Tryznowska; Aneta Pobudkowska; Separation of Hexane/Ethanol Mixtures. LLE of Ternary Systems (Ionic Liquid or Hyperbranched Polymer + Ethanol + Hexane) at T = 298.15 K. J. Chem. Eng. Data 2009, 54, 972-976.
  17. Didier Astruc; Françoise Chardac; Dendritic Catalysts and Dendrimers in Catalysis. Chem. Rev. 2001, 101, 2991-3024.
  18. Dong Wang; Didier Astruc; Dendritic catalysis—Basic concepts and recent trends. Co-ord. Chem. Rev. 2013, 257, 2317-2334.
  19. Michael Arkas; Ioannis Anastopoulos; Dimitrios A. Giannakoudakis; Ioannis Pashalidis; Theodora Katsika; Eleni Nikoli; Rafael Panagiotopoulos; Anna Fotopoulou; Michail Vardavoulias; Marilina Douloudi; et al. Catalytic Neutralization of Water Pollutants Mediated by Dendritic Polymers. Nanomater. 2022, 12, 445.
  20. M. Arkas; M. Douloudi; E. Nikoli; G. Karountzou; I. Kitsou; E. Kavetsou; D. Korres; S. Vouyiouka; A. Tsetsekou; K. Giannakopoulos; et al.M. Papageorgiou Investigation of two bioinspired reaction mechanisms for the optimization of nano catalysts generated from hyperbranched polymer matrices. React. Funct. Polym. 2022, 174, 105238.
  21. I. Kitsou; M. Arkas; A. Tsetsekou; Synthesis and characterization of ceria-coated silica nanospheres: their application in heterogeneous catalysis of organic pollutants. SN Appl. Sci. 2019, 1, 1557.
  22. Mercedes Marcos; Rafael Martín-Rapún; Ana Omenat; José Luis Serrano; Highly congested liquid crystal structures: dendrimers, dendrons, dendronized and hyperbranched polymers. Chem. Soc. Rev. 2007, 36, 1889-1901.
  23. Isabel M. Saez; John W. Goodby. Supermolecular Liquid Crystals; Springer Science and Business Media LLC: Dordrecht, GX, Netherlands, 2008; pp. 1-62.
  24. Isabel M. Saez. Supermolecular Liquid Crystals; Wiley: Hoboken, NJ, United States, 2014; pp. 1-48.
  25. Virgil Percec; Bioinspired supramolecular liquid crystals. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2006, 364, 2709-2719.
  26. Dimitris Tsiourvas; Michael Arkas; Columnar and smectic self-assembly deriving from non ionic amphiphilic hyperbranched polyethylene imine polymers and induced by hydrogen bonding and segregation into polar and non polar parts. Polym. 2013, 54, 1114-1122.
  27. Michael Arkas; I. Kitsou; A. Gkouma; M. Papageorgiou; The role of hydrogen bonds in the mesomorphic behaviour of supramolecular assemblies organized in dendritic architectures. Liq. Cryst. Rev. 2019, 7, 60-105.
  28. Somaye Akbari; Ryszard Michal Kozłowski; A review of application of amine-terminated dendritic materials in textile engineering. J. Text. Inst. 2018, 110, 460-467.
  29. Riza Atav. Dendritic molecules and their use in water repellency treatments of textile materials; Elsevier BV: Amsterdam, NX, Netherlands, 2018; pp. 191-214.
  30. Michael Arkas; Georgia Kythreoti; Evangelos P. Favvas; Konstantinos Giannakopoulos; Nafsica Mouti; Marina Arvanitopoulou; Ariadne Athanasiou; Marilina Douloudi; Eleni Nikoli; Michail Vardavoulias; et al.Marios DimitriouIoannis KarakasiliotisVictoria BallénSara Maria Soto González Hydrophilic Antimicrobial Coatings for Medical Leathers from Silica-Dendritic Polymer-Silver Nanoparticle Composite Xerogels. Text. 2022, 2, 464-485.
  31. Peter E Froehling; Dendrimers and dyes — a review. Dye. Pigment. 2001, 48, 187-195.
  32. Shangjie Xu; Ying Luo; Rainer Haag; Water-Soluble pH-Responsive Dendritic Core-Shell Nanocarriers for Polar Dyes Based on Poly(ethylene imine). Macromol. Biosci. 2007, 7, 968-974.
