Please note this is a comparison between Version 1 by Bartolo Gabriele and Version 3 by Dean Liu.

Some examples of carbonylative double cyclization processes, which allow the one-step synthesis of complex molecular architectures from simple building blocks using the simplest and readily available C-1 unit (CO), are illustrated and discussed.

- carbonylation
- cyclization
- double cyclization
- fused heterocycles

The importance of carbon monoxide as a C-1 unit in organic synthesis can hardly be overemphasized [1]. It is a readily available feedstock that can be easily obtained by steam reforming of light hydrocarbons (including natural gas), partial oxidation of petroleum hydrocarbons, or gasification of coal to give syngas (CO and H_{2}) [2]. It can be installed into an organic substrate, usually under catalytic conditions, leading to the direct formation of high value-added carbonylated compounds with 100% atom economy (carbonylation reactions) [1].

Here, some examples of carbonylative double cyclization processes for the synthesis of carbonylated fused heterocycles (in particular, starting from suitably functionalized olefinic substrates) are presented.

Entry | Conditions | Substrate | Product | Yield (%) | Refs. |
---|---|---|---|---|---|

1 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 41 h |
63 | ^{[8]}[10] |
||

2 | PdCl_{2}(MeCN)_{2}, (10 mol%), CuCl_{2} (2.4 equiv), CO (1 atm), THF, 25 °C, 24 h |
65 | ^{[9]}[11] |
||

3 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 8 h |
85 | ^{[10]}[12] |
||

4 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (4 equiv), CO (1 atm), AcOH, 25 °C, 24 h |
93 | ^{[11]}[13] |
||

5 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 33 h |
38 | ^{[12]}[14] |
||

6 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 15 h |
>80 | ^{[13]}[15] |
||

7 | Pd(OAc)_{2} (1.5 equiv), CO(1.1 atm), THF, 23 °C, 4 h |
87 | ^{[14]}[16] |
||

8 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 15 h |
81 | ^{[15]}[17] |
||

9 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C |
63 | ^{[16]}[18] |
||

10 | PdCl_{2}, CuCl, AcONa, CO, AcOH |
33 | ^{[17]}[19] |
||

11 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 10 h |
85 | ^{[18]}[20] |
||

12 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 23 °C, 24 h |
75 | ^{[19]}[21] |
||

13 | Pd(OAc)_{2} (1.5 equiv),N-methylmorpholine (3 equiv), CO, THF, 25 °C, 15 h |
58 | ^{[20]}[22] |
||

14 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 20 h |
65 | ^{[21]}[23] |
||

15 | Pd(OAc)_{2} (10 mol%), CuCl_{2}(3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 15 h |
63, 70 | ^{[22]}^{[23]}[24,25] |
||

16 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 24 h |
33 | ^{[24]}[26] |
||

17 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 24 h |
87 | ^{[25]}[27] |
||

18 | PdCl_{2} (10 mol%), CuCl_{2} (3 equiv), AcONa (3 equiv), CO (1 atm), AcOH, 25 °C, 12 h |
61 | ^{[26]}[28] |
||

19 | PdCl_{2}(MeCN)_{2} (10 mol%), CuCl_{2} (5 equiv), AcOLi (5 equiv), [Fe(CO)_{5}] (0.5 equiv), AcOH, 60 °C, 1 h |
47 | ^{[27]}[29] |
||

20 | PdCl_{2}(MeCN)_{2} (10 mol%), Cu(OAc)_{2} (4 equiv), LiCl(4 equiv), [Fe(CO) _{5}] (0.25 equiv), AcOH, 60 °C, 15 min |
67 | ^{[28]}[30] |
||

21 | PdCl_{2}(MeCN)_{2} (10 mol%), CuCl_{2} (4 equiv), AcOLi (4 equiv), [Fe(CO)_{5}] (0.3 equiv), AcOH, 60 °C, 30 min |
75 | ^{[29]}[31] |