Cardiovascular Risk Evaluation in Patients with Gout: Comparison
Please note this is a comparison between Version 1 by Mariano Andrés and Version 2 by Wendy Huang.

Gout is the monosodium urate (MSU) crystal deposition disease. The experts from the Gout, Hyperuricemia, and Crystal-Associated Disease Network (G-CAN) defined the disease as being present when MSU crystal deposition is accompanied by clinical manifestations such as flares, persistent arthritis, and/or tophi. Gout is intimately associated with cardiovascular disease—especially in cases of an atherosclerosis origin, but also with others such as heart failure, atrial fibrillation, or aortic valve stenosis. Besides the common presence of vascular comorbidities in gout sufferers, the disease is—in itself—an independent cardiovascular risk factor, with disease events and mortality attributable to having this condition. Crystal-derived persistent inflammation is likely behind the association.

  • gout
  • cardiovascular disease
  • cardiovascular risk
  • tophi
  • inflammation
  • hyperuricemia

1. Introduction

Gout is the monosodium urate (MSU) crystal deposition disease. The experts from the Gout, Hyperuricemia, and Crystal-Associated Disease Network (G-CAN) have defined the disease as being present when MSU crystal deposition is accompanied by clinical manifestations such as flares, persistent arthritis, and/or tophi [1]. However, the transition from asymptomatic hyperuricemia to gout may be sometimes blurred—especially when MSU crystals are already formed [2]. The disease is clinically characterized by recurrent, self-limited episodes of joint inflammation, and in long-duration cases with insufficient or absent treatment, subcutaneous tophi and/or chronic arthritis. Moreover, patients with gout suffer from disabilities and an impaired quality of life, with higher scores (worse status) on several scales such as the Gout Assessment Questionnaire, Health Assessment Questionnaire–Disease Index, or the Short-Form 36 compared to controls—even during flare-free periods [3]. Hospitalizations due to gout have almost doubled in the last decades [4][5][6][4,5,6] and, more importantly, mortality rates in patients with gout greatly surpass those of the general population (all-cause standardized mortality ratio of 2.21) [7].
There is a close relationship between gout and cardiovascular diseases (CVD). Patients with gout present myriad comorbidities, in which cardiovascular risk factors such as hypertension, dyslipidemia, a smoking habit, obesity, diabetes mellitus, and chronic kidney disease [8][9][10][11][12][13][8,9,10,11,12,13] stand out. Vascular diseases account for more than half of deaths among gout sufferers; indeed, for up to six points higher than the cardiovascular mortality of the general population, according to European data [7][14][15][7,14,15]. Interestingly, there is a bidirectional effect between gout and CVD; after a gout flare, the risk of cardiovascular events increases—especially in the short-term [16]. In addition, having gout worsens a patient’s prognosis following a cardiovascular event [17][18][17,18] or success rates following coronary revascularization [19]. Furthermore, gout flares are common during hospitalizations due to CVD [20]. Data also exists for other types of CVD not purely related to atherosclerosis, such as atrial fibrillation [21][22][23][24][21,22,23,24], heart failure [25][26][25,26], and aortic valve stenosis [27]. Pooled data from DATA-HF and DELIVER trials on dapagliflozin recently reported worse heart failure outcomes in the gout population [28].
Cardiovascular risk factors do not fully explain the increased incidence of CVD, as there remains a residual risk even after adjusting for those covariates. Accordingly, gout must be considered an independent cardiovascular risk factor—indicating that patients with gout have a heightened cardiovascular risk merely from suffering the condition. The risk associated with gout has been demonstrated for all forms of atherosclerotic CVD and their derived mortality rates [15][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][15,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44], as shown in Table 1. In this sense, aggregate data show that the risk of gout patients dying due to CVD is 1.29-fold higher, and up to 1.42-fold higher for coronary disease-related deaths [36]. Compared to diabetes, gout shows an equivalent risk of leading to stroke—though less so for cases of myocardial infarction [45] or limb amputation [46]. Cardiovascular risk is heightened in cases of larger MSU crystal burden, such as patients with subcutaneous tophi [7][14][47][48][7,14,47,48] or with a large crystal load as assessed by ultrasound [49] or dual-energy computed tomography (DECT) [50]. Interestingly, the presence of a sonographic power-Doppler signal in tandem with crystal deposits—a surrogate marker of inflammation—was also associated with carotid atherosclerosis [49].
Table 1.
Published studies linking gout and the different forms of atherosclerotic cardiovascular disease.
Paper Population Type of Cardiovascular Disease Gout Population, Compared to Controls a
Choi, 2007 [29] Health Professionals Follow-up Cohort Cardiovascular mortality RR 1.35 (1.19–1.55)
Kuo, 2010 [30] Chang Gung Memorial Hospital, Taiwan Cardiovascular mortality HR 1.97 (1.08–3.59)
Kuo, 2011 [31] National Death Registry of Taiwan Cardiovascular mortality SMR 1.58 (1.39–1.78) in men
SMR 1.81 (1.46–2.23) in women
Stack, 2013 [32] NHANES-III Cardiovascular mortality HR 1.46 (1.07–2.00)
Dehlin, 2022 [15] Western Sweden Cardiovascular mortality HR 1.17 (1.12–1.23)
Abbott, 1988 [33] Framingham Study Coronary heart disease RR 1.6 (1.1–2.5)
Krishnan, 2006 [34] Multiple Risk Factor Intervention Trial Coronary heart disease OR 1.26 (1.14–1.40)
Seminog, 2013 [35] UK National Linked Dataset of Admissions and Deaths Coronary heart disease RR 1.82 (1.78–1.85) in England data
Clarson, 2015 [36] UK Clinical Practice Research Datalink Coronary heart disease HR 1.08 (1.01–1.15) in men
HR 1.25 (1.12–1.39) in women
Huang, 2021 [38] Taiwan National Health Insurance database Coronary heart disease HR 1.36 (1.04–2.76)
Singh, 2018 [37] US Medicare dataset Coronary heart disease (older adults) HR 1.79 (1.68–1.90)
De Vera, 2010 [39] Former Medical Students Cohort Coronary heart disease (women) RR 1.39 (1.20–1.61) in females
RR 1.11 (0.99–1.23) in males
Kuo, 2013 [40] Taiwan National Health Insurance Database Coronary heart disease (Young patients with no CVDRF) HR 1.59 (1.12–2.24) in age 20–44
HR 1.24 (1.08–1.41) in age 45–69
HR 1.11 (0.94–1.32) in age ≥ 70
Seminog, 2013 [35] UK National Linked Dataset Admissions and Deaths Stroke RR 1.71 (1.68–1.75) in England data
Haddadin, 2021 [41] US National Inpatient Sample Stroke OR 1.10 (1.01–1.11) in an AF population
Clarson, 2015 [36] UK Clinical Practice Research Datalink Peripheral artery disease HR 1.18 (1.01–1.38) in men, HR 1.89 (1.50–2.38) in women
Schlesinger, 2015 [42] Rutgers-Robert Wood Johnson Rheumatology Department Erectile dysfunction OR 2.94 (1.41–6.06)
Chen, 2015 [43] Taiwan National Health Insurance Database Erectile dysfunction HR 1.40 (1.11–1.77) in those without comorbidities
HR 2.04 (1.63–2.57) in those with comorbidities
Abdul Sultan, 2017 [44] UK Clinical Practice Research Datalink Erectile dysfunction HR 1.31 (1.24–1.40)
a Risk estimators adjusted for several covariates (varying across the different studies). In parentheses, 95% confidence intervals are shown. AF: atrial fibrillation; CVDRF: cardiovascular disease risk factors; HR: hazard ratio; OR: odds ratio; RR: risk ratio; SMR: standardized mortality ratio.

