Basics of Ocular Immunology: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Christopher D. D Conrady.

Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. Bacteria and viruses represent the more common causes of ocular infections worldwide and can affect nearly any anatomical part of the eye.

  • acute retinal necrosis
  • innate immunity
  • ocular immunology
  • immune privilege

1. Introduction

The eye is a complex sensory organ directly exposed to the environment and responsible for converting light into electrical signals and eventually images interpreted by the brain. Local tissue changes associated with inflammation and infection can reduce eye function and visual acuity. In fact, an inflammatory event in one eye can affect the function of the clinically “normal” contralateral eye [1]. Complications from ocular infectious diseases are a significant cause of visual impairment, most notably with rates worldwide of 1.4% of total cases of blindness due to corneal opacification from Chlamydia trachomatis alone [2]. This results in estimates as high as 5.5 million people who are bilaterally blind from the disease [3]. Within the developed world, herpes simplex viruses are a common pathogen and the leading cause of corneal blindness [4]. As such, infectious diseases of the eye are a significant global burden, whether they be from corneal opacification from trachoma or herpetic keratitis or damage to other structures of the eye such as the retina from Toxoplasmosis gondii. Blindness from any cause is more common than previously thought and is estimated to cause a loss in productivity of over USD 400 billion worldwide [5,6][5][6] The socioeconomic and psychosocial burden of blindness to a patient, family, and community are substantial with underlying infectious etiologies being potentially treatable, if not completely preventable, common causes of severe vision loss.
Bacteria and viruses represent the more common causes of ocular infections worldwide and can affect nearly any anatomical part of the eye (Table 1 and Table 2). The overall geographic distribution and common bacterial isolates from ocular infections have been extensively reviewed elsewhere, but Staphylococcus aureus, Coagulase negative Staphylococci, Streptococcus pneumoniae, and Pseudomonas aeruginosa are the leading isolates of bacterial infections of the eye and adnexa (Table 1) [7]. While not specifically evaluated in a large meta-analysis, adenoviruses and herpesviruses are the most routinely encountered viruses within the eye (Table 2) [8]. However, there can be geographic variation in the most common ocular pathogens and rare ocular presentations from unlikely organisms [9,10,11,12,13][9][10][11][12][13]. This is most clearly seen with the geographic distribution of the three clades of Toxoplasmosis gondii worldwide and the very rare occurrence of Trypanosome cruzii-associated retinitis [9,14,15,16][9][14][15][16].
Table 1.
Ocular infections and their common causative bacteria.