  33. Qiang Wei; Katharina Achazi; Hendrik Liebe; Andrea Schulz; Paul-Ludwig Michael Noeske; Ingo Grunwald; Dr. Rainer Haag; Mussel-Inspired Dendritic Polymers as Universal Multifunctional Coatings. Angew. Chem. Int. Ed. 2014, 53, 11650-11655.
  34. T. Gurunathan; Smita Mohanty; Sanjay K. Nayak; Hyperbranched Polymers for Coating Applications: A Review. Polym. Technol. Eng. 2015, 55, 92-117.
  35. Jing Cai; Xue-Li Cao; Yi Zhao; Fu-Yi Zhou; Zhaoliang Cui; Yong Wang; Shi-Peng Sun; The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine. J. Membr. Sci. 2020, 600, 117863.
  36. Xue Li; Tao Cai; Tai-Shung Chung; Anti-Fouling Behavior of Hyperbranched Polyglycerol-Grafted Poly(ether sulfone) Hollow Fiber Membranes for Osmotic Power Generation. Environ. Sci. Technol. 2014, 48, 9898-9907.
  37. Qigang Wang; Justin L. Mynar; Masaru Yoshida; Eunji Lee; Myongsoo Lee; Kou Okuro; Kazushi Kinbara; Takuzo Aida; High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nat. 2010, 463, 339-343.
  38. Cynthia Ghobril; Edward K. Rodriguez; Ara Nazarian; Mark W. Grinstaff; Recent Advances in Dendritic Macromonomers for Hydrogel Formation and Their Medical Applications. Biomacromolecules 2016, 17, 1235-1252.
  39. Roseita Esfand; Donald A. Tomalia; Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 2001, 6, 427-436.
  40. Catherine Liang; Jean M.J. Fréchet; Applying key concepts from nature: transition state stabilization, pre-concentration and cooperativity effects in dendritic biomimetics. Prog. Polym. Sci. 2005, 30, 385-402.
  41. Dimitris Tsiourvas; Athena Tsetsekou; Aggeliki Papavasiliou; Michael Arkas; Nikos Boukos; A novel hybrid sol–gel method for the synthesis of highly porous silica employing hyperbranched poly(ethyleneimine) as a reactive template. Microporous Mesoporous Mater. 2013, 175, 59-66.
  42. Michael Arkas; Dimitris Tsiourvas; Organic/inorganic hybrid nanospheres based on hyperbranched poly(ethylene imine) encapsulated into silica for the sorption of toxic metal ions and polycyclic aromatic hydrocarbons from water. J. Hazard. Mater. 2009, 170, 35-42.
  43. Sönke Svenson; Donald A. Tomalia; Dendrimers in biomedical applications—reflections on the field. Adv. Drug Deliv. Rev. 2012, 64, 102-115.
  44. Yu Fan; Wenjie Sun; Xiangyang Shi; Design and Biomedical Applications of Poly(amidoamine)-Dendrimer-Based Hybrid Nanoarchitectures. Small Methods 2017, 1, 1700224.
  45. Meredith A. Mintzer; Mark W. Grinstaff; Biomedical applications of dendrimers: a tutorial. Chem. Soc. Rev. 2010, 40, 173-190.
  46. Lin-Ping Wu; Mario Ficker; Jørn B. Christensen; Panagiotis N. Trohopoulos; Seyed Moein Moghimi; Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges. Bioconjugate Chem. 2015, 26, 1198-1211.
  47. Adriana Aurelia Chis; Carmen Dobrea; Claudiu Morgovan; Anca Maria Arseniu; Luca Liviu Rus; Anca Butuca; Anca Maria Juncan; Maria Totan; Andreea Loredana Vonica-Tincu; Gabriela Cormos; et al.Andrei Catalin MunteanMaria Lucia MuresanFelicia Gabriela GligorAdina Frum Applications and Limitations of Dendrimers in Biomedicine. Mol. 2020, 25, 3982.
