Applications of Big Data in the Aerospace Domain: Comparison
Please note this is a comparison between Version 1 by Emmanouil Daskalakis and Version 5 by Jessie Wu.

ThOve term Big Data (BD) refers to massive datasets deriving from multiple sources such as people, sensors, or machines. r the last few years, Big Data applications have attracted ever-increasing attention in several scientific and business domains. Biomedicine, transportation, entertainment, and aerospace are only a few examples of sectors which are increasingly dependent on applications, where knowledge is extracted from huge volumes of heterogeneous data.  The main goal of this paper was to conduct an academic literature review of prominent publications revolving around the application of BD in aerospace. A total of 67 publications were analyzed, highlighting the sources, uses, and benefits of BD. For categorizing the publications, a novel 6-fold approach was introduced including applications in aviation technology and aviation management, UAV-enabled applications, applications in military aviation, health/environment-related applications, and applications in space technology. Aiming to provide the reader with a clear overview of the existing solutions, a total of 15 subcategories were also utilized. The results indicated numerous benefits deriving from the application of BD in aerospace. These benefits referred to the aerospace domain itself as well as to many other sectors including healthcare, environment, humanitarian operations, network communications, etc. Various data sources and different Machine Learning models were utilized in the analyzed publications and the use of BD-based techniques enabled us to extract useful correlations and gain useful insights from large volumes of data.

 
  • big data
  • big data analytics
  • aviation technology
  • aviation management
  • unmanned aerial vehicles
  • aerospace
Please wait, diff process is still running!

References

  1. Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big Data Analytics and Firm Performance: Findings from a Mixed-Method Approach. J. Bus. Res. 2019, 98, 261–276. Directorate-General for Justice and Consumers (European Commission). The EU Data Protection Reform and Big Data; Publications Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-60469-0.
  2. Deepa, N.; Pham, Q.-V.; Nguyen, D.C.; Bhattacharya, S.; Prabadevi, B.; Gadekallu, T.R.; Maddikunta, P.K.R.; Fang, F.; Pathirana, P.N. A Survey on Blockchain for Big Data: Approaches, Opportunities, and Future Directions. Future Gener. Comput. Syst. 2022, 131, 209–226. Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big Data Analytics and Firm Performance: Findings from a Mixed-Method Approach. J. Bus. Res. 2019, 98, 261–276. https://doi.org/10.1016/j.jbusres.2019.01.044.
  3. Dedić, N.; Stanier, C. Towards Differentiating Business Intelligence, Big Data, Data Analytics and Knowledge Discovery. In Proceedings of the Innovations in Enterprise Information Systems Management and Engineering, Hagenberg, Austria, 14 November 2016; Piazolo, F., Geist, V., Brehm, L., Schmidt, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 114–122. Deepa, N.; Pham, Q.-V.; Nguyen, D.C.; Bhattacharya, S.; Prabadevi, B.; Gadekallu, T.R.; Maddikunta, P.K.R.; Fang, F.; Pathirana, P.N. A Survey on Blockchain for Big Data: Approaches, Opportunities, and Future Directions. Future Gener. Comput. Syst. 2022, 131, 209–226. https://doi.org/10.1016/j.future.2022.01.017.
  4. Khan, N.; Alsaqer, M.; Shah, H.; Badsha, G.; Abbasi, A.A.; Salehian, S. The 10 Vs, Issues and Challenges of Big Data. In Proceedings of the 2018 International Conference on Big Data and Education (ICBDE ’18), Honolulu, HI, USA, 9–11 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 52–56. Dedić, N.; Stanier, C. Towards Differentiating Business Intelligence, Big Data, Data Analytics and Knowledge Discovery. In Proceedings of the Innovations in Enterprise Information Systems Management and Engineering, Hagenberg, Austria, 14 November 2016; Piazolo, F., Geist, V., Brehm, L., Schmidt, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 114–122.
