Grape Ripe Rot Caused by the Colletotrichum Complex: Comparison
Please note this is a comparison between Version 2 by Sirius Huang and Version 1 by Chu-Ping Lin.

Grape ripe rot, which is predominantly caused by the Colletotrichum species, presents a growing threat to global grape cultivation. This threat is amplified by the increasing populations of the Colletotrichum species in response to warmer climates.

  • grape ripe rot
  • Colletotrichum gloeosporioides species complex
  • infection process

1. Introduction

Grapes (Vitis spp.) are extensively cultivated worldwide, and they have considerable global importance and economic impact. The global vineyard area was estimated to be approximately 7.3 Mha in 2021. Over half of worldwide grape production contributes to the winemaking industry, with the remainder mainly used as table grapes, dried grapes, and the production of musts and juices [1]. However, this substantial industry encounters significant threats from fruit diseases that affect the grape’s berries, such as bitter rot, black rot, Botrytis bunch rot, and—notably—ripe rot [2,3][2][3].
Ripe rot is particularly adapted to warm, humid, subtropical climates, and it poses a significant threat to grape cultivation, especially across South and North America, Australasia, and Asia—including Brazil, the United States, Australia, Taiwan, Japan, Korea, and China [4,5,6,7,8,9,10][4][5][6][7][8][9][10]. It has been responsible for losses exceeding 30%, and, in some cases, up to 60% or even more [4,11,12][4][11][12]. This disease not only reduces grape yields, but also adversely affects the chemical composition and quality of grapes and wine, leading to off flavors and a brownish color [13,14,15,16][13][14][15][16].

2. Grape Ripe Rot Caused by the Colletotrichum Complex

Colletotrichum, recognized for its role in causing ripe rot in grapes and for affecting many other plants, is ranked among the top ten plant fungal pathogens [2,17,18][2][17][18]. C. gloeosporioides (Penz.) Penz. & Sacc. and C. acutatum J.H. Simmonds ex J. H. Simmonds are the major species within this context [18,19][18][19]. The early classification of the Colletotrichum species primarily relied on features such as colony morphology, conidial shape and size, appressoria, physiological characteristics, and the host plant [20,21][20][21]. This led to significant ambiguity, as some strains identified as the same species based on the morphology exhibited, or due to different pathogenicity or physiological characteristics; thus, this made Colletotrichum a catalog of confusion [17,22][17][22]. Since 2012, the introduction of multilocus sequence analysis (MLSA) has marked a prominent development in the field. MLSA employs an array of loci, including act, chs-1, gadph, tub2, his3, cal, tef, gs, sod2, and ITS, among others, for delineating species within this genus. This approach has facilitated the reclassification of the genus into at least 15 complexes, encompassing a total of 257 species [17,23,24,25][17][23][24][25]. These include the CGSC, the C. acutatum species complex (CASC), and others. Moreover, the ApMat locus demonstrated notable utility in distinguishing species within the CGSC, even when used alone [26,27][26][27]. Notably, pre-2012 studies (which often lack multigene analysis) should be interpreted with caution. When referring to a species complex such as C. gloeosporioides and C. acutatum without clear molecular evidence, the term sensu lato (s.l.; in a broad sense) is usually included for clarification. On the other hand, sensu stricto (s.s.; in a narrow sense) is used for the species that have been identified through MLSA or ApMat marker analysis. First identified in the United States in 1891, grape ripe rot was originally linked to C. gloeosporioides s.l. [28]. As research progressed, C. acutatum s.l. was also found to be a potential causative agent of this disease [6,7,10,29][6][7][10][29]. Today, grape ripe rot is understood to be triggered by a blend of the Colletotrichum species, predominantly from the CGSC and CASC, with occasional involvement from the C. boninense and C. orchidearum species complexes (Table 1).
Table 1.
List of the
Colletotrichum
species documented as causing grape ripe rot.

References

  1. OIV Statistics Publications 3. Annual Assessment of World Vine and Wine Sector. Available online: https://www.oiv.int/sites/default/files/documents/OIV_Annual_Assessment_of_the_World_Vine_and_Wine_Sector_in_2021.pdf (accessed on 28 June 2023).
  2. Wilcox, W.F.; Gubler, W.D.; Uyemoto, J.K. Compendium of Grape Diseases, Disorders, and Pests, 2nd ed.; The American Phytopathological Society: St. Paul, MN, USA, 2015; p. 232.