References

  1. Azarmina, M.; Soheilian, M.; Ahmadieh, H.; Azarmina, H. Electroretinogram changes in the sound eye of subjects with unilateral necrotizing herpetic retinitis. J. Ophthalmic Vis. Res. 2014, 9, 195–203.
  2. Burton, M.J.; Mabey, D.C.W. The Global Burden of Trachoma: A Review. PLoS Neglected Trop. Dis. 2009, 3, e460.
  3. Wang, E.; Kong, X.; Wolle, M.; Gasquet, N.; Ssekasanvu, J.; Mariotti, S.P.; Bourne, R.; Taylor, H.; Resnikoff, S.; West, S. Global trends in blindness and vision impairment due to corneal opacity 1984–2020: A meta-analysis. Ophthalmology 2023, 2022, 8828358.
  4. Liesegang, T.J.; Melton, L.J., III; Daly, P.J.; Ilstrup, D.M. Epidemiology of Ocular Herpes Simplex: Incidence in Rochester, Minn, 1950 Through 1982. Arch. Ophthalmol. 1989, 107, 1155–1159.
  5. Marques, A.P.; Ramke, J.; Cairns, J.; Butt, T.; Zhang, J.H.; Muirhead, D.; Jones, I.; Tong, B.A.M.A.; Swenor, B.K.; Faal, H.; et al. Global economic productivity losses from vision impairment and blindness. eClinicalMedicine 2021, 35, 100852.
  6. Flaxman, A.D.; Wittenborn, J.S.; Robalik, T.; Gulia, R.; Gerzoff, R.B.; Lundeen, E.A.; Saaddine, J.; Rein, D.B. Vision and Eye Health Surveillance System study group Prevalence of Visual Acuity Loss or Blindness in the US: A Bayesian Meta-analysis. JAMA Ophthalmol. 2021, 139, 717–723.
  7. Teweldemedhin, M.; Gebreyesus, H.; Atsbaha, A.H.; Asgedom, S.W.; Saravanan, M. Bacterial profile of ocular infections: A systematic review. BMC Ophthalmol. 2017, 17, 212.
  8. Petrillo, F.; Petrillo, A.; Sasso, F.P.; Schettino, A.; Maione, A.; Galdiero, M. Viral Infection and Antiviral Treatments in Ocular Pathologies. Microorganisms 2022, 10, 2224.
  9. Conrady, C.D.; Hanson, K.E.; Mehra, S.; Carey, A.; Larochelle, M.; Shakoor, A. The First Case of Trypanosoma cruzi-Associated Retinitis in an Immunocompromised Host Diagnosed With Pan-Organism Polymerase Chain Reaction. Clin. Infect. Dis. 2018, 67, 141–143.
  10. Fashina, T.; Huang, Y.; Thomas, J.; Conrady, C.D.; Yeh, S. Ophthalmic Features and Implications of Poxviruses: Lessons from Clinical and Basic Research. Microorganisms 2022, 10, 2487.
  11. Conrady, C.D.; Faia, L.J.; Gregg, K.S.; Rao, R.C. Coronavirus-19-Associated Retinopathy. Ocul. Immunol. Inflamm. 2021, 29, 675–676.
  12. Conrady, C.D.; Demirci, H.; Wubben, T.J. Retinal Whitening After Lung Transplant for Cystic Fibrosis. JAMA Ophthalmol. 2020, 138, 994–995.
  13. Conrady, C.D.; Feist, R.M.; Crum, A. Shingles as the underlying cause of orbital myositis in an adolescent: A case report. Am. J. Ophthalmol. Case Rep. 2017, 5, 111–113.
  14. Pappas, G.; Roussos, N.; Falagas, M.E. Toxoplasmosis snapshots: Global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int. J. Parasitol. 2009, 39, 1385–1394.
  15. Desai, R.J.; Solomon, D.H.; Shadick, N.; Iannaccone, C.; Kim, S.C. Identification of smoking using Medicare data--A validation study of claims-based algorithms. Pharmacoepidemiol. Drug Saf. 2016, 25, 472–475.
  16. Khan, A.; Jordan, C.; Muccioli, C.; Vallochi, A.L.; Rizzo, L.V.; Belfort, R., Jr.; Vitor, R.W.A.; Silveira, C.; Sibley, L.D. Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg. Infect. Dis. 2006, 12, 942–949.
  17. Conrady, C.D.; Joos, Z.P.; Patel, B.C.K. Review: The Lacrimal Gland and Its Role in Dry Eye. J. Ophthalmol. 2016, 2016, 7542929.
  18. Du, Y.; Yan, B. Ocular immune privilege and retinal pigment epithelial cells. J. Leukoc. Biol. 2023, 113, 288–304.
  19. Jin, X.; Qin, Q.; Chen, W.; Qu, J. Expression of Toll-Like Receptors in the Healthy and Herpes Simplex Virus-Infected Cornea. Cornea 2007, 26, 847–852.
  20. Kumar, M.V.; Nagineni, C.N.; Chin, M.S.; Hooks, J.J.; Detrick, B. Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J. Neuroimmunol. 2004, 153, 7–15.
  21. Singh, P.K.; Kumar, A. Retinal Photoreceptor Expresses Toll-like Receptors (TLRs) and Elicits Innate Responses Following TLR Ligand and Bacterial Challenge. PLoS ONE 2015, 10, e0119541.
  22. Bryant-Hudson, K.; Conrady, C.D.; Carr, D.J.J. Type I interferon and lymphangiogenesis in the HSV-1 infected cornea—Are they beneficial to the host? Prog. Retin. Eye Res. 2013, 36, 281–291.