  5. Alexakis, T.; Peppes, N.; Demestichas, K.; Adamopoulou, E. A Distributed Big Data Analytics Architecture for Vehicle Sensor Data. Sensors 2023, 23, 357. Khan, N.; Alsaqer, M.; Shah, H.; Badsha, G.; Abbasi, A.A.; Salehian, S. The 10 Vs, Issues and Challenges of Big Data. In Proceedings of the 2018 International Conference on Big Data and Education (ICBDE ’18), Honolulu, USA, 9-11 March 2018; Association for Computing Machinery: New York, USA, 2018; pp. 52–56 .
  6. Aerospace Industry|Definition & Facts|Britannica. Available online: https://www.britannica.com/technology/aerospace-industry (accessed on 20 March 2023).Alexakis, T.; Peppes, N.; Demestichas, K.; Adamopoulou, E. A Distributed Big Data Analytics Architecture for Vehicle Sensor Data. Sensors 2023, 23, 357. https://doi.org/10.3390/s23010357.
  7. Encyclopedia of Aerospace Engineering, 9 Volume Set|Wiley. Available online: https://www.wiley.com/en-ie/Encyclopedia+of+Aerospace+Engineering%2C+9+Volume+Set-p-9780470754405 (accessed on 17 March 2023).Aerospace Industry|Definition & Facts|Britannica. Available online: https://www.britannica.com/technology/aerospace-industry (accessed on 20 March 2023).
  8. Badea, V.E.; Zamfiroiu, A.; Boncea, R. Big Data in the Aerospace Industry. IE 2018, 22, 17–24. Encyclopedia of Aerospace Engineering, 9 Volume Set|Wiley. Available online: https://www.wiley.com/en-ie/Encyclopedia+of+Aerospace+Engineering%2C+9+Volume+Set-p-9780470754405 (accessed on 17 March 2023).
  9. Wang, W.; Fan, L.; Huang, P.; Li, H. A New Data Processing Architecture for Multi-Scenario Applications in Aviation Manufacturing. IEEE Access 2019, 7, 83637–83650. Badea, V.E.; Zamfiroiu, A.; Boncea, R. Big Data in the Aerospace Industry. IE 2018, 22, 17–24. https://doi.org/10.12948/issn14531305/22.1.2018.02.
  10. Crespino, A.M.; Di Biccari, C.; Lazoi, M.; Lezzi, M. Fault Prediction in Aerospace Product Manufacturing: A Model-Based Big Data Analytics Service. In Enterprise Interoperability; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 193–200. ISBN 978-1-119-56403-4. Burmester, G.; Ma, H.; Steinmetz, D.; Hartmannn, S. Big Data and Data Analytics in Aviation. In Advances in Aeronautical Informatics: Technologies Towards Flight 4.0; Durak, U., Becker, J., Hartmann, S., Voros, N.S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 55–65. ISBN 978-3-319-75058-3.
  11. Wang, J.; Zheng, P.; Lv, Y.; Bao, J.; Zhang, J. Fog-IBDIS: Industrial Big Data Integration and Sharing with Fog Computing for Manufacturing Systems. Engineering 2019, 5, 662–670. Chinchanikar, S.; Shaikh, A.A. A Review on Machine Learning, Big Data Analytics, and Design for Additive Manufacturing for Aerospace Applications. J. Mater. Eng Perform 2022, 31, 6112–6130. https://doi.org/10.1007/s11665-022-07125-4.
  12. Singh, S.; Shehab, E.; Higgins, N.; Fowler, K.; Erkoyuncu, J.A.; Gadd, P. Towards Information Management Framework for Digital Twin in Aircraft Manufacturing. Procedia CIRP 2021, 96, 163–168. Application of Big Data and Artificial Intelligence in Pilot Training: A Systematic Literature Review|IEEE Conference Publication|IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/10050972 (accessed on 25 April 2023).
  13. Liang, B.; Liu, W.; Liu, K.; Zhou, M.; Zhang, Y.; Jia, Z. A Displacement Field Perception Method for Component Digital Twin in Aircraft Assembly. Sensors 2020, 20, 5161. Oh, C.-G. Application of Big Data Systems to Aviation and Aerospace Fields; Pertinent Human Factors Considerations. In Proceedings of the 19th International Symposium on Aviation Psychology (ISAP 2017), Dayton, USA, 8-11 May 2017; pp. 214–219.