  3. Crandall, S.G.; Spychalla, J.; Crouch, U.T.; Acevedo, F.E.; Naegele, R.P.; Miles, T.D. Rotting grapes don’t improve with age: Cluster rot disease complexes, management, and future prospects. Plant Dis. 2022, 106, 2013–2025.
  4. Cosseboom, S.D.; Hu, M. Ontogenic susceptibility of grapevine clusters to ripe rot, caused by the Colletotrichum acutatum and C. gloeosporioides species complexes. Phytopathology 2022, 112, 1956–1964.
  5. Echeverrigaray, S.; Scariot, F.J.; Fontanella, G.; Favaron, F.; Sella, L.; Santos, M.C.; Schwambach, J.; Pedrotti, C.; Delamare, A.P.L. Colletotrichum species causing grape ripe rot disease in Vitis labrusca and V. vinifera varieties in the highlands of southern Brazil. Plant Pathol. 2020, 69, 1504–1512.
  6. Greer, L.A.; Harper, J.D.I.; Savocchia, S.; Samuelian, S.K.; Steel, C.C. Ripe rot of south-eastern Australian wine grapes is caused by two species of Colletotrichum: C. acutatum and C. gloeosporioides with differences in infection and fungicide sensitivity. Aust. J. Grape Wine Res. 2011, 17, 123–128.
  7. Hong, S.K.; Kim, W.G.; Yun, H.K.; Choi, K.J. Morphological variations, genetic diversity and pathogenicity of Colletotrichum species causing grape ripe rot in Korea. Korean Soci. Plant Pathol. 2008, 24, 269–278.
  8. Lin, C.P.; Wang, C.L.; Tsai, J.N.; Dai, Y.L.; Ann, P.J.; Zhan, Y.M.; Huang, S.Y. Occurence of grape ripe rot in Taiwan and the pathogenicity and phylogenetic relationship of its primary causal agent Colletotrichum viniferum. J. Taiwan Agric. Res. 2022, 71, 135–157.
  9. Peng, L.J.; Sun, T.; Yang, Y.L.; Cai, L.; Hyde, K.D.; Bahkali, A.H.; Liu, Z.Y. Colletotrichum species on grape in Guizhou and Yunnan provinces, China. Mycoscience 2013, 54, 29–41.
  10. Yamamoto, J.; Sato, T.; Tomioka, K. Occurrence of ripe rot of grapes (Vitis vinifera L.) caused by Colletotrichum acutatum Simmonds ex Simmonds. Ann. Phytopathol. Soc. Japan 1999, 65, 83–86.
  11. Cosseboom, S.D.; Hu, M. Predicting ripe rot of grape, caused by Colletotrichum fioriniae, with leaf wetness, temperature, and the crop growth stage. PhytoFrontiers 2022. online ahead of print.
  12. Oliver, C. Phylogeny, Histological Observation, and In Vitro Fungicide Screening and Field Trials of Multiple Colletotrichum Species, the Causal Agents of Grape Ripe Rot. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2018.
  13. Meunier, M.; Steel, C.C. Effect of Colletotrichum acutatum ripe rot on the composition and sensory attributes of Cabernet Sauvignon grapes and wine. Aust. J. Grape Wine Res. 2009, 15, 223–227.
  14. Miele, A.; Rizzon, L.A. Physicochemical composition of Cabernet-Sauvignon wine made from grapes affected by grape ripe rot. OENO One 2013, 47, 195.
  15. Sadoughi, N. Effect of Ripe Rot of Grapes (Colletotrichum spp.) on the Chemical Composition and Off-Flavour Compounds in Grapes and Wine. Ph.D. Thesis, Charles Sturt University, Bathurst, NSW, Australia, 2016.
  16. Whitelaw-Weckert, M.A.; Curtin, S.J.; Huang, R.; Steel, C.C.; Blanchard, C.L.; Roffey, P.E. Phylogenetic relationships and pathogenicity of Colletotrichum acutatum isolates from grape in subtropical Australia. Plant Pathol. 2007, 56, 448–463.
  17. Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S. Colletotrichum—Current status and future directions. Stud. Mycol. 2012, 73, 181–213.
  18. Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430.
  19. Dowling, M.; Peres, N.; Villani, S.; Schnabel, G. Managing Colletotrichum on fruit crops: A “complex” challenge. Plant Dis. 2020, 104, 2301–2316.
  20. Sutton, B.C. The genus Glomerella and its anamorph Colletotrichum. In Colletotrichum: Biology, Pathology and Control; Bailey, J.A., Jeger, M.J., Eds.; CAB International: Oxon, UK, 1992; pp. 1–26.
