The electrocardiogram (ECG) is among the most commonly utilized clinical tests for patient monitoring and assessment because it is easy to acquire and provides extensive information about patients’ cardiac health [1]. Instead, continuous, real-time, remote monitoring allows for a more rigorous oversight of patients’ conditions, even compared to in-hospital observation. Wearable devices to address monitoring are now a prominent focus of industry [1,2,3,4,5,6], which in turn provides strong motivation for applying artificial intelligence (AI) algorithms to ECG signals for automated disease detection and prediction [7,8,9,10,11].
Authors (Year) | Specific Application | ECG System (Sampling Frequency) |
AI Algorithm/Method | Database/Dataset | Performance (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Sen | Spe | AUC | F1 | ||||||||||||||
Gibson et al. (2022) [12 | General arrhythmias | ][682-lead ECG patch [Samsung S-Patch 2] (256 Hz) |
Recurrent Neural Networks | ]MIT-BIH Arrhythmia Wearable device: S-Patch 2 |
Myocardial Infarction99.80 | -- | - | CNN | Latin America Telemedicine Infarct Network (LATIN) | 90.50 | 86.00 | 94.50- | -- | |||||
- | Plawiak et al. (2020) [51][37] | General arrhythmias | - | |||||||||||||||
Baloglu et al. (2019) [16][65] | Myocardial Infarction | - | Deep Genetic Ensemble of Classifiers | MIT-BIH Arrhythmia | 99.37 | 94.62 | 99.66 | CNN | PTB ECG: MI on standard 12-lead ECG data | 99.78 | 99.80- | -- | ||||||
- | - | Panganiban et al. (2021) [31][16] | ||||||||||||||||
Cho et al. (2021) [82] | General arrhythmias | [2-lead ECG [HealthyPiV3 biosensors] (n.s.) |
CNN | MIT-BIH Atrial Fibrillation, PAF Prediction Challenge, PTB Diagnostic ECG, Challenge 2015 Training Set, Fantasia, and PAF Prediction Challenge. ECG signals collected for this study | 7198.73 | 96.83 | 99.21 | - | ] | Heart Failure96.83 | ||||||||
12-lead ECG [Page Writer Cardiograph—Philips] | (500 Hz) | Short-time Fourier transform–CNN combination | ECG from multicenter study | 82.50 | 92.10 | 82.10 | 92.90 | - | Alqudah et al. (2021) [72][59] | General arrhythmias | ||||||||
Wasimuddin et al. (2021) [34][19 | - | CNN | IEEE DataPort | MIT-BIH Arrhythmia |
99.13 | 99.31 | 99.81 | - | - | |||||||||
] | Myocardial Infarction | Custom 1-lead ECG (n.s.) |
CNN | European ST-T Custom wearable device |
99.26 | 99.27 | 99.27 | - | - | Yildirim et al. (2018) [52][38] | General arrhythmias | - | CNN | MIT-BIH Arrhythmia | 95.20 | 93.52 | ||
Chowdhury et al. (2019) [35][20 | 99.61 | - | 92.45 | |||||||||||||||
] | Myocardial Infarction-Cardiac Arrest | Custom 1-lead ECG (500 Hz) |
Support Vector Machine | MIT-BIH ST Change Normal subjects and an ECG simulator to simulate abnormal ST-elevated MI situations to test the functionality of the complete system in real-time |
97.40 | 99.10 | - | - | 98.70 | Bazi et al. (2020) [40][26] | ||||||||
Shahnawaz et al. (2021) [79 | General arrhythmias | ]Wireless 3-lead ECG sensor [Shimmer Sensing (100, 200 Hz) |
SVM | [12-lead Tech-Patient CARDIO ECG simulator Wearable device: Shimmer Sensing MIT-BIH Arrhythmia |
95.10 | 95.80 | - | - | - | |||||||||
67] | Myocardial Infarction | - | Artificial Neural Network | PTB (PhysioNet) | 99.10 | 100.00 | 98.10 | - | 99.00 | Lee et al. (2022) [44][30] | General arrhythmias | - | CNN | ECG from patients at the Korea University Anam Hospital in Seoul, Korea | 97.90 | 98.30 | 97.60 | 99.70 |
Sopic, et al. (2018) [78][66 | 97.70 | |||||||||||||||||
