Core Directions in Miscanthus Research: Comparison
Please note this is a comparison between Version 2 by Sirius Huang and Version 3 by Yulia Gismatulina.

МискантусMiscanthus is a valuable renewable является ценным возобновляемым сырьем и обладает значительным потенциалом для производства разнообразных продуктов на основе таких макромолекул, как целлюлоза, гемицеллюлозы и лигнинfeedstock and has a significant potential for the manufacture of diverse products based on macromolecules such as cellulose, hemicelluloses and lignin

  • miscanthus
  • renewable polymers
  • biofuel
  • bacterial cellulose

1. ВведениеIntroduction

ПостоянноThe увеличивающееся содержание углекислого газа в атмосфере и глобальное потепление представляют собой серьезную угрозу для человечества. Следовательно, необходимы действия по смягчению последствий изменения климата, а также существует необходимость перехода к низкоуглеродной экономике, в которой биомасса является наиболее распространенным и доступным источником углеродаperpetually increasing atmospheric carbon dioxide and global warming are a serious threat to humankind. Hence, actions are required to mitigate the climate change consequences, and there is a need for the transition to a low-carbon economy in which biomass is the most common and available source of carbon [ 1 ] .
МногиеA good many researchers consider the исследователи рассматривают проблему глобальных выбросов парниковых газов с точки зрения торговли и политикиissue of global greenhouse gas emissions from the standpoint of trading and policy [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 7 ], , что, несомненно, важно для борьбы с изменением климата. Остальные исследования направлены на количественную оценку потенциала различных производств по минимизации последствий или сокращению выбросовwhich is undoubtedly important to combat the climate change. The other research studies are focused on a quantitative evaluation of the potential of various productions to minimize the consequences or reduce the CO 2 emissions; например, оценки использования биомассы для транспорта, энергетики, строительства и металлургической промышленностиfor example, the estimations of biomass utilization for transport, power engineering, construction and iron-and-steel industry [ 8 ] .
МискантусMiscanthus is является бионасосомa bio-pump [ 9 ] иand обладает потенциалом снижения выбросов парниковых газов за счет ассимиляции углерода в почвеhas the potential of greenhouse gas emission reduction through soil carbon assimilation [ 10 ] .
ИсследованияThe studies [ 11 ] [ 12 ] [ 13 ] сообщилиreported о ценных результатах, оценивающих жизненный цикл производства тепла, электроэнергии, этанола и биогаза из мискантуса, и продемонстрировали, что выращивание мискантуса и производство товаров из мискантуса являются хорошим вариантом для получения углерода. смягчение последствийvaluable results evaluating the life cycle of heat, electric power, ethanol and biogas productions from miscanthus, and demonstrated that the miscanthus cultivation and the manufacture of commodities from miscanthus are a good option for carbon footprint mitigation.
МискантусMiscanthus is – многолетняя корневищная трава с высокой урожайностью и низкой потребностью в питательных веществах. Мискантус живет до 20 лет, что является преимуществом перед однолетними растениями. К достоинствамa perennial rhizomatous grass with a high yield capacity and low nutrient requirements. Miscanthus has a life span up to 20 years, which is an advantage over annual plants. The merits of Miscanthus × giganteus можноmay also include the anatomy отнести и анатомию его стеблей, корковый слой которых не содержит длинных волокон в отличие от некоторых лубяных растений, требующих обрезки лубяных волокон (например, льна и коноплиof its stalks whose bast layer does not contain long fibers unlike some bast plants that require pruning of their bast fibers (for example, flax and hemp) [ 14 ] . По сравнению с другими многолетними культурами мискантус дает более высокое содержание сухого вещества. После посадки мискантус не требует никаких удобрений или особого ухода в поле, кроме ежегодного сбора урожая с помощью стандартнойCompared to other perennial crops, miscanthus yields a higher content of dry matter. Once planted, miscanthus requires no fertilizers or special care in the field but annual harvesting with standard farm machinery сельскохозяйственной техники [ 15 ]. . Эта культура с высокой эффективностью использования воды и способностью адаптироваться к суровым условиям наряду с ее экологическими функциями, такими как восстановление почвы, может сыграть жизненно важную роль в биоэкономическом развитии любой страныThis crop with a high water use efficiency and ability to adapt to severe conditions along with its environmental functions such as soil remediation may have a vital part in the bioeconomic development of any nation [ 14 ] [ 15 ]. . Мискантус — морозостойкая культура и может произрастать на маргинальных, засоленных и неиспользуемых земляхMiscanthus is a frost-resistant crop and can grow on marginal, salinized and unused lands [ 16 ]. . Учитывая вероятность дальнейшего истощения мировых лесных площадей и ограничения на заготовку древесины из-за природоохранной роли лесов, мискантус все чаще рассматривается как потенциальное сырье для замены части древесины хвойных и лиственных породConsidering the probability of further depletion of the world forest areas and the limitation on wood procurement due to the environment-conserving role of forests, miscanthus is being more frequently viewed as a [ 14 ]potential .
Воfeedstock всемto мире для производства биомассы мискантуса используетсяreplace some of softwood and hardwood около[14].
About 123 ,000 га. Самая большая площадь расположена в Китае, где ок. В дикой природе озера Дунтин 100 000 га занимаютha are utilized for the miscanthus biomass production across the world. The largest area is located in China, where approx. 100,000 ha are occupied by M. lutarioriparius . Урожайность in the wildlife at the Dongting Lake. The biomass биомассыyields составляет около 12 т/га/годconstitute about 12 t/ha/year [ 17 ] .
РезультатыThe machine исследования машинного обученияlearning study results [ 18 ] показали,showed что во всем мире существует 3068,25 млн га маргинальных земельных ресурсов, пригодных дляthat globally there exist 3068.25 million ha marginal land resources eligible for выращивания M. × giganteus cultivation, которые в основном расположены в Африке (902,05 млн га), Азии (620,32 млн га), Южной Америке (547,60 млн га). млн га) и Северной Америки (529,26 млн га). Страны с крупнейшими земельными ресурсами — Россия и Бразилия — занимают первое и второе места по количеству маргинальных земель, пригодных дляwhich are basically located in Africa (902.05 million ha), Asia (620.32 million ha), South America (547.60 million ha) and North America (529.26 million ha). The countries with the largest land resources, Russia and Brazil, hold the first and second places based on the amount of marginal lands suitable for M. × giganteus, , с площадью 373,35 и 332,37 млн ​​га соответственноwith areas of 373.35 and 332.37 million ha, respectively.
МискантусMiscanthus is a valuable renewable является ценным возобновляемым сырьем и обладает значительным потенциалом для производства разнообразных биотехнологических продуктов на основе таких макромолекул, как целлюлоза, гемицеллюлозы и лигнин. Исследования химического состава мискантуса по сравнению с разнообразным растительным миром постоянно развиваются и показывают преимущества мискантуса перед многими лигноцеллюлозными ресурсами, в частности по содержанию целлюлозы - наиболее ценного для переработки полимераfeedstock and has a significant potential for the manufacture of diverse biotechnology products based on macromolecules such as cellulose, hemicelluloses and lignin. The studies on the miscanthus chemical composition compared to the diverse vegetable world are constantly developing and show the advantages of miscanthus over many lignocellulosic resources, particularly by the content of cellulose, a polymer that is the most valuable for conversion.

