CNS in Tumours of the CNS in Children: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Yi-Peng HAN.

Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses.

  • cancer stem cells (CSCs)
  • tumours of the central nervous system (CNS)
  • children

Introduction

1. Introduction

Cancer is one of the largest health problems worldwide and is one of the leading causes of death in the 21st Century [1]. Tumours of the central nervous system (CNS) rank fourteenth by incidence in all kinds of cancers in both males and females worldwide [1], and are among the top ten cancer mortalities in spite of gender [2][3]. In children, CNS tumours are the most common solid tumours, with an age-standardized incidence rate per million person-years (ASR) of 28.2, accounting for 17.2–26.3% of paediatric malignancy [4]. After being deeply studied, revolutionary molecule-based classifications in the new edition of the WHO Classification of Tumours of the Central Nervous System were introduced [5]. However, only a few novel treatments were introduced, such as BRAF-related targeting therapies in low-grade gliomas, and preliminary studies of histone deacetylase (HDAC) inhibitors in paediatric high-grade gliomas [6], necessitating the development of new therapeutic strategies.
Cancer stem cells (CSCs) were first reported in leukaemia in the late 20th Century, which played an important role in leukaemogenesis, as tumour initiation cells [7]. Although CSCs were later identified in many types of solid tumours and haematological malignancies, the heterogeneous nature of various malignancies, as well as phenotypical differences among patients with the same cancer type, mitigated the efforts to identify, understand, and develop targeted therapies against CSCs [8][9]. Tumour stem-like cells were pioneers in anaplastic astrocytoma and glioblastoma tissue in 2002 [10], and identified in several kinds of paediatric CNS tumours, such as pilocytic astrocytoma, medulloblastoma, ganglioglioma, anaplastic astrocytoma, glioblastoma multiforme, and ependymoma afterward [11][12]. Neurosphere assay is a standard procedure in insolating neural stem cells and deriving CNS CSCs, suggesting that CSCs in CNS were transformations of undifferentiated neural precursor cells [13].

2. Tumour Stem Cells in Major Types of Tumours of the Central Nervous System in Children

According to the new edition of the WHO Classification of Tumours of the Central Nervous System, tumours of the CNS in children are graded and classified according to a combination of histological and molecular characteristics, the clinical features of which and pathways of tumourigenesis are significantly different from adult tumours [14]. Here reviews the origins and markers of CSCs in the following major types of tumours of the CNS in children (Table 1).
Table 1. Tumour stem cell markers and markers for their differentiated forms from reports according to the WHO Classification of Tumours of the Central Nervous System 2021 edition.

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249.
  2. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33.
  3. Brenner, D.R.; Weir, H.K.; Demers, A.A.; Ellison, L.F.; Louzado, C.; Shaw, A.; Turner, D.; Woods, R.R.; Smith, L.M. Projected estimates of cancer in Canada in 2020. Can. Med. Assoc. J. 2020, 192, E199–E205.
  4. Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; IICC-3 Contributors; et al. International incidence of childhood cancer, 2001–2010: A population-based registry study. Lancet Oncol. 2017, 18, 719–731.
  5. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251.
  6. Cohen, A.R. Brain Tumors in Children. N. Engl. J. Med. 2022, 386, 1922–1931.
  7. Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367, 645–648.
  8. Jordan, C.T. Cancer stem cells: Controversial or just misunderstood? Cell Stem Cell 2009, 4, 203–205.
  9. Dirks, P. Cancer stem cells: Invitation to a second round. Nature 2010, 466, 40–41.
  10. Ignatova, T.N.; Kukekov, V.G.; Laywell, E.D.; Suslov, O.N.; Vrionis, F.D.; Steindler, D.A. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002, 39, 193–206.
  11. Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003, 63, 5821–5828.
  12. Hemmati, H.D.; Nakano, I.; Lazareff, J.A.; Masterman-Smith, M.; Geschwind, D.H.; Bronner-Fraser, M.; Kornblum, H.I. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 2003, 100, 15178–15183.