  48. Renan Vinicius de Araújo; Soraya da Silva Santos; Elizabeth Igne Ferreira; Jeanine Giarolla; New Advances in General Biomedical Applications of PAMAM Dendrimers. Mol. 2018, 23, 2849.
  49. Arezoo Saadati; Mohammad Hasanzadeh; Farzad Seidi; Biomedical application of hyperbranched polymers: Recent Advances and challenges. TrAC Trends Anal. Chem. 2021, 142, 116308.
  50. Michelle K. Calabretta; Amit Kumar; Alison M. McDermott; Chengzhi Cai; Antibacterial Activities of Poly(amidoamine) Dendrimers Terminated with Amino and Poly(ethylene glycol) Groups. Biomacromolecules 2007, 8, 1807-1811.
  51. Alexandra Pérez-Anes; Grégory Spataro; Yannick Coppel; Christiane Moog; Muriel Blanzat; Cédric-Olivier Turrin; Anne-Marie Caminade; Isabelle Rico-Lattes; Jean-Pierre Majoral; Phosphonate terminated PPH dendrimers: influence of pendant alkyl chains on the in vitro anti-HIV-1 properties. Org. Biomol. Chem. 2009, 7, 3491-3498.
  52. Sheng-Kai Wang; Pi-Hui Liang; Rena D. Astronomo; Tsui-Ling Hsu; Shie-Liang Hsieh; Dennis R. Burton; Chi-Huey Wong; Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. null 2008, 105, 3690-3695.
  53. Steven R. Meyers; Frank S. Juhn; Aaron P. Griset; Nathanael R. Luman; Mark W. Grinstaff; Anionic Amphiphilic Dendrimers as Antibacterial Agents. J. Am. Chem. Soc. 2008, 130, 14444-14445.
  54. Chris Zhisheng Chen; Nora C. Beck-Tan; Prasad Dhurjati; Tina K. van Dyk; Robert A. LaRossa; Stuart L. Cooper; Quaternary Ammonium Functionalized Poly(propylene imine) Dendrimers as Effective Antimicrobials: Structure−Activity Studies. Biomacromolecules 2000, 1, 473-480.
  55. C. Paleos; M. Arkas; R. Seghrouchni; A. Skoulios; Smectic Mesophases from Quaternary Amphiphilic Ammonium Salts Functionalized with Interacting Endgroups. Mol. Cryst. Liq. Cryst. 1995, 268, 179-182.
  56. Michael Arkas; G. Kithreoti; N. Boukos; I. Kitsou; F. Petrakli; K. Panagiotaki; Two completely different biomimetic reactions mediated by the same matrix producing inorganic/organic/inorganic hybrid nanoparticles. Nano-Structures Nano-Objects 2018, 14, 138-148.
  57. Ali Pourjavadi; Seyed Hassan Hosseini; Mahshid Alizadeh; Craig Bennett; Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin. Colloids Surfaces B: Biointerfaces 2014, 116, 49-54.
  58. Abuzer Alp Yetisgin; Sibel Cetinel; Merve Zuvin; Ali Kosar; Ozlem Kutlu; Therapeutic Nanoparticles and Their Targeted Delivery Applications. Mol. 2020, 25, 2193.
  59. Ngoc Thuy Trang Le; Thi Nhu Quynh Nguyen; Van Du Cao; Duc Thuan Hoang; Van Cuong Ngo; Thai Thanh Hoang Thi; Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharm. 2019, 11, 591.
  60. Anne-Marie Caminade; Cédric-Olivier Turrin; Dendrimers for drug delivery. J. Mater. Chem. B 2014, 2, 4055-4066.
  61. Abhay Singh Chauhan; Dendrimers for Drug Delivery. Mol. 2018, 23, 938.
  62. Magdalena Markowicz-Piasecka; Elżbieta Mikiciuk-Olasik. Dendrimers in drug delivery; Elsevier BV: Amsterdam, NX, Netherlands, 2016; pp. 39-74.
  63. Alireza Kavand; Nicolas Anton; Thierry Vandamme; Christophe A. Serra; Delphine Chan-Seng; Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J. Control. Release 2020, 321, 285-311.