2. ОсновныеCore Directions направления исследований мискантусаin Miscanthus Research

2.1. ВыборMiscanthus МискантусаSelection

M. × giganteus is наиболее распространенный во всем мире видthe most common worldwide among the мискантусаMiscanthus species. Высокая урожайность (10 т/га/год) и продолжительность жизни The high yield capacity (10 t/ha/year) and life span (15–20 лет) делают мискантус перспективной биоэнергетической культурой и эффективным инструментом борьбы с изменением климата. Однакоyears) make miscanthus a promising bioenergy crop and an effective tool to combat the climate change. However, M. × giganteus неis not free of shortcomings, лишен недостатков: он чувствителен к холодным зимним температурам и засухе, размножается только делением корневища, имеет низкое генетическое разнообразие и восприимчив к почвенным патогенам. Такимi.e., it is sensitive to cold winter temperatures and drought, can only be reproduced through rhizome division, has a poor genetic diversity and is susceptible to soil pathogens. Hence, the other Miscanthus образом,species другие виды и сортаand cultivars have become мискантусовvaluable сталиsources ценными источниками генетического материала для внутривидовой и межвидовой селекции. В селекции особое внимание уделяется достижению более высокой урожайности, качества и устойчивости к антибиотикам. Например, несмотря на меньший выход надземной биомассы по сравнению сof the genetic material for intraspecific and interspecific breeding. In breeding, a special focus is placed on achieving a higher yield capacity, quality and tolerance to antibiotic stressors. For instance, despite having a poorer aboveground biomass yield compared to M. × giganteus , M. sinensis болееis more устойчив к водному стрессу и, следовательно, более пригоден для выращивания в более сухом климатеtolerant to water stress and, hence, is more suitable for cultivation in a drier climate. M. lutarioriparius offers a high обеспечивает высокий выход биомассы, но менее устойчив к холоду и засухе и поэтому более подходит для регионов, менее подверженных частому дефициту водыyield of biomass but is less resistant to cold and drought, and is therefore more suitable for regions that are less exposed to frequent water deficiency [ 19 ] . ПосколькуSince the chemical composition химический состав сырья имеет решающее значение для переработки мискантусаof the feedstock is essential for the miscanthus conversion, вTable Таблице 1 описываетсяoutlines именно этот аспект для некоторыхexactly this aspect for some видовMiscanthus мискантусаspecies изfrom разных географических мест, как сообщается в недавних исследованияхdifferent geographical locations, as reported in the recent studies.
ТаблицаTable 1. СодержаниеComponent компонентов (%) мискантусаcontent (%) of miscanthus.
ПосколькуBecause of miscanthus мискантус обладает богатым генетическим разнообразием, его лигноцеллюлозный состав широко варьируется;having a rich genetic diversity, its lignocellulosic content varies widely; yet, many темMiscanthus неspecies менее, многие видыare characterized by мискантусовa характеризуютсяhigh высоким содержанием возобновляемых полимеровcontent of renewable polymers. ВIn recent years, the research initiatives последние годы исследовательские инициативы привели к выявлению ряда свойств мискантуса, которые можно оптимизировать для различных применений. Например, были выпущены улучшенные сорта мискантуса для биологического применения, которые менее устойчивы к разрушению из-за меньшего количества лигнина и из-за изменений конкретных характеристик клеточных стенокhave resulted in a range of miscanthus traits being identified, which can be optimized for various applications. For example, improved miscanthus varieties for bio-based applications were released that are less recalcitrant to destruction due to having less lignin and due to alterations in specific cell wall characteristics [ 28 ]. . Напротив, трансгенный мискантус с повышенным содержанием лигнина был получен с целью повышения энергетической ценностиIn contrast, transgenic miscanthus with enhanced lignin content was derived in order to improve the energy value [ 29 ] .