  13. Vescovi, A.L.; Galli, R.; Reynolds, B.A. Brain tumour stem cells. Nat. Rev. Cancer 2006, 6, 425–436.
  14. Ahmad, O.; Erum, K.; Vivek, B.; Arjumand, F.; Anil, N. Pediatric Brain Tumors: From Modern Classification System to Current Principles of Management, in Central Nervous System Tumors; Scott George, T., Ed.; IntechOpen: Rijeka, Croatia, 2021.
  15. Hussein, D.; Punjaruk, W.; Storer, L.C.; Shaw, L.; Othman, R.T.; Peet, A.; Miller, S.; Bandopadhyay, G.; Heath, R.; Kumari, R.; et al. Pediatric brain tumor cancer stem cells: Cell cycle dynamics, DNA repair, and etoposide extrusion. Neuro-Oncology 2010, 13, 70–83.
  16. Haag, D.; Mack, N.; Benites Goncalves da Silva, P.; Statz, B.; Clark, J.; Tanabe, K.; Sharma, T.; Jager, N.; Jones, D.T.W.; Kawauchi, D.; et al. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 2021, 39, 407–422.e13.
  17. Surowiec, R.K.; Ferris, S.F.; Apfelbaum, A.; Espinoza, C.; Mehta, R.K.; Monchamp, K.; Sirihorachai, V.R.; Bedi, K.; Ljungman, M.; Galban, S. Transcriptomic Analysis of Diffuse Intrinsic Pontine Glioma (DIPG) Identifies a Targetable ALDH-Positive Subset of Highly Tumorigenic Cancer Stem-like Cells. Mol. Cancer Res. 2021, 19, 223–239.
  18. Xu, C.; Liu, X.; Geng, Y.; Bai, Q.; Pan, C.; Sun, Y.; Chen, X.; Yu, H.; Wu, Y.; Zhang, P.; et al. Patient-derived DIPG cells preserve stem-like characteristics and generate orthotopic tumors. Oncotarget 2017, 8, 76644–76655.
  19. Monje, M.; Mitra, S.S.; Freret, M.E.; Raveh, T.B.; Kim, J.; Masek, M.; Attema, J.L.; Li, G.; Haddix, T.; Edwards, M.S.B.; et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc. Natl. Acad. Sci. 2011, 108, 4453–4458.
  20. Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.; Dirks, P.B. Identification of human brain tumour initiating cells. Nature 2004, 432, 396–401.
  21. Da-Veiga, M.-A.; Rogister, B.; Lombard, A.; Neirinckx, V.; Piette, C. Glioma Stem Cells in Pediatric High-Grade Gliomas: From Current Knowledge to Future Perspectives. Cancers 2022, 14, 2296.
  22. Kong, B.H.; Park, N.-R.; Shim, J.-K.; Kim, B.-K.; Shin, H.-J.; Lee, J.-H.; Huh, Y.-M.; Lee, S.-J.; Kim, S.-H.; Kim, E.-H.; et al. Isolation of glioma cancer stem cells in relation to histological grades in glioma specimens. Child’s Nerv. Syst. 2012, 29, 217–229.
  23. Bahmad, H.F.; Elajami, M.K.; El Zarif, T.; Bou-Gharios, J.; Abou-Antoun, T.; Abou-Kheir, W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev. 2020, 39, 127–148.
  24. Anastasaki, C.; Chatterjee, J.; Cobb, O.; Sanapala, S.; Scheaffer, S.M.; Costa, A.D.A.; Wilson, A.F.; Kernan, C.M.; Zafar, A.H.; Ge, X.; et al. Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling. Acta Neuropathol. Commun. 2022, 10, 120.
  25. Lee, D.Y.; Gianino, S.M.; Gutmann, D.H. Innate Neural Stem Cell Heterogeneity Determines the Patterning of Glioma Formation in Children. Cancer Cell 2012, 22, 131–138.
  26. Chen, Y.-H.; McGowan, L.D.; Cimino, P.; Dahiya, S.; Leonard, J.R.; Lee, D.Y.; Gutmann, D.H. Mouse Low-Grade Gliomas Contain Cancer Stem Cells with Unique Molecular and Functional Properties. Cell Rep. 2015, 10, 1899–1912.