  64. Ana Paula Dias; Soraya da Silva Santos; João Vitor da Silva; Roberto Parise-Filho; Elizabeth Igne Ferreira; Omar El Seoud; Jeanine Giarolla; Dendrimers in the context of nanomedicine. Int. J. Pharm. 2019, 573, 118814.
  65. Xiang Li; Abid Naeem; Shanghua Xiao; Lei Hu; Jing Zhang; Qin Zheng; Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharm. 2022, 14, 1292.
  66. Yuan Ma; Quanbing Mou; Dali Wang; Xinyuan Zhu; Deyue Yan; Dendritic Polymers for Theranostics. Theranostics 2016, 6, 930-947.
  67. S. Korake; A. Shaikh; R. Salve; K.R. Gajbhiye; V. Gajbhiye; A. Pawar; Biodegradable dendritic Boltorn™ nanoconstructs: A promising avenue for cancer theranostics. Int. J. Pharm. 2020, 594, 120177.
  68. Natalija German; Anton Popov; Arunas Ramanavicius; Almira Ramanaviciene; Development and Practical Application of Glucose Biosensor Based on Dendritic Gold Nanostructures Modified by Conducting Polymers. Biosens. 2022, 12, 641.
  69. Almudena Jiménez; M. Pilar García Armada; José Losada; Carlos Villena; Beatriz Alonso; Carmen M. Casado; Amperometric biosensors for NADH based on hyperbranched dendritic ferrocene polymers and Pt nanoparticles. Sensors Actuators B: Chem. 2014, 190, 111-119.
  70. Xiangyang Shi; Su He Wang; Mary E. Van Antwerp; Xisui Chen; Jr James R. Baker; Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Anal. 2009, 134, 1373-1379.
  71. Haonan Li; Jiayu Sun; Hongyan Zhu; Haoxing Wu; Hu Zhang; Zhongwei Gu; Kui Luo; Recent advances in development of dendritic polymer‐based nanomedicines for cancer diagnosis. WIREs Nanomed. Nanobiotechnology 2020, 13, e1670.
  72. Bing-Yen Wang; Ming-Liang Liao; Guan-Ci Hong; Wen-Wei Chang; Chih-Chien Chu; Near-Infrared-Triggered Photodynamic Therapy toward Breast Cancer Cells Using Dendrimer-Functionalized Upconversion Nanoparticles. Nanomater. 2017, 7, 269.
  73. Erik Wiener; M. W. Brechbiel; H. Brothers; R. L. Magin; O. A. Gansow; D. A. Tomalia; P. C. Lauterbur; Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 1994, 31, 1-8.
  74. Kido Nwe; L. Henry Bryant; Martin W. Brechbiel; Poly(amidoamine) Dendrimer Based MRI Contrast Agents Exhibiting Enhanced Relaxivities Derived via Metal Preligation Techniques. Bioconjugate Chem. 2010, 21, 1014-1017.
  75. Séverine Fruchon; Mary Poupot; Ludovic Martinet; Cédric-Olivier Turrin; Jean-Pierre Majoral; Jean-Jacques Fournié; Anne-Marie Caminade; Rémy Poupot; Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. J. Leukoc. Biol. 2008, 85, 553-562.
  76. Durairaj Chandrasekar; Ramakrishna Sistla; Farhan J. Ahmad; Roop K. Khar; Prakash V. Diwan; Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. Part A 2007, 82A, 92-103.
  77. Jean Haensler; Francis C. Szoka; Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 1993, 4, 372-379.
  78. Mahesh L. Patil; Min Zhang; Oleh Taratula; Olga B. Garbuzenko; Huixin He; Tamara Minko; Internally Cationic Polyamidoamine PAMAM-OH Dendrimers for siRNA Delivery: Effect of the Degree of Quaternization and Cancer Targeting. Biomacromolecules 2009, 10, 258-266.
  79. Renu Singh Dhanikula; Anteneh Argaw; Jean-Francois Bouchard; Patrice Hildgen; Methotrexate Loaded Polyether-Copolyester Dendrimers for the Treatment of Gliomas: Enhanced Efficacy and Intratumoral Transport Capability. Mol. Pharm. 2008, 5, 105-116.