2.2. ИсследованияStudies воздействия мискантуса на окружающую средуon Environmental Impact of Miscanthus

ВанWang и дрet al. [ 30 ] суммировалиsummarized публикации в этой области в своем обзорном докладе. Недавно также была представлена ​​экономическая модель для оценки выбросов парниковых газов при выращивании мискантуса с использованием коммерческой практики, принятой в Великобританииpublications in this field in their review paper. An economic model for the estimation of greenhouse gas emissions in the miscanthus cultivation using the commercial practice adopted in the UK was reported recently as well [ 31 ] .

2.3. ПроизводствоProduction of различных продуктов из мискантусаVarious Products from Miscanthus

ПереработкеA great many works worldwide мискантуса посвящено множество работ во всем мире. В некоторых приложениях используются все фракции биомассы мискантуса, например, сжигание для производства электроэнергииhave been focused on the miscanthus processing. Some applications employ all fractions of the miscanthus biomass, for example, incineration for power generation [ 32 ] [32][ 33 ] 33][ 34 ] или34] or pyrolysis for пиролизthe для производства бионефтиproduction of bio-oil [ 35 ] [ 36 ] , биоугляbiochar [ 37 ] [ 38 ], гидроугольhydrochar [ 39 ] [ 40 ] иand оксид графенаgraphene oxide [ 41 ] , для синтеза биополиоловfor biopolyol synthesis [ 21 ] иand for the для производства композиционных материаловproduction of composite materials [ 42 ] [ 43 ] [ 44 ] , бетонаconcrete [ 45 ] , строительного раствораmiscanthus-based mortar на основе мискантуса [ 46 ] , армированная волокномfiber-reinforced screed стяжка [ 47 ] иand ПЭТ наbio-based PET биологической основе [ 48 ] . ДругиеThe other applications employ only приложения используют только определенные части клеточной стенки для превращения в продукты, например, этерифицированный лигнинcertain parts of the cell wall for the transformation into products, for example, esterified lignin [ 49 ]. . Кислотный гидролиз мискантуса изучался для синтеза таких химических веществ, как фурфурол, гидроксиметилфурфуролAcid hydrolysis of miscanthus has been studied for the synthesis of chemicals such as furfural, hydroxymethylfurfural [ 50 ] , левулиновая кислотаlevulic acid [ 51 ] иand other другие органические кислоты и этиленгликольorganic acids and ethylene glycol [ 52 ] . ЦеллюлозаCellulose, целлюлозные микроволокна и бумагаcellulose microfibers and paper [ 53 ] [ 54 ] [ 55 ] [ 56 ] , нанокристаллы целлюлозыcellulose nanocrystals [ 57 ] , олигосахаридыoligosaccharides [ 58 ] [ 59 ] [ 60 ] [ 61 ] иand ксилолxylene [ 25 ] получаютare derived из мискантуса. Пидлиснюк и дрfrom miscanthus. Pidlisnyuk et al. [ 62 ] всестороннеcomprehensively рассмотрены некоторые продукты из мискантуса (сельскохозяйственная продукция, изоляционные и композиционные материалы, гемицеллюлозы, целлюлоза и бумагаreviewed some products from miscanthus (agricultural products, insulation and composite materials, hemicelluloses, pulp and paper). МногиеMany продукты биотехнологии, такие как биоэтанол, биогаз, бактериальная целлюлоза, ферменты, молочная кислота, липиды, фумаровая кислота и полигидроксиалканоаты, получают из мискантусаbiotechnology products such as bioethanol, biogas, bacterial cellulose, enzymes, lactic acid, lipids, fumaric acid and polyhydroxyalkanoates are derived from miscanthus.