  14. Huang, R.; Sun, H.; Wu, C.; Wang, C.; Lu, B. Estimating Eddy Dissipation Rate with QAR Flight Big Data. Appl. Sci. 2019, 9, 5192. Wang, W.; Fan, L.; Huang, P.; Li, H. A New Data Processing Architecture for Multi-Scenario Applications in Aviation Manufacturing. IEEE Access 2019, 7, 83637–83650. https://doi.org/10.1109/ACCESS.2019.2925114.
  15. Wang, X.; Zhao, X.; Yu, L. Data Mining on the Flight Quality of an Airline Based on QAR Big Data. In Proceedings of the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Weihai, China, 14–16 October 2020; pp. 955–958. Crespino, A.M.; Di Biccari, C.; Lazoi, M.; Lezzi, M. Fault Prediction in Aerospace Product Manufacturing: A Model-Based Big Data Analytics Service. In Enterprise Interoperability; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 193–200. ISBN 978-1-119-56403-4.
  16. Xie, J.; Sun, H.; Wang, C.; Lu, B. Spatio-Temporal Analysis of Unstable Approach Incidents with QAR Big Data. In Proceedings of the 2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Kunming, China, 17–19 October 2019; pp. 560–563. Wang, J.; Zheng, P.; Lv, Y.; Bao, J.; Zhang, J. Fog-IBDIS: Industrial Big Data Integration and Sharing with Fog Computing for Manufacturing Systems. Engineering 2019, 5, 662–670. https://doi.org/10.1016/j.eng.2018.12.013.
  17. Schäfer, M.; Olive, X.; Strohmeier, M.; Smith, M.; Martinovic, I.; Lenders, V. OpenSky Report 2019: Analysing TCAS in the Real World Using Big Data. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12 September 2019; pp. 1–9. Singh, S.; Shehab, E.; Higgins, N.; Fowler, K.; Erkoyuncu, J.A.; Gadd, P. Towards Information Management Framework for Digital Twin in Aircraft Manufacturing. Procedia CIRP 2021, 96, 163–168. https://doi.org/10.1016/j.procir.2021.01.070.
  18. Olive, X.; Tanner, A.; Strohmeier, M.; Schäfer, M.; Feridun, M.; Tart, A.; Martinovic, I.; Lenders, V. OpenSky Report 2020: Analysing in-Flight Emergencies Using Big Data. In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–15 October 2020; pp. 1–10. Liang, B.; Liu, W.; Liu, K.; Zhou, M.; Zhang, Y.; Jia, Z. A Displacement Field Perception Method for Component Digital Twin in Aircraft Assembly. Sensors 2020, 20, 5161. https://doi.org/10.3390/s20185161.
  19. Deiler, C. Engine Thrust Model Determination and Analysis Using a Large Operational Flight Database. CEAS Aeronaut. J. 2022, 14, 29–45. Huang, R.; Sun, H.; Wu, C.; Wang, C.; Lu, B. Estimating Eddy Dissipation Rate with QAR Flight Big Data. Appl. Sci. 2019, 9, 5192. https://doi.org/10.3390/app9235192.
  20. Wooder, D.; Purvis, A.; McWilliam, R. Using Big-Data and Surface Fitting to Improve Aircraft Safety through the Study of Relationships and Anomalies. Procedia CIRP 2017, 59, 172–177. Wang, X.; Zhao, X.; Yu, L. Data Mining on the Flight Quality of an Airline Based on QAR Big Data. In Proceedings of the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Weihai, China, 14-16 October 2020; pp. 955–958.
  21. Li, D.; Ren, B.; Gao, J.; Xu, J. Research on the Application of Big Data in the Field of Aviation Safety. In Proceedings of the 2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS), Chengdu, China, 26–28 November 2022; pp. 251–256. Xie, J.; Sun, H.; Wang, C.; Lu, B. Spatio-Temporal Analysis of Unstable Approach Incidents with QAR Big Data. In Proceedings of the 2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Kunming, China, 17-19 October 2019; pp. 560–563.