  80. Jobin Thomas; Sangeeta Yadav; Jitendra Satija; Shekhar Agnihotri. Functional Dendritic Coatings for Biomedical Implants; Springer Science and Business Media LLC: Dordrecht, GX, Netherlands, 2021; pp. 173-201.
  81. Louise Kruse Jensen; Henrik Elvang Jensen; Sophie Amalie Blirup-Plum; Mats Bue; Pelle Hanberg; Lasse Kvich; Bent Aalbæk; Yuly López; Sara M. Soto; Marilina Douloudi; et al.Michaela PapageorgiouEleni NikoliMichael ArkasIgnacio Gutiérrez-Del-RíoSara López-IbáñezClaudio J. VillarFelipe LombóParaskevi GkomozaIoanna KitsouAthina TsetsekouMichalis Vardavoulias Coating of bone implants with silica, hyperbranched polyethyleneimine, and gentamicin prevents development of osteomyelitis in a porcine model. Mater. 2022, 24, 101473.
  82. Douglas M. Smith; Jakub K. Simon; James R. Baker Jr; Applications of nanotechnology for immunology. Nat. Rev. Immunol. 2013, 13, 592-605.
  83. Mark W. Grinstaff; Biodendrimers: New Polymeric Biomaterials for Tissue Engineering. Chem. – A Eur. J. 2002, 8, 2838-2846.
  84. Neel Joshi; Mark Grinstaff; Applications of dendrimers in tissue engineering.. Curr. Top. Med. Chem. 2008, 8, 1225-1236.
  85. Aazam Shaikh; Prashant Kesharwani; Virendra Gajbhiye; Dendrimer as a momentous tool in tissue engineering and regenerative medicine. J. Control. Release 2022, 346, 328-354.
  86. Michael Arkas; Michail Vardavoulias; Georgia Kythreoti; Dimitrios A. Giannakoudakis; Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharm. 2023, 15, 524.
  87. Palmer, L.C.; Newcomb, C.J.; Kaltz, S.R.; Spoerke, E.D.; Stupp, S.I. Biomimetic Systems for Hydroxyapatite Mineralization Inspired by Bone and Enamel. Chem. Rev. 2008, 108, 4754–4783.
  88. Hill, E.; Shukla, R.; Park, S.S.; Baker, J.R., Jr. Synthetic PAMAM–RGD Conjugates Target and Bind To Odontoblast-like MDPC 23 cells and the Predentin in Tooth Organ Cultures. Bioconjug. Chem. 2007, 18, 1756–1762.
  89. J.K. Kim; R. Shukla; L. Casagrande; C. Sedgley; J.E. Nör; J.R. Baker; E.E. Hill; Differentiating Dental Pulp Cells via RGD-Dendrimer Conjugates. J. Dent. Res. 2010, 89, 1433-1438.
  90. Jie Liu; Yuan Gao; Xiaodong Zhu; Yuerong Zhang; Hai Xu; Tianda Wang; Guangdong Zhang; Phosphorylated PAMAM dendrimers: an analog of dentin non-collagenous proteins, enhancing the osteo/odontogenic differentiation of dental pulp stem cells. Clin. Oral Investig. 2021, 26, 1737-1751.
  91. Kim, J.K.; Shukla, R.; Casagrande, L.; Sedgley, C.; Nör, J.E.; Baker, J.R., Jr.; Hill, E.E. Differentiating dental pulp cells via RGD-dendrimer conjugates. J. Dent. Res. 2010, 89, 1433–1438.
  92. Liu, J.; Gao, Y.; Zhu, X.; Zhang, Y.; Xu, H.; Wang, T.; Zhang, G. Phosphorylated PAMAM dendrimers: An analog of dentin non-collagenous proteins, enhancing the osteo/odontogenic differentiation of dental pulp stem cells. Clin. Oral Investig. 2022, 26, 1737–1751.
  93. Li, J.; Yang, J.; Li, J.; Chen, L.; Liang, K.; Wu, W.; Chen, X.; Li, J. Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. Biomaterials 2013, 34, 6738–6747.
  94. Xie, F.; Wei, X.; Li, Q.; Zhou, T. In vivo analyses of the effects of polyamidoamine dendrimer on dentin biomineralization and dentinal tubules occlusion. Dent. Mater. J. 2016, 35, 104–111.