2.4. ПредварительнаяMiscanthus обработка мискантуса и процессы гидролизаPretreatment and Hydrolysis Processes

Более тогоFurthermore, некоторые исследования сосредоточены только на предварительной обработке мискантуса без выделения конечногоsome studies are focused only on miscanthus pretreatment without end-product isolation продукта [ 63 ]. . Предварительная обработка биомассы мискантуса крайне необходима для получения сбраживаемых сахаров и последующих биотехнологических продуктов. Из-за гетерогенной структуры мискантус имеет серьезные ограничения в отношении конверсии и не поддается ферментативному гидролизу. Стадия предварительной обработки главным образом предназначена для разрушения структуры, состоящей из трех основных возобновляемых полимеров, т.е. целлюлозы, гемицеллюлозы и лигнина, а также второстепенных неструктурных компонентов (экстрактивных веществ, золыThe pretreatment of miscanthus biomass is highly requisite to obtain fermentable sugars and subsequent biotechnology products. Due to the heterogeneous structure, miscanthus has serious limitations with respect to the conversion and is recalcitrant to enzyme-assisted hydrolysis. The pretreatment step is chiefly meant to breakdown the structure composed of the three main renewable polymers, i.e., cellulose, hemicellulose and lignin, as well as minor non-structural constituents (extractives, ash). ИзOut of the three basic трех основных компонентов лигнин наиболее устойчив к разложению. Целлюлоза сохраняет значительный показатель кристалличности и образует жесткий каркас, выполняющий роль несущей конструкции клеточной стенки. Гемицеллюлоза, гетерополимер ксилозы, арабинозы, галактозы и других сахаров, не является кристаллической и поэтому более поддается гидролизу, чем целлюлозаconstituents, lignin is the most recalcitrant to degradation. Cellulose retains a significant crystallinity index and forms a rigid framework acting as a bearing structure of the cell wall. Hemicellulose, a heteropolymer of xylose, arabinose, galactose and other sugars, is not crystalline and therefore more amenable to hydrolysis than cellulose [ 64 ] . КакSimilar и в случае с другим лигноцеллюлозным сырьем, к мискантусу применимо несколько методов предварительной обработки. Некоторые методы уже считаются традиционными (шаровая обработка, кислотная обработка, щелочная обработка, обработка аммиаком, органосольвентная обработка, обработка ионной жидкостью, обработка горячей водой, обработка паровым взрывом), а также разрабатываются новые методы (микроволновая обработка, ультразвук, глубокая эвтектическая обработка). растворитель, облучение, методы предварительной обработки с использованием высоких сил, биологическая предварительная обработкаto other lignocellulosic feedstocks, several pretreatment methods are applicable to miscanthus. Some methods are already reckoned to be conventional (ball milling, acid treatment, alkaline treatment, ammonia treatment, organosolv treatment, ionic liquid treatment, hot water treatment, steam explosion treatment), and new methods are under development (microwave, ultrasound, deep eutectic solvent, irradiation, high force-assisted pretreatment methods, biological pretreatment) [ 65 ] [ 66 ]. . Тем не менее, традиционные методы продолжают исследоваться для более глубокого понимания фракционирования, оптимизации и масштабирования процессаThat said, the conventional methods continue to be investigated for a deeper understanding of fractionation, optimization and process scale-up [ 67 ]. . Кроме того, также предлагается использовать комбинацию двух или более подходов предварительной обработки биомассы для максимального разрушения биомассыFurthermore, it is also proposed that a combination of two or more approaches for biomass pretreatment be used for maximum destruction of the biomass [ 68 ] . НаFigure рис. 1 shows схематически показано влияние предварительной обработки на биомассуa schematic of the effect of pretreatment on biomasses [ 69 ] .
РисунокFigure 1. ВлияниеEffect предварительной обработки на биомассу (воспроизведено с разрешенияof pretreatment on biomasses (reproduced with permission from [ 69 ] , MDPI, 2023).
ОценкаThe evaluation of различных подходов показывает, что по-прежнему необходимы последовательные усилия для разработки экономичной и экологически безопасной стратегии предварительной обработкиdifferent approaches demonstrates that successive efforts are still needed to develop an economical and eco-benign pretreatment strategy [ 64 ] [ 68 ] . ОднакоBut, not all of the не все биотехнологические продукты требуют предварительной обработки биомассы; например, предварительная обработка не является обязательной для производства биогаза и использования лигноцеллюлозы в качестве индуктора выработки ферментовbiotechnology products require that a biomass be pretreated; for instance, pretreatment is not mandatory for the biogas production and the use of lignocellulose as an inducer of enzyme production. ПослеAfter pretreatment, cellulose предварительной обработки целлюлоза и гемицеллюлозы могут быть гидролизованы до мономерных сахаров. Ферментативный гидролиз лигноцеллюлозы является наиболее известным и перспективным методом осахаривания биомассыand hemicelluloses can be hydrolyzed to monomeric sugars. Enzymatic hydrolysis of lignocellulosics is the most known and promising technique for biomass saccharificationФерментативныйEnzymatic hydrolysis гидролиз может высвобождать мономерные сахара в очень широком диапазоне, в зависимости от метода предварительной обработки. Например, Дай и дрcan liberate monomeric sugars in a very wide range, depending on the pretreatment method. For instance, Dai et al. [ 70 ] недавноrecently исследовали, как методы предварительной обработки, такие как микроволновая печьexamined how pretreatment methods such as microwave, NaOH, CaO и микроволновая печь and microwave + NaOH/CaO, влияют на выход сахара из мискантуса. Выход гексозы находился в значительном диапазоне от 4,0 до 73, influenced the sugar yield from miscanthus. The hexose yield showed a substantial range from 4.0 to 73.4% (% в пересчете на целлюлозу). Самый высокий выход гексозы был достигнут при предварительной обработке on a cellulose basis). The highest hexose yield was achieved by the 12% NaOH, а самый низкий — при предварительной обработке pretreatment and the lowest one by the 1% CaO + микроволновое излучениеmicrowave pretreatment.