  22. Jiao, X.; Jing, B.; Jiao, B. Research of Prognostic and Health Management for Avionics System Based on Massive Data Mining. In Proceedings of the 2018 Prognostics and System Health Management Conference, Chongqing, China, 26–28 October 2018; pp. 350–357. Schäfer, M.; Olive, X.; Strohmeier, M.; Smith, M.; Martinovic, I.; Lenders, V. OpenSky Report 2019: Analysing TCAS in the Real World Using Big Data. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, USA, 8-12 September 2019; pp. 1–9.
  23. Forest, F.; Lacaille, J.; Lebbah, M.; Azzag, H. A Generic and Scalable Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1918–1924. Olive, X.; Tanner, A.; Strohmeier, M.; Schäfer, M.; Feridun, M.; Tart, A.; Martinovic, I.; Lenders, V. OpenSky Report 2020: Analysing in-Flight Emergencies Using Big Data. In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, USA, 11-15 October 2020; pp. 1–10.
  24. Xie, X.; Zhang, T.; Zhu, Q.; Zhang, G. A Big Data Driven Design Method of Helicopter Health Management System. In Proceedings of the Web Information Systems and Applications, Dalian, China, 16–18 September 2022; Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 739–746. Deiler, C. Engine Thrust Model Determination and Analysis Using a Large Operational Flight Database. CEAS Aeronaut. J. 2022, 14, 29–45. https://doi.org/10.1007/s13272-022-00625-y.
  25. Zhaobing, W.; Yi, W.; Shimeng, C. Application Architecture and Typical Cases of Big Data Technology in Health Management of Civil Aircraft System. Vibroeng. Procedia 2019, 22, 19–24. Wooder, D.; Purvis, A.; McWilliam, R. Using Big-Data and Surface Fitting to Improve Aircraft Safety through the Study of Relationships and Anomalies. Procedia CIRP 2017, 59, 172–177. https://doi.org/10.1016/j.procir.2016.10.126.
  26. Luo, H.; Liang, T.; Wen, J.; Chen, Q. Architecture Design of Intelligent Diagnosis System for Airborne Electronic Products Based on Big Data. In Proceedings of the 2020 11th International Conference on Prognostics and System Health Management, Jinan, China, 23–25 October 2020; pp. 116–121. Li, D.; Ren, B.; Gao, J.; Xu, J. Research on the Application of Big Data in the Field of Aviation Safety. In Proceedings of the 2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS), Chengdu, China, 26-28 November 2022; pp. 251–256.
  27. Ning, S.; Sun, J.; Liu, C.; Yi, Y. Applications of Deep Learning in Big Data Analytics for Aircraft Complex System Anomaly Detection. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2021, 235, 923–940. Jiao, X.; Jing, B.; Jiao, B. Research of Prognostic and Health Management for Avionics System Based on Massive Data Mining. In Proceedings of the 2018 Prognostics and System Health Management Conference, Chongqing, China, 26-28 October 2018; pp. 350–357.
  28. Gui, G.; Zhou, Z.; Wang, J.; Liu, F.; Sun, J. Machine Learning Aided Air Traffic Flow Analysis Based on Aviation Big Data. IEEE Trans. Veh. Technol. 2020, 69, 4817–4826. Forest, F.; Lacaille, J.; Lebbah, M.; Azzag, H. A Generic and Scalable Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, USA, 10-13 December 2018; pp. 1918–1924.
  29. Madhavrao, R.; Moosakhanian, A. Integration of Digital Weather and Air Traffic Data for NextGen. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018; pp. 1–8. Xie, X.; Zhang, T.; Zhu, Q.; Zhang, G. A Big Data Driven Design Method of Helicopter Health Management System. In Proceedings of the Web Information Systems and Applications, Dalian, China, 16-18 September 2022; Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 739–746.