  95. Xie, F.; Li, Q.; Wei, X.; Zhou, T. . Chin. J. Stomatol. 2015, 50, 244–247.
  96. Liang, K.; Wang, S.; Tao, S.; Xiao, S.; Zhou, H.; Cheng, L.; Zhou, X.; Weir, M.D.; Oates, T.W.; Li, J.; et al. Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int. J. Oral Sci. 2019, 11, 15.
  97. Liang, K.; Weir, M.D.; Xie, X.; Wang, L.; Reynolds, M.A.; Li, J.; Xu, H.H. Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite. Dent. Mater. 2016, 32, 1429–1440.
  98. Liang, K.; Gao, Y.; Xiao, S.; Tay, F.R.; Weir, M.D.; Zhou, X.; Oates, T.W.; Zhou, C.; Li, J.; Xu, H.H. Poly(amido amine) and rechargeable adhesive containing calcium phosphate nanoparticles for long-term dentin remineralization. J. Dent. 2019, 85, 47–56.
  99. Liang, K.; Xiao, S.; Weir, M.D.; Bao, C.; Liu, H.; Cheng, L.; Zhou, X.; Li, J.; Xu, H.H.K. Poly (amido amine) dendrimer and dental adhesive with calcium phosphate nanoparticles remineralized dentin in lactic acid. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2414–2424.
  100. Liang, K.; Weir, M.D.; Reynolds, M.A.; Zhou, X.; Li, J.; Xu, H.H. Poly (amido amine) and nano-calcium phosphate bonding agent to remineralize tooth dentin in cyclic artificial saliva/lactic acid. Mater. Sci. Eng. C 2017, 72, 7–17.
  101. Liang, K.; Zhou, H.; Weir, M.D.; Bao, C.; Reynolds, M.A.; Zhou, X.; Li, J.; Xu, H.H. Poly(amido amine) and calcium phosphate nanocomposite remineralization of dentin in acidic solution without calcium phosphate ions. Dent. Mater. 2017, 33, 818–829.
  102. Liang, K.; Xiao, S.; Wu, J.; Li, J.; Weir, M.D.; Cheng, L.; Reynolds, M.A.; Zhou, X.; Xu, H.H. Long-term dentin remineralization by poly(amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges. Dent. Mater. 2018, 34, 607–618.
  103. Liang, K.; Gao, Y.; Tao, S.; Weir, M.D.; Zhou, C.; Li, J.; Xu, H.H.K. Dentin remineralization in acidic solution without initial calcium phosphate ions via poly(amido amine) and calcium phosphate nanocomposites after fluid challenges. Clin. Oral Investig. 2022, 26, 1517–1530.
  104. Xiao, S.; Liang, K.; Weir, M.D.; Cheng, L.; Liu, H.; Zhou, X.; Ding, Y.; Xu, H.H.K. Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization. Materials 2017, 10, 89.
  105. Chuang, S.-F.; Chen, Y.-H.; Ma, P.; Ritchie, H.H. Phosphophoryn and Dentin Sialoprotein Effects on Dental Pulp Cell Migration, Proliferation, and Differentiation. Dent. J. 2018, 6, 70.
  106. Wen, Y.; Wang, J.; Luo, J.; Yang, J. Remineralization of dentine tubules induced by phosphate-terminated PAMAM dendrimers. Heliyon 2020, 6, e05886.
  107. Wang, T.; Yang, S.; Wang, L.; Feng, H. Use of multifunctional phosphorylated PAMAM dendrimers for dentin biomimetic remineralization and dentinal tubule occlusion. RSC Adv. 2015, 5, 11136–11144.
  108. Zhang, H.; Yang, J.; Liang, K.; Li, J.; He, L.; Yang, X.; Peng, S.; Chen, X.; Ding, C.; Li, J. Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein. Colloids Surf. B Biointerfaces 2015, 128, 304–314.
  109. Qin, H.; Long, J.; Zhou, J.; Wu, L.; Xie, F. Use of phosphorylated PAMAM and carboxyled PAMAM to induce dentin biomimetic remineralization and dentinal tubule occlusion. Dent. Mater. J. 2021, 40, 800–807.