References

  1. Liu, Z.; Saydaliev, H.B.; Lan, J.; Ali, S.; Anser, M.K. Assessing the Effectiveness of Biomass Energy in Mitigating CO2 Emissions: Evidence from Top-10 Biomass Energy Consumer Countries. Renew. Energy 2022, 191, 842–851.
  2. Lu, J.; Sun, X. Carbon Regulations, Production Capacity, and Low-Carbon Technology Level for New Products with Incomplete Demand Information. J. Clean. Prod. 2021, 282, 124551.
  3. Jiang, Q.; Ma, X. Spillovers of Environmental Regulation on Carbon Emissions Network. Technol. Forecast. Soc. Change 2021, 169, 120825.
  4. Entezaminia, A.; Gharbi, A.; Ouhimmou, M. A Joint Production and Carbon Trading Policy for Unreliable Manufacturing Systems under Cap-and-Trade Regulation. J. Clean. Prod. 2021, 293, 125973.
  5. Hasan, M.R.; Roy, T.C.; Daryanto, Y.; Wee, H.-M. Optimizing Inventory Level and Technology Investment under a Carbon Tax, Cap-and-Trade and Strict Carbon Limit Regulations. Sustain. Prod. Consum. 2021, 25, 604–621.
  6. Chen, Y.; Li, B.; Zhang, G.; Bai, Q. Quantity and Collection Decisions of the Remanufacturing Enterprise under Both the Take-Back and Carbon Emission Capacity Regulations. Transp. Res. Part E Logist. Transp. Rev. 2020, 141, 102032.
  7. Kwaśniewski, D.; Płonka, A.; Mickiewicz, P. Harvesting Technologies and Costs of Biomass Production from Energy Crops Cultivated on Farms in the Małopolska Region. Energies 2021, 15, 131.
  8. Patrizio, P.; Fajardy, M.; Bui, M.; Dowell, N. Mac CO2 Mitigation or Removal: The Optimal Uses of Biomass in Energy System Decarbonization. iScience 2021, 24, 102765.
  9. Shen, Z.; Tiruta-Barna, L.; Karan, S.K.; Hamelin, L. Simultaneous Carbon Storage in Arable Land and Anthropogenic Products (CSAAP): Demonstrating an Integrated Concept towards Well below 2 °C. Resour. Conserv. Recycl. 2022, 182, 106293.
  10. Nakajima, T.; Yamada, T.; Anzoua, K.G.; Kokubo, R.; Noborio, K. Carbon Sequestration and Yield Performances of Miscanthus × Giganteus and Miscanthus Sinensis. Carbon. Manag. 2018, 9, 415–423.
  11. Lewandowski, I.; Clifton-Brown, J.; Trindade, L.M.; van der Linden, G.C.; Schwarz, K.-U.; Müller-Sämann, K.; Anisimov, A.; Chen, C.-L.; Dolstra, O.; Donnison, I.S.; et al. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 2016, 7, 1620.
  12. Agostini, A.; Serra, P.; Giuntoli, J.; Martani, E.; Ferrarini, A.; Amaducci, S. Biofuels from Perennial Energy Crops on Buffer Strips: A Win-Win Strategy. J. Clean. Prod. 2021, 297, 126703.
  13. Lask, J.; Wagner, M.; Trindade, L.M.; Lewandowski, I. Life Cycle Assessment of Ethanol Production from Miscanthus: A Comparison of Production Pathways at Two European Sites. GCB Bioenergy 2019, 11, 269–288.
  14. Danielewicz, D.; Surma-Ślusarska, B. Miscanthus × Giganteus Stalks as a Potential Non-Wood Raw Material for the Pulp and Paper Industry. Influence of Pulping and Beating Conditions on the Fibre and Paper Properties. Ind. Crops Prod. 2019, 141, 111744.
  15. Feng, H.; Lin, C.; Liu, W.; Xiao, L.; Zhao, X.; Kang, L.; Liu, X.; Sang, T.; Yi, Z.; Yan, J.; et al. Transcriptomic Characterization of Miscanthus Sacchariflorus × M. Lutarioriparius and Its Implications for Energy Crop Development in the Semiarid Mine Area. Plants 2022, 11, 1568.
  16. von Hellfeld, R.; Hastings, A.; Kam, J.; Rowe, R.; Clifton-Brown, J.; Donnison, I.; Shepherd, A. Expanding the Miscanthus Market in the UK: Growers in Profile and Experience, Benefits and Drawbacks of the Bioenergy Crop. GCB Bioenergy 2022, 14, 1205–1218.
  17. Lewandowski, I.; Clifton-Brown, J.; Kiesel, A.; Hastings, A.; Iqbal, Y. Miscanthus. In Perennial Grasses for Bioenergy and Bioproducts; Elsevier: Amsterdam, The Netherlands, 2018; pp. 35–59.
  18. Hao, M.; Chen, S.; Qian, Y.; Jiang, D.; Ding, F. Using Machine Learning to Identify the Potential Marginal Land Suitable for Giant Silvergrass (Miscanthus × Giganteus). Energies 2022, 15, 591.