  21. Sutton, B.C. The Coelomycetes. In Fungi Imperfecti with Pycnidia, Acervuli and Stromata; Commonwealth Mycological Institute: Surrey, UK, 1980; p. 696.
  22. Hyde, K.D.; Cai, L.; McKenzie, E.H.C.; Yang, Y.L.; Zhang, J.Z.; Prihastuti, H. Colletotrichum: A catalogue of confusion. Fungal Divers. 2009, 39, 1–17.
  23. Damm, U.; Cannon, P.F.; Woudenberg, J.H.; Crous, P.W. The Colletotrichum acutatum species complex. Stud. Mycol. 2012, 73, 37–113.
  24. Talhinhas, P.; Baroncelli, R. Colletotrichum species and complexes: Geographic distribution, host range and conservation status. Fungal Divers. 2021, 110, 109–198.
  25. Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 2012, 73, 115–180.
  26. Jayawardena, R.S. Notes on currently accepted species of Colletotrichum. Mycosphere 2016, 7, 1192–1260.
  27. Sharma, G.; Kumar, N.; Weir, B.S.; Hyde, K.D.; Shenoy, B.D. The ApMat marker can resolve Colletotrichum species: A case study with Mangifera indica. Fungal Divers. 2013, 61, 117–138.
  28. Southworth, E.A. Ripe Rot of Grapes and Apples. J. Mycol. 1891, 6, 164–173.
  29. Oliver, C. Investigation of Wine Grape Cultivar and Cluster Developmental Stage Susceptibility to Grape Ripe Rot Caused by Two Fungal Species Complexes, Colletotrichum gloeosporioides, and C. acutatum, and the Evaluation of Potential Controls. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2016.
  30. Yan, J.Y.; Jayawardena, M.M.R.S.; Goonasekara, I.D.; Wang, Y.; Zhang, W.; Liu, M.; Huang, J.B.; Wang, Z.Y.; Shang, J.J.; Peng, Y.L.; et al. Diverse species of Colletotrichum associated with grapevine anthracnose in China. Fungal Divers. 2015, 71, 233–246.
  31. Ye, B.; Zhang, J.; Chen, X.; Xiao, W.; Wu, J.; Yu, H.; Zhang, C. Genetic diversity of Colletotrichum spp. causing grape anthracnose in Zhejiang, China. Agronomy 2023, 13, 952.
  32. Misawa, T.; Kurose, D.; Sato, T. Molecular re-identification of Japanese isolates of the Colletotrichum gloeosporioides species complex associated with grape ripe rot. Ann. Rept. Plant Prot. North Japan 2022, 73, 113–118.
  33. Kim, J.S.; Hassan, O.; Chang, T. First report of Colletotrichum aenigma causing anthracnose of grape in Korea. Plant Dis. 2021, 105, 2729.
  34. Yokosawa, S.; Eguchi, N.; Sato, T. Characterization of the Colletotrichum gloeosporioides species complex causing grape ripe rot in Nagano Prefecture, Japan. J. Gen. Plant Pathol. 2020, 86, 163–172.
  35. Lin, C.P.; Tsai, J.N.; Ann, P.J.; Lu, M.T. Virulence of Colletotrichum spp. from different isolating source in grape orchards was compared on grape. J. Taiwan Agric. Res. 2023, 72, 49–61.
  36. Batista, D.D.C.; Vieira, W.A.S.; Barbosa, M.A.; Camara, M.P.S. First report of Colletotrichum siamense causing grape ripe rot in Brazil. Plant Dis. 2023. online ahead of print.
  37. Duan, C.H.; Pan, H.R.; Wang, C.C. Identification, pathogenicity and fungicide sensitivity of Colletotrichum Isolates from five fruit crops in Taiwan. Taiwan Pest Sci. 2018, 5, 91–111.
  38. Lei, Y.; Tang, X.B.; Jayawardena, R.S.; Yan, J.Y.; Wang, X.D.; Liu, M.; Chen, T.; Liu, X.M.; Wang, J.C.; Chen, Q.X. Identification and characterization of Colletotrichum species causing grape ripe rot in southern China. Mycosphere 2016, 7, 1177–1191.
  39. Oo, M.M.; Oh, S.K. Identification and characterization of new record of grape ripe rot disease caused by Colletotrichum viniferum in Korea. Mycobiology 2017, 45, 421–425.
  40. Duan, C.H.; Chen, G.Y. First report of Colletotrichum viniferum causing ripe rot of grape berry in Taiwan. Plant Dis. 2022, 106, 764.