] | Myocardial Infarction | - | Random Forest | PTB (PhysioNet) | 80.30 | 87.95 | 79.63 | - | - | Itzhak et al. (2022) [46][32] | General arrhythmias | - | Random Forest | |||||
Martin et al. (2021) [80][ | Annotated Holter ECG database acquired at the University of Virginia Heart Station | 69] | Myocardial Infarction | - | Deep Long Short-Term Memory93.30 | 91.30 | 81.30 | 95.30 | PTB-XL and PTB (PhysioNet) | 79.69 | 76.59 | 85.89 | -90.60 | |||||
83.42 | Li et al. (2018) [61][48] | General arrhythmias | - | Generic CNN and Tuned Dedicated CNN | MIT-BIH Arrhythmia | 96.89 | - | - | - | - | ||||||||
AF | ||||||||||||||||||
12-lead ECG | ||||||||||||||||||
(500 Hz) | ||||||||||||||||||
Deep Densely connected Neural Network | ||||||||||||||||||
Cao et al. (2021) [81][70] | Myocardial Infarction | - | Multi-Channel Lightweight model | PTB (PhysioNet) | 96.65 | Ran et al. (2022) [66][53] | General arrhythmias | 12-lead ECG prototype (500Hz) |
Deep CNN | 12-lead ECG recordings from three centers of Tongji Hospital | - | 89.10 | 99.70 | 94.40 | 91.30 | |||
94.30 | 97.72 | 96.71 | - | Ribeiro et al. (2022) [65][52] | General arrhythmias | - | CNN | MIT-BIH Arrhythmia | 99.60 | 98.50 | 99.80 | - | 98.80 | |||||
Hua et al. (2018) [50][36] | General arrhythmias | - | SVM | MIT-BIH Arrhythmia | 98.58 | 97.70 | 99.62 | - | - | |||||||||
Karthiga et al. (2021) [53][39] | General arrhythmias | - | CNN | MIT-BIH Arrhythmia | 91.92 | 90.21 | 95.19 | - | 90.11 | |||||||||
Zhang et al. (2022) [54][40] | General arrhythmias | - | CNN | MIT-BIH Arrhythmia | 98.74 | 98.11 | 99.05 | - | - | |||||||||
Lee et al. (2021) [73][60] | General arrhythmias | - | Beat-Interval-Texture CNN | 2017 PhysioNet/Computing in Cardiology Challenge | - | 80.73 | - | - | 81.75 | |||||||||
Smisek et al. (2018) [48][34] | General arrhythmias | - | SVMs Decision Tree | 2017 PhysioNet/Computing in Cardiology Challenge |
- | - | - | - | 81.00 | |||||||||
Shin et al. (2022) [58][45] | General arrhythmias | - | CNN-Bidirectional Long Short-Term Memory | MIT-BIH Arrhythmia | 91.70 | 92.00 | 91.00 | 99.40 | 92.00 | |||||||||
Alqudah et al. (2021) [75][62] | General arrhythmias | - | CNN | MIT-BIH Arrhythmia | 93.80 | 95.20 | 97.40 | - | 93.60 | |||||||||
Huang, et al. (2021) [57][44] | General arrhythmias | - | CNN-LSTM | MIT-BIH Arrhythmia | 98.93 | 96.46 | 99.33 | - | - | |||||||||
Tang et al. (2019) [49][35] | General arrhythmias | - | SVM | MIT-BIH Arrhythmia | 98.90 | 92.80 | 99.40 | - | 92.00 | |||||||||
Sakib et al. (2021) [64][51] | General arrhythmias | - | Deep-Learning-based Lightweight Arrhythmia Classification (CNN) | MIT-BIH Supraventricular Arrhythmia MIT-BIH Arrhythmia St Petersburg INCART 12-lead Arrhythmia Sudden Cardiac Death Holter |
96.67 | - | - | 97.96 | - | |||||||||
Shao et al. (2020) [13][22] | AF | Custom 1-lead ECG patch (250 Hz) |
Decision Tree Ensemble | 2017 PhysioNet/Computing in Cardiology Challenge MIT-BIH Atrial Fibrillation Simulated ECG signals from generator FLUKE MPS450 |
99.62 | 99.61 | 99.64 | - | 92.00 | |||||||||
Chen et al. (2020) [30][15] | AF | PPG & 1-lead ECG [Amazfit Health Band 1S] (250 Hz) |
CNN | PPG and single-channel ECG data | 94.76 | 87.33 | 99.20 | - | - | |||||||||
Cai et al. (2020) [15][42] | 12-lead ECG 10s recordings collected from multiple hospitals and wearable ECG devices (3 different data sources) | 99.35 | 99.19 | 99.44 | - | - | ||||||||||||
Cheng et al. (2020) [70][57] | AF | - | Deep Learning Neural Networks | MIT-BIH Atrial Fibrillation | 97.52 | 97.59 | 97.40 | - | 98.02 | |||||||||