  19. Briones, M.J.I.; Massey, A.; Elias, D.M.O.; McCalmont, J.P.; Farrar, K.; Donnison, I.; McNamara, N.P. Species Selection Determines Carbon Allocation and Turnover in Miscanthus Crops: Implications for Biomass Production and C Sequestration. Sci. Total Environ. 2023, 887, 164003.
  20. Hassan, E.-S.R.E.; Mutelet, F. Evaluation of Miscanthus Pretreatment Effect by Choline Chloride Based Deep Eutectic Solvents on Bioethanol Production. Bioresour. Technol. 2022, 345, 126460.
  21. Li, H.; Wang, B.; Shui, H.; Wei, Q.; Xu, C.C. Preparation of Bio-Based Polyurethane Hydroponic Foams Using 100% Bio-Polyol Derived from Miscanthus through Organosolv Fractionation. Ind. Crops Prod. 2022, 181, 114774.
  22. Turner, W.; Greetham, D.; Mos, M.; Squance, M.; Kam, J.; Du, C. Exploring the Bioethanol Production Potential of Miscanthus Cultivars. Appl. Sci. 2021, 11, 9949.
  23. Gismatulina, Y.A.; Budaeva, V.V.; Kortusov, A.N.; Kashcheyeva, E.I.; Gladysheva, E.K.; Mironova, G.F.; Skiba, E.A.; Shavyrkina, N.A.; Korchagina, A.A.; Zolotukhin, V.N.; et al. Evaluation of Chemical Composition of Miscanthus × Giganteus Raised in Different Climate Regions in Russia. Plants 2022, 11, 2791.
  24. Doczekalska, B.; Bartkowiak, M.; Waliszewska, B.; Orszulak, G.; Cerazy-Waliszewska, J.; Pniewski, T. Characterization of Chemically Activated Carbons Prepared from Miscanthus and Switchgrass Biomass. Materials 2020, 13, 1654.
  25. Ouyang, J.; He, W.-Q.; Li, Q.-M.; Chen, L.; Wu, X.-F.; Su, X.-J. Separation of Lignocellulose and Preparation of Xylose from Miscanthus Lutarioriparius with a Formic Acid Method. Appl. Sci. 2022, 12, 1432.
  26. Dorogina, O.V.; Vasilyeva, O.Y.; Nuzhdina, N.S.; Buglova, L.V.; Gismatulina, Y.A.; Zhmud, E.V.; Zueva, G.A.; Komina, O.V.; Tsybchenko, E.A. Resource Potential of Some Species of the Genus Miscanthus Anderss. under Conditions of Continental Climate of West Siberian Forest-Steppe. Vavilov J. Genet. Breed. 2018, 22, 553–559.
  27. Xu, P.; Cheng, S.; Han, Y.; Zhao, D.; Li, H.; Wang, Y.; Zhang, G.; Chen, C. Natural Variation of Lignocellulosic Components in Miscanthus Biomass in China. Front. Chem. 2020, 8, 595143.
  28. van der Cruijsen, K.; Al Hassan, M.; van Erven, G.; Dolstra, O.; Trindade, L.M. Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules 2021, 26, 254.
  29. Bhatia, R.; Timms-Taravella, E.; Roberts, L.A.; Moron-Garcia, O.M.; Hauck, B.; Dalton, S.; Gallagher, J.A.; Wagner, M.; Clifton-Brown, J.; Bosch, M. Transgenic ZmMYB167 Miscanthus Sinensis with Increased Lignin to Boost Bioenergy Generation for the Bioeconomy. Biotechnol. Biofuels Bioprod. 2023, 16, 29.
  30. Wang, C.; Kong, Y.; Hu, R.; Zhou, G. Miscanthus: A Fast-growing Crop for Environmental Remediation and Biofuel Production. GCB Bioenergy 2021, 13, 58–69.
  31. Lask, J.; Kam, J.; Weik, J.; Kiesel, A.; Wagner, M.; Lewandowski, I. A Parsimonious Model for Calculating the Greenhouse Gas Emissions of Miscanthus Cultivation Using Current Commercial Practice in the United Kingdom. GCB Bioenergy 2021, 13, 1087–1098.
  32. Collura, S.; Azambre, B.; Finqueneisel, G.; Zimny, T.; Victor Weber, J. Miscanthus × Giganteus Straw and Pellets as Sustainable Fuels. Environ. Chem. Lett. 2006, 4, 75–78.
  33. Bilandžija, N.; Zgorelec, Ž.; Pezo, L.; Grubor, M.; Velaga, A.G.; Krička, T. Solid Biofuels Properties of Miscanthus × Giganteus Cultivated on Contaminated Soil after Phytoremediation Process. J. Energy Inst. 2022, 101, 131–139.
  34. Lee, J.-K.; Hong, D.; Chae, H.; Lee, D.-H. Prediction of Storage Conditions to Increase the Bioenergy Efficiency of Giant Miscanthus Pellets Produced through On-Site Integrated Pretreatment Machines. Energies 2023, 16, 2422.