  41. Soytong, K.; Srinon, W.; Rattanacherdchai, K.; Kanokmedhakul, S.; Kanokmedhakul, K. Application of antagonistic fungi to control anthracnose disease of grape. J. Agric. Sci. Technol. 2005, 1, 33–41.
  42. Zapparata, A.; Da Lio, D.; Sarrocco, S.; Vannacci, G.; Baroncelli, R. First report of Colletotrichum godetiae causing grape (Vitis vinifera) berry rot in Italy. Plant Dis. 2017, 101, 1051–1052.
  43. Melksham, K.J.; Weckert, M.A.; Steel, C.C. An unusual bunch rot of grapes in sub-tropical regions of Australia caused by Colletotrichum acutatum. Australas. Plant Pathol. 2002, 31, 193–194.
  44. Shiraishi, M.; Yamada, M.; Mitani, N.; Ueno, T.; Nakaune, R.; Nakano, M. Rapid screening assay for ripe rot resistance in grape cultivars. J. Jpn. Soc. Hort. Sci. 2006, 75, 264–266.
  45. Chung, P.C.; Wu, H.Y.; Wang, Y.W.; Ariyawansa, H.A.; Hu, H.P.; Hung, T.H.; Tzean, S.S.; Chung, C.L. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Sci. Rep. 2020, 10, 14664.
  46. Chung, W.H.; Ishii, H.; Nishimura, K.; Fukaya, M.; Yano, K.; Kajitani, Y. Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Dis. 2006, 90, 506–512.
  47. Gonçalves, F.P.; Nogueira Júnior, A.F.; Silva-Junior, G.J.; Ciampi-Guillardi, M.; Amorim, L. Environmental requirements for infection of Colletotrichum acutatum and C. gloeosporioides sensu lato in citrus flowers and prevalence of these pathogens in Brazil. Eur. J. Plant Pathol. 2021, 160, 27–37.
  48. Ntahimpera, N.; Wilson, L.L.; Ellis, M.A.; Madden, L.V. Comparison of rain effects on splash dispersal of three Colletotrichum species infecting strawberry. Phytopathology 1999, 89, 555–563.
  49. Salotti, I.; Ji, T.; Rossi, V. Temperature requirements of Colletotrichum spp. belonging to different clades. Front. Plant Sci. 2022, 13, 953760.
  50. Kummuang, N.; Smith, B.J.; Diehl, S.V.; Graves Jr, C.H. Muscadine grape berry rot diseases in Mississippi: Disease identification and incidence. Plant Dis. 1996, 80, 238–243.
  51. Santos, R.F.; Ciampi-Guillardi, M.; Amorim, L.; Massola, N.S.; Sposito, M.B. Aetiology of anthracnose on grapevine shoots in Brazil. Plant Pathol. 2018, 67, 692–706.
  52. Fukaya, M. Position of the secondary infection of grape ripe rot (II): Progress of disease and changes in the number of dispersal conidia on a flower bud. Ann. Phytopath. Soc. Jpn. 1993, 59, 301–302.
  53. Steel, C.; Greer, L.; Samuelian, S.; Savocchia, S. Two species of fungus Colletotrichum responsible for ripe rot of grapes. Wine Vitic. J. 2011, 26, 48–58.
  54. Fan, Y.C.; Guo, F.Y.; Wu, R.H.; Chen, Z.Q.; Li, Z. First report of Colletotrichum gloeosporioides causing anthracnose on grapevine (Vitis vinifera) in Shaanxi province, China. Plant Dis. 2023. online ahead of print.
  55. Jayawardena, R.S. Mycosphere notes 102–168: Saprotrophic fungi on Vitis in China, Italy, Russia and Thailand. Mycosphere 2018, 9, 1–114.
  56. Ciofini, A.; Negrini, F.; Baroncelli, R.; Baraldi, E. Management of post-harvest anthracnose: Current approaches and future perspectives. Plants 2022, 11, 1856.
  57. Freeman, S.; Katan, T.; Shabi, E. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis. 1998, 82, 596–605.
  58. Sharma, M.; Kulshrestha, S. Colletotrichum gloeosporioides: An anthracnose causing pathogen of fruits and vegetables. Biosci. Biotechnol. Res. Asia 2015, 12, 115–180.
  59. Li, Z.; Dos Santos, R.F.; Gao, L.; Chang, P.; Wang, X. Current status and future prospects of grapevine anthracnose caused by Elsinoe ampelina: An important disease in humid grape-growing regions. Mol. Plant Pathol. 2021, 22, 899–910.