  27. Raabe, E.H.; Lim, K.S.; Kim, J.M.; Meeker, A.; Mao, X.G.; Nikkhah, G.; Maciaczyk, J.; Kahlert, U.; Jain, D.; Bar, E.; et al. BRAF activation induces transformation and then senescence in human neural stem cells: A pilocytic astrocytoma model. Clin. Cancer Res. 2011, 17, 3590–3599.
  28. Reitman, Z.J.; Paolella, B.R.; Bergthold, G.; Pelton, K.; Becker, S.; Jones, R.; Sinai, C.E.; Malkin, H.; Huang, Y.; Grimmet, L.; et al. Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nat. Commun. 2019, 10, 3731.
  29. Kogiso, M.; Qi, L.; Lindsay, H.; Huang, Y.; Zhao, X.; Liu, Z.; Braun, F.K.; Du, Y.; Zhang, H.; Bae, G.; et al. Xenotransplantation of pediatric low grade gliomas confirms the enrichment of BRAF V600E mutation and preservation of CDKN2A deletion in a novel orthotopic xenograft mouse model of progressive pleomorphic xanthoastrocytoma. Oncotarget 2017, 8, 87455–87471.
  30. Hussein, D.; Alhowity, A.; Algehani, R.; Salwati, A.A.A.; Dallol, A.; Schulten, H.-J.; Baeesa, S.; Bangash, M.; Alghamdi, F.; Saka, M.; et al. A paediatric dysembryoplastic neuroepithelial tumour (DNET) with deregulated stem cell markers: A case report. Transl. Pediatr. 2022, 11, 1040–1049.
  31. Shin, H.Y.; Kim, J.W.; Paek, S.H.; Kim, D.G. The Characteristics of Neuronal Stem Cells of Central Neurocytoma. Neurosurg. Clin. North Am. 2015, 26, 31–36.
  32. Shin, H.Y.; Han, K.-S.; Park, H.W.; Hong, Y.H.; Kim, Y.; Moon, H.E.; Park, K.W.; Park, H.R.; Lee, C.J.; Lee, K.; et al. Tumor Spheroids of an Aggressive Form of Central Neurocytoma Have Transit-Amplifying Progenitor Characteristics with Enhanced EGFR and Tumor Stem Cell Signaling. Exp. Neurobiol. 2021, 30, 120–143.
  33. Taylor, M.D.; Poppleton, H.; Fuller, C.; Su, X.; Liu, Y.; Jensen, P.; Magdaleno, S.; Dalton, J.; Calabrese, C.; Board, J.; et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005, 8, 323–335.
  34. Yu, L.; Baxter, P.A.; Voicu, H.; Gurusiddappa, S.; Zhao, Y.; Adesina, A.; Man, T.-K.; Shu, Q.; Zhang, Y.-J.; Zhao, X.-M.; et al. A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro-Oncology 2010, 12, 580–594.
  35. Gillen, A.E.; Riemondy, K.A.; Amani, V.; Griesinger, A.M.; Gilani, A.; Venkataraman, S.; Madhavan, K.; Prince, E.; Sanford, B.; Hankinson, T.C.; et al. Single-Cell RNA Sequencing of Childhood Ependymoma Reveals Neoplastic Cell Subpopulations That Impact Molecular Classification and Etiology. Cell Rep. 2020, 32, 108023.
  36. Gojo, J.; Englinger, B.; Jiang, L.; Hübner, J.M.; Shaw, M.L.; Hack, O.A.; Madlener, S.; Kirchhofer, D.; Liu, I.; Pyrdol, J.; et al. Single-Cell RNA-Seq Reveals Cellular Hierarchies and Impaired Developmental Trajectories in Pediatric Ependymoma. Cancer Cell 2020, 38, 44–59.e9.
  37. Shannon, M.L.; Fame, R.M.; Chau, K.F.; Dani, N.; Calicchio, M.L.; Géléoc, G.S.; Lidov, H.G.; Alexandrescu, S.; Lehtinen, M.K. Mice Expressing Myc in Neural Precursors Develop Choroid Plexus and Ciliary Body Tumors. Am. J. Pathol. 2018, 188, 1334–1344.