2. Risk Assessment Tools for Cardiovascular Diseases

As cardiovascular risk levels vary across individuals, predicting the specific risk for any given patient with gout is vital to tailoring his/her clinical management—both from a cardiovascular perspective and in terms of gout. This aspect is especially relevant for people without established CVD. To this end, some risk assessment tools have been developed to simultaneously evaluate individual cardiovascular risk factors and assess the risk of developing CVD, including fatal events. Some tools largely used in primary care include the Framingham Heart Study (FHS) [51][79] and the Systematic Coronary Risk Evaluation (SCORE) [52][80], which has been recently updated as SCORE2 [53][81]. However, no validation studies have been performed in patients with gout. Data from other inflammatory diseases such as rheumatoid arthritis have pointed to risk underestimation [54][82], which has led to the development of specific risk calculators; for example, the ERS-RA [55][83]. FHS and SCORE were only moderately accurate in detecting the presence of subclinical carotid atherosclerosis patients with gout, with areas under the curve of 0.707 and 0.705, respectively [13]. Both scales lacked sufficient sensitivity (22.5% and 49.0%) despite good specificity results (89.3% and 80.4%), suggesting the possibility that high-risk cardiovascular subjects can go undetected. Gamala and colleagues later reported that a substantial risk reclassification of gout patients can be achieved if they are classified as having inflammatory arthritis as per the Dutch-adapted SCORE [56][84]; however, longitudinal data is needed to validate this prediction. The screening for subclinical atherosclerosis using ultrasound is simple, accessible, and reliable—especially for carotid arteries (Figure 1), which carry prognostic consequences. The European cardiovascular guidelines recommend that the identification of subclinical atherosclerosis should prompt the physician to classify the patient as being in the highest cardiovascular risk category [57][85], since this factor independently predicts both coronary and cerebrovascular events [58][59][86,87]. On the other hand, the guidelines caution against making risk estimations based on intima-media thickness measurements. The reported prevalence of carotid atheroma plaques in patients with gout ranges from 29.1% to 59.2% [13][49][60][61][62][63][13,49,88,89,90,91]—percentages that vary depending on several factors (such as patient demographics and/or disease duration). In any case, the percentage is likely higher than in people without gout. Our group demonstrated that a cardiovascular screening strategy incorporating risk assessment tools and carotid ultrasound is capable of reclassifying the risk of more than half of new gout patients seen in rheumatology clinics, with two-thirds of them ultimately meeting the very-high risk level threshold [13].
Figure 1. Ultrasound of right carotid artery, longitudinal view, in a patient with gout who had a moderate cardiovascular risk as assessed by scores. The exam revealed two atheroma plaques, mildly calcified, of 1.5 mm (1) and 2.1 mm (2) thickness. According to current European guidelines, this patient should be classified as having a very high cardiovascular risk and managed accordingly.
However, it is crucial to bear in mind that both risk assessment tools and carotid ultrasound are not applicable to high-risk subjects, as these individuals are already suffering from CVD, complicated diabetes mellitus, and/or advanced renal disease. Patients with tophaceous gout may be tentatively included in this group. Despite conflicting evidence surrounding its possible association with subclinical atherosclerosis [13][62][63][13,90,91], subcutaneous tophi are major predictors of subsequent all-cause and cardiovascular mortality—as previously mentioned. Standard guidelines offer no formal advice in this regard, and individual clinicians should perhaps consider whether, based on the cumulative data, these patients might benefit from preventive strategies for high-risk situations. These could include high-intensity statins or rigorous targeting of LDL-cholesterol or blood pressure [57][85], along with lower serum urate targets [64][65][92,93].
Video Production Service