  110. Xie, F.; Long, J.; Yang, J.; Qin, H.; Lin, X.; Chen, W. Effect of a new modified polyamidoamine dendrimer biomimetic system on the mineralization of type I collagen fibrils: An in vitro study. J. Biomater. Sci. Polym. Ed. 2022, 33, 212–228.
  111. Zhou, Y.; Yang, J.; Lin, Z.; Li, J.; Liang, K.; Yuan, H.; Li, S.; Li, J. Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine. Colloids Surf. B Biointerfaces 2014, 115, 237–243.
  112. Zhu, B.; Li, X.; Xu, X.; Li, J.; Ding, C.; Zhao, C.; Li, J. One-step phosphorylated poly(amide-amine) dendrimer loaded with apigenin for simultaneous remineralization and antibacterial of dentine. Colloids Surf. B Biointerfaces 2018, 172, 760–768.
  113. Cai, X.; Wang, X. Chlorhexidine-loaded poly (amido amine) dendrimer and a dental adhesive containing amorphous calcium phosphate nanofillers for enhancing bonding durability. Dent. Mater. 2022, 38, 824–834.
  114. Chen, L.; Chen, W.; Yu, Y.; Yang, J.; Jiang, Q.; Wu, W.; Yang, D. Effect of chlorhexidine-loaded poly(amido amine) dendrimer on matrix metalloproteinase activities and remineralization in etched human dentin in vitro. J. Mech. Behav. Biomed. Mater. 2021, 121, 104625.
  115. EL Wafa, M.R.A.; Niazy, M.A.; Hagar, E.A.A.; Abu-Seida, A.M. Biological Pulp Response of Pulpine, Polyamidoamine Dendrimer and Their Combination in Dogs and their Remineralizing Effect on Carious Affected Human Dentin: A Randomized Clinical Trial. Al-Azhar Dent. J. Girls 2021, 8, 591–600.
  116. Jaymand, M.; Lotfi, M.; Lotfi, R. Functional dendritic compounds: Potential prospective candidates for dental restorative materials and in situ re-mineralization of human tooth enamel. RSC Adv. 2016, 6, 43127–43146.
  117. Chen, L.; Liang, K.; Li, J.; Wu, D.; Zhou, X.; Li, J. Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro. Arch. Oral Biol. 2013, 58, 975–980.
  118. Chen, L.; Yuan, H.; Tang, B.; Liang, K.; Li, J. Biomimetic Remineralization of Human Enamel in the Presence of Polyamidoamine Dendrimers in vitro. Caries Res. 2015, 49, 282–290.
  119. Fan, M.; Zhang, M.; Xu, H.H.; Tao, S.; Yu, Z.; Yang, J.; Yuan, H.; Zhou, X.; Liang, K.; Li, J. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro. Dent. Mater. 2020, 36, 210–220.
  120. Jia, L.; Tao, S.; Yang, J.; Liang, K.; Yu, Z.; Gao, Y.; Fan, M.; Zhang, M.; He, L.; Li, J. Adhesion of Streptococcus mutans on remineralized enamel surface induced by poly(amido amine) dendrimers. Colloids Surf. B Biointerfaces 2021, 197, 111409.
  121. Chen, M.; Yang, J.; Li, J.; Liang, K.; He, L.; Lin, Z.; Chen, X.; Ren, X.; Li, J. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater. 2014, 10, 4437–4446.
  122. Yang, S.; He, H.; Wang, L.; Jia, X.; Feng, H. Oriented crystallization of hydroxyapatite by the biomimetic amelogenin nanospheres from self-assemblies of amphiphilic dendrons. Chem. Commun. 2011, 47, 10100–10102.
  123. Yang, J.; Cao, S.; Li, J.; Xin, J.; Chen, X.; Wu, W.; Xu, F.; Li, J. Staged self-assembly of PAMAM dendrimers into macroscopic aggregates with a microribbon structure similar to that of amelogenin. Soft Matter 2013, 9, 7553–7559.
  124. Wu, D.; Yang, J.; Li, J.; Chen, L.; Tang, B.; Chen, X.; Wu, W.; Li, J. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel. Biomaterials 2013, 34, 5036–5047.