  38. Wang, J.; Merino, D.M.; Light, N.; Murphy, B.L.; Wang, Y.-D.; Guo, X.; Hodges, A.P.; Chau, L.Q.; Liu, K.-W.; Dhall, G.; et al. Myc and Loss of p53 Cooperate to Drive Formation of Choroid Plexus Carcinoma. Cancer Res 2019, 79, 2208–2219.
  39. Li, Q.; Han, Z.; Singh, N.; Terré, B.; Fame, R.M.; Arif, U.; Page, T.D.; Zahran, T.; Abdeltawab, A.; Huang, Y.; et al. Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death Differ. 2022, 29, 1596–1610.
  40. Yang, Z.-J.; Ellis, T.; Markant, S.L.; Read, T.-A.; Kessler, J.D.; Bourboulas, M.; Schüller, U.; Machold, R.; Fishell, G.; Rowitch, D.H.; et al. Medulloblastoma Can Be Initiated by Deletion of Patched in Lineage-Restricted Progenitors or Stem Cells. Cancer Cell 2008, 14, 135–145.
  41. Huang, M.; Tailor, J.; Zhen, Q.; Gillmor, A.H.; Miller, M.L.; Weishaupt, H.; Chen, J.; Zheng, T.; Nash, E.K.; McHenry, L.K.; et al. Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem. Cell 2019, 25, 433–446.e7.
  42. Casciati, A.; Tanori, M.; Manczak, R.; Saada, S.; Tanno, B.; Giardullo, P.; Porcù, E.; Rampazzo, E.; Persano, L.; Viola, G.; et al. Human Medulloblastoma Cell Lines: Investigating on Cancer Stem Cell-Like Phenotype. Cancers 2020, 12, 226.
  43. Chiou, S.-H.; Kao, C.-L.; Chen, Y.-W.; Chien, C.-S.; Hung, S.-C.; Lo, J.-F.; Chen, Y.-J.; Ku, H.-H.; Hsu, M.-T.; Wong, T.-T. Identification of CD133-Positive Radioresistant Cells in Atypical Teratoid/Rhabdoid Tumor. PLoS ONE 2008, 3, e2090.
  44. Choi, S.A.; Choi, J.W.; Wang, K.-C.; Phi, J.H.; Lee, J.Y.; Park, K.D.; Eum, D.; Park, S.-H.; Kim, I.H.; Kim, S.-K. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors. Neuro-Oncology 2014, 17, 810–821.
  45. Alimova, I.; Pierce, A.; Danis, E.; Donson, A.; Birks, D.K.; Griesinger, A.; Foreman, N.K.; Santi, M.; Soucek, L.; Venkataraman, S.; et al. Inhibition of MYC attenuates tumor cell self-renewal and promotes senescence in SMARCB1-deficient Group 2 atypical teratoid rhabdoid tumors to suppress tumor growth in vivo. Int. J. Cancer 2019, 144, 1983–1995.
  46. Terada, Y.; Jo, N.; Arakawa, Y.; Sakakura, M.; Yamada, Y.; Ukai, T.; Kabata, M.; Mitsunaga, K.; Mineharu, Y.; Ohta, S.; et al. Human Pluripotent Stem Cell-Derived Tumor Model Uncovers the Embryonic Stem Cell Signature as a Key Driver in Atypical Teratoid/Rhabdoid Tumor. Cell Rep. 2019, 26, 2608–2621.e6.
  47. Lambo, S.; Gröbner, S.N.; Rausch, T.; Waszak, S.M.; Schmidt, C.; Gorthi, A.; Romero, J.C.; Mauermann, M.; Brabetz, S.; Krausert, S.; et al. The molecular landscape of ETMR at diagnosis and relapse. Nature 2019, 576, 274–280.
  48. Lambo, S.; von Hoff, K.; Korshunov, A.; Pfister, S.M.; Kool, M. ETMR: A tumor entity in its infancy. Acta Neuropathol. 2020, 140, 249–266.
  49. Raghuram, N.; Khan, S.; Mumal, I.; Bouffet, E.; Huang, A. Embryonal tumors with multi-layered rosettes: A disease of dysregulated miRNAs. J. Neuro-Oncology 2020, 150, 63–73.