  35. Lakshman, V.; Brassard, P.; Hamelin, L.; Raghavan, V.; Godbout, S. Pyrolysis of Miscanthus: Developing the Mass Balance of a Biorefinery through Experimental Tests in an Auger Reactor. Bioresour. Technol. Rep. 2021, 14, 100687.
  36. Singh, A.; Nanda, S.; Guayaquil-Sosa, J.F.; Berruti, F. Pyrolysis of Miscanthus and Characterization of Value-added Bio-oil and Biochar Products. Can. J. Chem. Eng. 2021, 99, S55–S68.
  37. Pidlisnyuk, V.; Newton, R.A.; Mamirova, A. Miscanthus Biochar Value Chain—A Review. J. Environ. Manag. 2021, 290, 112611.
  38. Xu, Y.; Wu, S.; Huang, F.; Huang, H.; Yi, Z.; Xue, S. Biomodification of Feedstock for Quality-Improved Biochar: A Green Method to Enhance the Cd Sorption Capacity of Miscanthus Lutarioriparius-Derived Biochar. J. Clean. Prod. 2022, 350, 131241.
  39. Ivanovski, M.; Goričanec, D.; Urbancl, D. The Evaluation of Torrefaction Efficiency for Lignocellulosic Materials Combined with Mixed Solid Wastes. Energies 2023, 16, 3694.
  40. Georgiou, E.; Mihajlović, M.; Petrović, J.; Anastopoulos, I.; Dosche, C.; Pashalidis, I.; Kalderis, D. Single-Stage Production of Miscanthus Hydrochar at Low Severity Conditions and Application as Adsorbent of Copper and Ammonium Ions. Bioresour. Technol. 2021, 337, 125458.
  41. Yan, Y.; Manickam, S.; Lester, E.; Wu, T.; Pang, C.H. Synthesis of Graphene Oxide and Graphene Quantum Dots from Miscanthus via Ultrasound-Assisted Mechano-Chemical Cracking Method. Ultrason. Sonochem 2021, 73, 105519.
  42. Lemaire, T.; Rodi, E.G.; Langlois, V.; Renard, E.; Sansalone, V. Study of Mechanical Properties of PHBHV/Miscanthus Green Composites Using Combined Experimental and Micromechanical Approaches. Polymers 2021, 13, 2650.
  43. Delpouve, N.; Faraj, H.; Demarest, C.; Dontzoff, E.; Garda, M.-R.; Delbreilh, L.; Berton, B.; Dargent, E. Water-Induced Breaking of Interfacial Cohesiveness in a Poly(Lactic Acid)/Miscanthus Fibers Biocomposite. Polymers 2021, 13, 2285.
  44. Dias, P.P.; Jayasinghe, L.B.; Waldmann, D. Investigation of Mycelium-Miscanthus Composites as Building Insulation Material. Results Mater. 2021, 10, 100189.
  45. Ntimugura, F.; Vinai, R.; Dalzell, M.; Harper, A.; Walker, P. Mechanical Properties and Microstructure of Slag and Fly Ash Alkali-Activated Lightweight Concrete Containing Miscanthus Particles. Mater. Lett. 2022, 312, 131696.
  46. Wu, F.; Yu, Q.; Brouwers, H.J.H. Long-Term Performance of Bio-Based Miscanthus Mortar. Constr. Build. Mater. 2022, 324, 126703.
  47. Pons Ribera, S.; Hamzaoui, R.; Colin, J.; Bessette, L.; Audouin, M. Valorization of Vegetal Fibers (Hemp, Flax, Miscanthus and Bamboo) in a Fiber Reinforced Screed (FRS) Formulation. Materials 2023, 16, 2203.
  48. García-Velásquez, C.; van der Meer, Y. Can We Improve the Environmental Benefits of Biobased PET Production through Local Biomass Value Chains? —A Life Cycle Assessment Perspective. J. Clean. Prod. 2022, 380, 135039.
  49. Hamzah, M.H.; Bowra, S.; Cox, P. Organosolv Lignin Aggregation Behaviour of Soluble Lignin Extract from Miscanthus x Giganteus at Different Ethanol Concentrations and Its Influence on the Lignin Esterification. Chem. Biol. Technol. Agric. 2021, 8, 65.
  50. Götz, M.; Rudi, A.; Heck, R.; Schultmann, F.; Kruse, A. Processing Miscanthus to High-value Chemicals: A Techno-economic Analysis Based on Process Simulation. GCB Bioenergy 2022, 14, 447–462.
  51. Świątek, K.; Gaag, S.; Klier, A.; Kruse, A.; Sauer, J.; Steinbach, D. Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts 2020, 10, 437.
  52. Pang, J.; Zhang, B.; Jiang, Y.; Zhao, Y.; Li, C.; Zheng, M.; Zhang, T. Complete Conversion of Lignocellulosic Biomass to Mixed Organic Acids and Ethylene Glycol via Cascade Steps. Green. Chem. 2021, 23, 2427–2436.