  60. Quimio, T.H.; Quimio, A.J. Notes on Philippine grape and guava anthracnose. Plant Dis. Rep. 1975, 59, 221–224.
  61. Sawant, I.S.; Narkar, S.P.; Shetty, D.S.; Upadhyay, A.; Sawant, S.D. Emergence of Colletotrichum gloeosporioides sensu lato as the dominant pathogen of anthracnose disease of grapes in India as evidenced by cultural, morphological and molecular data. Australas. Plant Pathol. 2012, 41, 493–504.
  62. Chowdappa, P.; Reddy, G.S.; Kumar, A.; Rao, B.M.; Rawal, R.D. Morphological and molecular characterization of Colletotrichum species causing anthracnose of grape in India. Asian Australas. J. Plant Sci. Biotechnol. 2009, 3, 71–77.
  63. Sawant, I.S.; Narkar, S.P.; Shetty, D.S.; Upadhyay, A.; Sawant, S.D. First report of Colletotrichum capsici causing anthracnose on grapes in Maharashtra, India. New Dis. Rep. 2012, 25, 2.
  64. Nigar, Q.; Cadle-Davidson, L.; Gadoury, D.M.; Hassan, M.U. First report of Colletotrichum fioriniae causing grapevine anthracnose in New York. Plant Dis. 2022, 107, 223.
  65. De Silva, D.D.; Crous, P.W.; Ades, P.K.; Hyde, K.D.; Taylor, P.W.J. Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biol. Rev. 2017, 31, 155–168.
  66. Daykin, M.E.; Milholland, R.D. Histopathology of ripe rot caused by Colletotrichum gloeosporioides on Muscadine grape. Phytopathology 1984, 74, 1339–1341.
  67. Leu, L.S.; Chang, C.W. Histological study of Colletotrichum gloeosporioides on grape fruit. Plant Protect. Bull. 1985, 27, 11–18.
  68. Yun, S.C.; Park, E.W. Effects of temperature and wetness period on infection of grape by Colletotrichum gloeosporioides. Korean J. Plant Pathol. 1990, 6, 219–228.
  69. Daykin, M.E. Ripe rot of muscadine grape caused by Colletotrichum gloeosporioides and its control. Phytopathology 1984, 74, 710–714.
  70. Fukaya, M. Studies on etiology and control of grapevine ripe rot Glomerella cingulata. I: Primary infection of grapevine ripe rot. Bull. Akita Fruit-Tree Exp. Stn. 2001, 27, 24–35.
  71. Ji, T.; Salotti, I.; Dong, C.; Li, M.; Rossi, V. Modeling the effects of the environment and the host plant on the ripe rot of grapes, caused by the Colletotrichum species. Plants 2021, 10, 2288.
  72. Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academia Press: San Diego, CA, USA, 2005; p. 922.
  73. Ji, Y.; Li, X.; Gao, Q.H.; Geng, C.; Duan, K. Colletotrichum species pathogenic to strawberry: Discovery history, global diversity, prevalence in China, and the host range of top two species. Phytopathol. Res. 2022, 4, 42.
  74. Samuelian, S.K.; Greer, L.A.; Savocchia, S.; Steel, C.C. Application of Cabrio (a.i. pyraclostrobin) at flowering and veraison reduces the severity of bitter rot (Greeneria uvicola) and ripe rot (Colletotrichum acutatum) of grapes. Aust. J. Grape Wine Res. 2014, 20, 292–298.
  75. Steel, C.C.; Greer, L.A.; Savocchia, S. Grapevine inflorescences are susceptible to the bunch rot pathogens, Greeneria uvicola (bitter rot) and Colletotrichum acutatum (ripe rot). Eur. J. Plant Pathol. 2012, 133, 773–778.
  76. Engering, A.; Hogerwerf, L.; Slingenbergh, J. Pathogen–Host–Environment interplay and disease emergence. Emerg. Microbes Infect. 2013, 2, 1–7.
  77. Hahn, M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol. 2014, 7, 133–141.
  78. Parker, I.M.; Gilbert, G.S. The evolutionary ecology of novel Plant–Pathogen interactions. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 675–700.
  79. Sawant, I.S.; Shetty, D.S.; Narkar, S.P.; Ghule, S.; Sawant, S.D. Climate change and shifts in etiology of anthracnose disease of grapevines in India. J. Agrometeorol. 2013, 15, 75–78.
  80. Duan, C.H.; Chen, G.Y. Molecular identification and fungicide sensitivity of Colletotrichum isolates from grape in Taiwan. J. Plant Med. 2020, 62, 23–32.
More
ScholarVision Creations