  23. Song, P.I.; Abraham, T.A.; Park, Y.; Zivony, A.S.; Harten, B.; Edelhauser, H.F.; Ward, S.L.; Armstrong, C.A.; Ansel, J.C. The Expression of Functional LPS Receptor Proteins CD14 And Toll-like Receptor 4 in Human Corneal Cells. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2867–2877.
  24. Huang, X.; Hazlett, L.D. Analysis of Pseudomonas aeruginosa Corneal Infection Using an Oligonucleotide Microarray. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3409–3416.
  25. Yu, F.-S.X.; Hazlett, L.D. Toll-like Receptors and the Eye. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1255–1263.
  26. Conrady, C.D.; Drevets, D.A.; Carr, D.J.J. Herpes simplex type I (HSV-1) infection of the nervous system: Is an immune response a good thing? J. Neuroimmunol. 2010, 220, 1–9.
  27. Enzmann, V.; Row, B.W.; Yamauchi, Y.; Kheirandish, L.; Gozal, D.; Kaplan, H.J.; McCall, M.A. Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration. Exp. Eye Res. 2006, 82, 441–448.
  28. Horie, S.; Sugita, S.; Futagami, Y.; Yamada, Y.; Mochizuki, M. Human retinal pigment epithelium-induced CD4+CD25+ regulatory T cells suppress activation of intraocular effector T cells. Clin. Immunol. 2010, 136, 83–95.
  29. Sugita, S.; Horie, S.; Nakamura, O.; Futagami, Y.; Takase, H.; Keino, H.; Aburatani, H.; Katunuma, N.; Ishidoh, K.; Yamamoto, Y.; et al. Retinal Pigment Epithelium-Derived CTLA-2α Induces TGFβ-Producing T Regulatory Cells12. J. Immunol. 2008, 181, 7525–7536.
  30. Ashour, H.M.; Niederkorn, J.Y. Peripheral Tolerance Via the Anterior Chamber of the Eye: Role of B Cells in MHC Class I and II Antigen Presentation1. J. Immunol. 2006, 176, 5950–5957.
  31. Skelsey, M.E.; Mayhew, E.; Niederkorn, J.Y. Splenic B Cells Act as Antigen Presenting Cells for the Induction of Anterior Chamber-Associated Immune Deviation. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5242–5251.
  32. Skelsey, M.E.; Mayhew, E.; Niederkorn, J.Y. CD25+, interleukin-10-producing CD4+ T cells are required for suppressor cell production and immune privilege in the anterior chamber of the eye. Immunology 2003, 110, 18–29.
  33. Streilein, J.W. Ocular immune privilege: Therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 2003, 3, 879–889.
  34. Skelsey, M.E.; Mellon, J.; Niederkorn, J.Y. γδ T Cells Are Needed for Ocular Immune Privilege and Corneal Graft Survival1. J. Immunol. 2001, 166, 4327–4333.
  35. Paunicka, K.; Chen, P.W.; Niederkorn, J.Y. Role of IFN-γ in the establishment of anterior chamber-associated immune deviation (ACAID)-induced CD8+ T regulatory cells. J. Leukoc. Biol. 2012, 91, 475–483.
  36. Wenkel, H.; Streilein, J.W. Analysis of immune deviation elicited by antigens injected into the subretinal space. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1823–1834.
  37. Hori, J.; Yamaguchi, T.; Keino, H.; Hamrah, P.; Maruyama, K. Immune privilege in corneal transplantation. Prog. Retin. Eye Res. 2019, 72, 100758.
  38. Niederkorn, J.Y. Corneal Transplantation and Immune Privilege. Int. Rev. Immunol. 2013, 32, 57–67.
  39. Cunnusamy, K.; Chen, P.W.; Niederkorn, J.Y. IL-17A–Dependent CD4+CD25+ Regulatory T Cells Promote Immune Privilege of Corneal Allografts. J. Immunol. 2011, 186, 6737–6745.
  40. Toda, M.; Ueno, M.; Yamada, J.; Hiraga, A.; Asada, K.; Hamuro, J.; Sotozono, C.; Kinoshita, S. Quiescent innate and adaptive immune responses maintain the long-term integrity of corneal endothelium reconstituted through allogeneic cell injection therapy. Sci. Rep. 2022, 12, 18072.
  41. Neelam, S.; Niederkorn, J.Y. Corneal Nerve Ablation Abolishes Ocular Immune Privilege by Downregulating CD103 on T Regulatory Cells. Investig. Ophthalmol. Vis. Sci. 2020, 61, 25.
  42. Paunicka, K.J.; Mellon, J.; Robertson, D.; Petroll, M.; Brown, J.R.; Niederkorn, J.Y. Severing Corneal Nerves in One Eye Induces Sympathetic Loss of Immune Privilege and Promotes Rejection of Future Corneal Allografts Placed in Either Eye. Am. J. Transplant. 2015, 15, 1490–1501.
  43. Haskova, Z.; Sproule, T.J.; Roopenian, D.C.; Ksander, B.R. An immunodominant minor histocompatibility alloantigen that initiates corneal allograft rejection1. Transplantation 2003, 75, 1368–1374.
More
Video Production Service