  50. Phi, J.H.; Wang, K.-C.; Kim, S.-K. Intracranial Germ Cell Tumor in the Molecular Era. J. Korean Neurosurg. Soc. 2018, 61, 333–342.
  51. Takami, H.; Elzawahry, A.; Mamatjan, Y.; Fukushima, S.; Fukuoka, K.; Suzuki, T.; Yanagisawa, T.; Matsushita, Y.; Nakamura, T.; Satomi, K.; et al. Transcriptome and methylome analysis of CNS germ cell tumor finds its cell-of-origin in embryogenesis and reveals shared similarities with testicular counterparts. Neuro-Oncology 2022, 24, 1246–1258.
  52. Garcia-Lavandeira, M.; Saez, C.; Diaz-Rodriguez, E.; Perez-Romero, S.; Senra, A.; Dieguez, C.; Japon, M.A.; Alvarez, C.V. Craniopharyngiomas Express Embryonic Stem Cell Markers (SOX2, OCT4, KLF4, and SOX9) as Pituitary Stem Cells but Do Not Coexpress RET/GFRA3 Receptors. J. Clin. Endocrinol. Metab. 2012, 97, E80–E87.
  53. Martinez-Barbera, J.P.; Andoniadou, C.L. Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma. Stem Cells 2016, 34, 268–276.
  54. Gonzalez-Meljem, J.M.; Haston, S.; Carreno, G.; Apps, J.R.; Pozzi, S.; Stache, C.; Kaushal, G.; Virasami, A.; Panousopoulos, L.; Mousavy-Gharavy, S.N.; et al. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat. Commun. 2017, 8, 1819.
  55. Kwak, J.; Shim, J.-K.; Kim, D.S.; Lee, J.-H.; Choi, J.; Park, J.; Shin, K.-J.; Kim, S.-H.; Kim, P.; Huh, Y.-M.; et al. Isolation and characterization of tumorspheres from a recurrent pineoblastoma patient: Feasibility of a patient-derived xenograft. Int. J. Oncol. 2016, 49, 569–578.
  56. Snuderl, M.; Kannan, K.; Pfaff, E.; Wang, S.; Stafford, J.M.; Serrano, J.; Heguy, A.; Ray, K.; Faustin, A.; Aminova, O.; et al. Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat. Commun. 2018, 9, 2868.
  57. Cutfield, S.W.; Wickremesekera, A.C.; Mantamadiotis, T.; Kaye, A.H.; Tan, S.T.; Stylli, S.S.; Itineang, T. Tumour stem cells in schwannoma: A review. J. Clin. Neurosci. 2019, 62, 21–26.
  58. Li, S.; Chen, Z.; Le, L.Q. New insights into the neurofibroma tumor cells of origin. Neuro-Oncology Adv. 2019, 2 (Suppl. S1), i13–i22.
  59. Sun, D.; Xie, X.P.; Zhang, X.; Wang, Z.; Sait, S.F.; Iyer, S.V.; Chen, Y.-J.; Brown, R.; Laks, D.R.; Chipman, M.E.; et al. Stem-like cells drive NF1-associated MPNST functional heterogeneity and tumor progression. Cell Stem Cell 2021, 28, 1397–1410.e4.
  60. Tirode, F.; Laud-Duval, K.; Prieur, A.; Delorme, B.; Charbord, P.; Delattre, O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007, 11, 421–429.
  61. Shivapathasundram, G.; Wickremesekera, A.C.; Tan, S.T.; Itinteang, T. Tumour stem cells in meningioma: A review. J. Clin. Neurosci. 2017, 47, 66–71.
  62. Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820.
  63. Milde, T.; Rodriguez, F.J.; Barnholtz-Sloan, J.S.; Patil, N.; Eberhart, C.G.; Gutmann, D.H. Reimagining pilocytic astrocytomas in the context of pediatric low-grade gliomas. Neuro-Oncology 2021, 23, 1634–1646.
  64. Jones, D.T.W.; The International Cancer Genome Consortium PedBrain Tumor Project; Hutter, B.; Jäger, N.; Korshunov, A.; Kool, M.; Warnatz, H.-J.; Zichner, T.; Lambert, S.R.; Ryzhova, M.; et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat. Genet. 2013, 45, 927–932.