Fan et al. (2018) [62][49] | AF | - | Multi-Scale CNN | 2017 PhysioNet/Computing in Cardiology Challenge | 98.13 | 93.77 | 98.77 | - | - | |||||||||
Ramesh et al. (2021) [55][41] | AF | - | CNN | Train: MIT-BIH Normal Sinus Rhythm, MIT-BIH Atrial Fibrillation, MIT-BIH Arrhythmia Test: UMass PPG, acquired from wrist-worn wearable devices |
95.50 | 94.50 | 96.00 | 95.30 | 93.40 | |||||||||
Ma et al. (2020) [41][27] | AF | SmartVest system (400 Hz) |
SVM extended with CNN predictions | Train: MIT-BIH Atrial Fibrillation Test: PhysioNet/Computing in Cardiology Challenge 2017, China Physiological Signal Challenge (CPSC) 2018, 24-h ECG recording (12 h before and 12 h after the radio frequency ablation surgery) collected from an AF patient with the wearable device |
99.08 | 98.67 | 99.50 | - | - | |||||||||
Lown et al. (2020) [32][17] | AF | 1. 12-lead ECG (n.s.) 2. HR monitor [Polar H7 (PH7) HR] (n.s.) |
SVM | MIT-BIH Atrial Fibrillation MIT-BIH Arrhythmia |
- | 100.0 | 97.60 | - | - | |||||||||
Zhang et al. (2021) [63][50] | AF | - | Global Hybrid Multi-Scale Convolutional Neural Network | China Physiological Signal Challenge 2018 (12-lead ECG) 2017 PhysioNet/Computing in Cardiology Challenge (single-lead ECG) |
99.84 | 99.65 | 99.98 | - | 99.54 | |||||||||
Zhang et al. (2020) [71][58] | AF | - | CNN | MIT-BIH Atrial Fibrillation | 96.23 | 95.92 | 96.55 | - | 96.25 | |||||||||
Chen et al. (2022) [56][43] | AF | - | Feedforward Neural Network | 2017 PhysioNet/Computing in Cardiology Challenge MIT-BIH Arrhythmia |
84.00 | 84.26 | 93.23 | 89.40 | - | |||||||||
Mei et al. (2018) [47][33] | AF | - | Baggin Trees | 2017 PhysioNet/Computing in Cardiology Challenge |
96.60 | 83.20 | 98.60 | - | - | |||||||||
Wu et al. (2020) [45][31] | AF | - | Extreme Gradient Boosting | 2017 PhysioNet/Computing in Cardiology Challenge MIT-BIH Atrial Fibrillation MIT-BIH Normal Sinus Rhythm MIT-BIH Arrhythmia |
95.47 | 94.59 | 96.40 | - | 95.56 | |||||||||
Bashar et al. (2021) [23][7] | AF, PAC and PVC | - | SVM | Medical Information Mart for Intensive Care (MIMIC) III | 97.45 | 98.99 | 95.18 | - | - | |||||||||
Yu et al. (2021) [18][6] | PVCs | - | Deep Metric Learning K-Nearest Neighbors | MIT-BIH Arrhythmia | 99.70 | 97.45 | 99.87 | - | - | |||||||||
Wang (2021) [24][8] | PVCs | - | CNN with improved Gated Recurrent Unit network | MIT-BIH Arrhythmia China Physiological Signal Challenge 2018 |
98.30 | 98.40 | 98.20 | - | - | |||||||||
Meng et al. (2022) [17][5] | PVC, SPB | - | Lightweight Fussing Transformer with LightConv Attention | The 3rd China Physiological Signal Challenge 2020 | 99.32 | 92.44 | - | - | 93.63 | |||||||||
Khan et al. (2020) [33][18] | CVDs | - | SVM | Cleveland Heart Disease dataset from the UCI repository | 93.33 | 94.29 | 92.73 | - | - | |||||||||
Dami et al. (2021) [76][63] | CVDs | - | LSTM Deep Belief Network | Four databases: DB1—KAGGLE heart disease dataset|DB2—Shahid Beheshti Hospital Research Center|DB3—Physionet site—Hypertensive patients|DB4—UCI Heart Disease dataset |
88.42 | 85.13 | 85.54 | - | - | |||||||||
Khan et al. (2020) [77][64] | CVDs | Custom 1-lead ECG (n.s.) |
Deep Convolutional Neural Network | UCI machine learning repository, Framingham, and Public Health Dataset | 98.20 | 97.80 | 92.80 | - | 95.00 | |||||||||
Tan et al. (2021) [60][47] | CVDs and COVID-19 | - | CNN-LSTM | MIT-BIH Arrhythmia | 99.29 | 97.77 | 99.53 | - | - | |||||||||
Mazumder et al. (2021) [59][46] | VT and VF | - | CNN-LSTM | MIT-BIH Malignant Ventricular Arrhythmia (VFDB) Creighton University Ventricular Tachycardia (CUDB) |
- | 99.21 | 99.68 | - | - |