  53. Marín, F.; Sánchez, J.L.; Arauzo, J.; Fuertes, R.; Gonzalo, A. Semichemical Pulping of Miscanthus Giganteus. Effect of Pulping Conditions on Some Pulp and Paper Properties. Bioresour. Technol. 2009, 100, 3933–3940.
  54. Tsalagkas, D.; Börcsök, Z.; Pásztory, Z.; Gogate, P.; Csóka, L. Assessment of the Papermaking Potential of Processed Miscanthus × Giganteus Stalks Using Alkaline Pre-Treatment and Hydrodynamic Cavitation for Delignification. Ultrason. Sonochemistry 2021, 72, 105462.
  55. Lexa, A.; Sängerlaub, S.; Zollner-Croll, H. Extraktion von Zellstoff Aus Nicht-Holzpflanzen Und Vergleich Mit Holzpflanzen. Chem. Ing. Tech. 2023, 95.
  56. Singh, S.S.; Lim, L.-T.; Manickavasagan, A. Enhanced Microfibrillation of Miscanthus × Giganteus Biomass by Binary-Enzymes Pre-Treatment. Ind. Crops Prod. 2022, 177, 114537.
  57. Cudjoe, E.; Hunsen, M.; Xue, Z.; Way, A.E.; Barrios, E.; Olson, R.A.; Hore, M.J.A.; Rowan, S.J. Miscanthus Giganteus: A Commercially Viable Sustainable Source of Cellulose Nanocrystals. Carbohydr. Polym. 2017, 155, 230–241.
  58. Chen, M.-H.; Bowman, M.J.; Dien, B.S.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Autohydrolysis of Miscanthus × Giganteus for the Production of Xylooligosaccharides (XOS): Kinetics, Characterization and Recovery. Bioresour. Technol. 2014, 155, 359–365.
  59. Lan, K.; Xu, Y.; Kim, H.; Ham, C.; Kelley, S.S.; Park, S. Techno-Economic Analysis of Producing Xylo-Oligosaccharides and Cellulose Microfibers from Lignocellulosic Biomass. Bioresour. Technol. 2021, 340, 125726.
  60. Bhatia, R.; Lad, J.B.; Bosch, M.; Bryant, D.N.; Leak, D.; Hallett, J.P.; Franco, T.T.; Gallagher, J.A. Production of Oligosaccharides and Biofuels from Miscanthus Using Combinatorial Steam Explosion and Ionic Liquid Pretreatment. Bioresour. Technol. 2021, 323, 124625.
  61. Vilcocq, L.; Crepet, A.; Jame, P.; Carvalheiro, F.; Duarte, L.C. Combination of Autohydrolysis and Catalytic Hydrolysis of Biomass for the Production of Hemicellulose Oligosaccharides and Sugars. Reactions 2021, 3, 30–46.
  62. Pidlisnyuk, V.; Erickson, L.E.; Wang, D.; Zhao, J.; Stefanovska, T.; Schlup, J.R. Miscanthus as Raw Materials for Bio-Based Products. In Phytotechnology with Biomass Production; CRC Press: Boca Raton, FL, USA, 2021; pp. 201–215.
  63. Nazli, R.I.; Gulnaz, O.; Kafkas, E.; Tansi, V. Comparison of Different Chemical Pretreatments for Their Effects on Fermentable Sugar Production from Miscanthus Biomass. Biomass Convers. Biorefinery 2021, 13, 6471–6479.
  64. Govil, T.; Wang, J.; Samanta, D.; David, A.; Tripathi, A.; Rauniyar, S.; Salem, D.R.; Sani, R.K. Lignocellulosic Feedstock: A Review of a Sustainable Platform for Cleaner Production of Nature’s Plastics. J. Clean. Prod. 2020, 270, 122521.
  65. Haldar, D.; Purkait, M.K. A Review on the Environment-Friendly Emerging Techniques for Pretreatment of Lignocellulosic Biomass: Mechanistic Insight and Advancements. Chemosphere 2021, 264, 128523.
  66. Guo, H.; Zhao, Y.; Chen, X.; Shao, Q.; Qin, W. Pretreatment of Miscanthus with Biomass-Degrading Bacteria for Increasing Delignification and Enzymatic Hydrolysability. Microb. Biotechnol. 2019, 12, 787–798.
  67. Rivas, S.; Santos, V.; Parajó, J.C. Effects of Hydrothermal Processing on Miscanthus × Giganteus Polysaccharides: A Kinetic Assessment. Polymers 2022, 14, 4732.
  68. Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of Lignocellulosic Biomass: A Review on Recent Advances. Bioresour. Technol. 2021, 334, 125235.
  69. Tiwari, A.; Chen, C.-W.; Haldar, D.; Patel, A.K.; Dong, C.-D.; Singhania, R.R. Laccase in Biorefinery of Lignocellulosic Biomass. Appl. Sci. 2023, 13, 4673.
  70. Dai, Y.; Hu, B.; Yang, Q.; Nie, L.; Sun, D. Comparison of the Effects of Different Pretreatments on the Structure and Enzymatic Hydrolysis of Miscanthus. Biotechnol. Appl. Biochem. 2022, 69, 548–557.
More
Video Production Service