  125. Gao, Y.; Liang, K.; Weir, M.D.; Gao, J.; Imazato, S.; Tay, F.; Lynch, C.D.; Oates, T.W.; Li, J.; Xu, H.H. Enamel remineralization via poly(amido amine) and adhesive resin containing calcium phosphate nanoparticles. J. Dent. 2020, 92, 103262.
  126. Tao, S.; Yang, X.; Liao, L.; Yang, J.; Liang, K.; Zeng, S.; Zhou, J.; Zhang, M.; Li, J. A novel anticaries agent, honokiol-loaded poly(amido amine) dendrimer, for simultaneous long-term antibacterial treatment and remineralization of demineralized enamel. Dent. Mater. 2021, 37, 1337–1349.
  127. Liang, K.; Gao, Y.; Li, J.; Liao, Y.; Xiao, S.; Lv, H.; He, L.; Cheng, L.; Zhou, X.; Li, J. Effective dentinal tubule occlusion induced by polyhydroxy-terminated PAMAM dendrimer in vitro. RSC Adv. 2014, 4, 43496–43503.
  128. Jia, R.; Lu, Y.; Yang, C.-W.; Luo, X.; Han, Y. Effect of generation 4.0 polyamidoamine dendrimer on the mineralization of demineralized dentinal tubules in vitro. Arch. Oral Biol. 2014, 59, 1085–1093.
  129. Liang, K.; Gao, Y.; Li, J.; Liao, Y.; Xiao, S.; Zhou, X.; Li, J. Biomimetic mineralization of collagen fibrils induced by amine-terminated PAMAM dendrimers—PAMAM dendrimers for remineralization. J. Biomater. Sci. Polym. Ed. 2015, 26, 963–974.
  130. Liang, K.; Yuan, H.; Li, J.; Yang, J.; Zhou, X.; He, L.; Cheng, L.; Gao, Y.; Xu, X.; Zhou, X.; et al. Remineralization of Demineralized Dentin Induced by Amine-Terminated PAMAM Dendrimer. Macromol. Mater. Eng. 2015, 300, 107–117.
  131. Wang, T.; Yang, S.; Wang, L.; Feng, H. Use of Poly (Amidoamine) Dendrimer for Dentinal Tubule Occlusion: A Preliminary Study. PLoS ONE 2015, 10, e0124735.
  132. Lin, X.; Xie, F.; Ma, X.; Hao, Y.; Qin, H.; Long, J. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. J. Biomater. Sci. Polym. Ed. 2017, 28, 846–863.
  133. Tao, S.; Fan, M.; Xu, H.H.K.; Li, J.; He, L.; Zhou, X.; Liang, K.; Li, J. The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv. 2017, 7, 54947–54955.
  134. Gao, Y.; Liang, K.; Li, J.; Yuan, H.; Liu, H.; Duan, X.; Li, J. Effect and Stability of Poly(Amido Amine)-Induced Biomineralization on Dentinal Tubule Occlusion. Materials 2017, 10, 384.
  135. Khater, A.A.A.E.-A.; Niazy, M.A.; Gad, N.A.E.-A. The Effect of Poly Amido Amine Dendrimer, Gluteraldehyde and Their Combination on the Micro Hardness and Micromorphology of Demineralized Dentin. Al-Azhar Dent. J. Girls 2018, 5, 341–347.
  136. Bae, J.; Son, W.-S.; Yoo, K.-H.; Yoon, S.-Y.; Bae, M.-K.; Lee, D.J.; Ko, C.-C.; Choi, Y.-K.; Kim, Y.-I. Effects of Poly(Amidoamine) Dendrimer-Coated Mesoporous Bioactive Glass Nanoparticles on Dentin Remineralization. Nanomaterials 2019, 9, 591.
  137. Yang, J.; Huang, J.; Qin, H.; Long, J.; Lin, X.; Xie, F. Remineralization of human dentin type I collagen fibrils induced by carboxylated polyamidoamine dendrimer/amorphous calcium phosphate nanocomposite: An in vitro study. J. Biomater. Sci. Polym. Ed. 2022, 33, 668–686.
More
Video Production Service