  65. Kfoury-Beaumont, N.; Prakasam, R.; Pondugula, S.; Lagas, J.S.; Matkovich, S.; Gontarz, P.; Yang, L.; Yano, H.; Kim, A.H.; Rubin, J.B.; et al. The H3K27M mutation alters stem cell growth, epigenetic regulation, and differentiation potential. BMC Biol. 2022, 20, 124.
  66. Larrew, T.; Saway, B.F.; Lowe, S.R.; Olar, A. Molecular Classification and Therapeutic Targets in Ependymoma. Cancers 2021, 13, 6218.
  67. Parker, M.; Mohankumar, K.M.; Punchihewa, C.; Weinlich, R.; Dalton, J.D.; Li, Y.; Lee, R.; Tatevossian, R.G.; Phoenix, T.N.; Thiruvenkatam, R.; et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 2014, 506, 451–455.
  68. Eder, N.; Roncaroli, F.; Domart, M.C.; Horswell, S.; Andreiuolo, F.; Flynn, H.R.; Lopes, A.T.; Claxton, S.; Kilday, J.P.; Collinson, L.; et al. YAP1/TAZ drives ependymoma-like tumour formation in mice. Nat. Commun. 2020, 11, 2380.
  69. Thomas, C.; Metrock, K.; Kordes, U.; Hasselblatt, M.; Dhall, G. Epigenetics impacts upon prognosis and clinical management of choroid plexus tumors. J. Neuro-Oncology 2020, 148, 39–45.
  70. Wolff, J.E.; Van Gool, S.W.; Kutluk, T.; Diez, B.; Kebudi, R.; Timmermann, B.; Garami, M.; Sterba, J.; Fuller, G.N.; Bison, B.; et al. Final results of the Choroid Plexus Tumor study CPT-SIOP-2000. J. Neuro-Oncology 2022, 156, 599–613.
  71. Williams, L.A.; Hubbard, A.K.; Scheurer, M.E.; Spector, L.G.; Poynter, J.N. Trends in paediatric central nervous system tumour incidence by global region from 1988 to 2012. Leuk. Res. 2020, 50, 116–127.
  72. Manoranjan, B.; Venugopal, C.; Bakhshinyan, D.; Adile, A.A.; Richards, L.; Kameda-Smith, M.M.; Whitley, O.; Dvorkin-Gheva, A.; Subapanditha, M.; Savage, N.; et al. Wnt activation as a therapeutic strategy in medulloblastoma. Nat. Commun. 2020, 11, 4323.
  73. Ho, B.; Johann, P.D.; Grabovska, Y.; Andrianteranagna, M.J.D.D.; Yao, F.; Frühwald, M.; Hasselblatt, M.; Bourdeaut, F.; Williamson, D.; Huang, A.; et al. Molecular subgrouping of atypical teratoid/rhabdoid tumors—A reinvestigation and current consensus. Neuro-Oncology 2019, 22, 613–624.
  74. Echevarría, M.E.; Fangusaro, J.; Goldman, S. Pediatric Central Nervous System Germ Cell Tumors: A Review. Oncol. 2008, 13, 690–699.
  75. Hoei-Hansen, C.E.; Sehested, A.; Juhler, M.; Lau, Y.-F.C.; Skakkebaek, N.E.; Laursen, H.; Meyts, E.R.-D. New evidence for the origin of intracranial germ cell tumours from primordial germ cells: Expression of pluripotency and cell differentiation markers. J. Pathol. 2006, 209, 25–33.
  76. Tan, C.; Scotting, P.J. Stem cell research points the way to the cell of origin for intracranial germ cell tumours. J. Pathol. 2012, 229, 4–11.
  77. Takami, H.; Fukuoka, K.; Fukushima, S.; Nakamura, T.; Mukasa, A.; Saito, N.; Yanagisawa, T.; Nakamura, H.; Sugiyama, K.; Kanamori, M.; et al. Integrated clinical, histopathological, and molecular data analysis of 190 central nervous system germ cell tumors from the iGCT Consortium. Neuro-Oncology 2019, 21, 1565–1577.
More
Video Production Service