  30. Petrou, P.; Nikitopoulos, P.; Tampakis, P.; Glenis, A.; Koutroumanis, N.; Santipantakis, G.M.; Patroumpas, K.; Vlachou, A.; Georgiou, H.; Chondrodima, E.; et al. ARGO: A Big Data Framework for Online Trajectory Prediction. In Proceedings of the 16th International Symposium on Spatial and Temporal Databases, Vienna, Austria, 19–21 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 194–197. Zhaobing, W.; Yi, W.; Shimeng, C. Application Architecture and Typical Cases of Big Data Technology in Health Management of Civil Aircraft System. Vibroengineering Procedia 2019, 22, 19–24. https://doi.org/10.21595/vp.2018.20428.
  31. García-Miranda, I.; Hernán-Muñoz, L.; Díaz, F.; Bregon, A.; Martinez-Prieto, M.A.; Álvarez-Esteban, P.C.; López-Leones, J. AIRPORTS Metrics: A Big Data Application for Computing Flights’ Performance Indexes Based on Flown Trajectories. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018; pp. 1–10. Luo, H.; Liang, T.; Wen, J.; Chen, Q. Architecture Design of Intelligent Diagnosis System for Airborne Electronic Products Based on Big Data. In Proceedings of the 2020 11th International Conference on Prognostics and System Health Management, Jinan, China, 23-25 October 2020; pp. 116–121.
  32. Zhao, H.; Deng, J.; Zhang, H.; Pan, J.; Sun, S. Big Data Based Analysis of Key Parameters of Airbus A321 Flight Trajectory. In Proceedings of the 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Changsha, China, 20–22 October 2021; pp. 336–341. Ning, S.; Sun, J.; Liu, C.; Yi, Y. Applications of Deep Learning in Big Data Analytics for Aircraft Complex System Anomaly Detection. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2021, 235, 923–940. https://doi.org/10.1177/1748006X211001979.
  33. Jiang, Y.; Liu, Y.; Liu, D.; Song, H. Applying Machine Learning to Aviation Big Data for Flight Delay Prediction. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020; pp. 665–672. Gui, G.; Zhou, Z.; Wang, J.; Liu, F.; Sun, J. Machine Learning Aided Air Traffic Flow Analysis Based on Aviation Big Data. IEEE Trans. Veh. Technol. 2020, 69, 4817–4826. https://doi.org/10.1109/TVT.2020.2981959.
  34. Gui, G.; Liu, F.; Sun, J.; Yang, J.; Zhou, Z.; Zhao, D. Flight Delay Prediction Based on Aviation Big Data and Machine Learning. IEEE Trans. Veh. Technol. 2020, 69, 140–150. Madhavrao, R.; Moosakhanian, A. Integration of Digital Weather and Air Traffic Data for NextGen. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23-27 September 2018; pp. 1–8.
  35. Shi, H.; Zheng, Y.; Zhang, X.; Sun, H. Evaluation of Residual Airspace Resources Based on Civil Aviation Operation Big Data. In Proceedings of the 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Changsha, China, 20–22 October 2021; pp. 194–198. Petrou, P.; Nikitopoulos, P.; Tampakis, P.; Glenis, A.; Koutroumanis, N.; Santipantakis, G.M.; Patroumpas, K.; Vlachou, A.; Georgiou, H.; Chondrodima, E.; et al. ARGO: A Big Data Framework for Online Trajectory Prediction. In Proceedings of the 16th International Symposium on Spatial and Temporal Databases, Vienna, Austria, 19-21 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 194–197.
  36. Sun, J.; Gui, G.; Sari, H.; Gacanin, H.; Adachi, F. Aviation Data Lake: Using Side Information to Enhance Future Air-Ground Vehicle Networks. IEEE Veh. Technol. Mag. 2021, 16, 40–48. García-Miranda, I.; Hernán-Muñoz, L.; Díaz, F.; Bregon, A.; Martinez-Prieto, M.A.; Álvarez-Esteban, P.C.; López-Leones, J. AIRPORTS Metrics: A Big Data Application for Computing Flights’ Performance Indexes Based on Flown Trajectories. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23-27 September 2018; pp. 1–10.
  37. Dinis, D.; Barbosa-Póvoa, A.; Teixeira, Â.P. Valuing Data in Aircraft Maintenance through Big Data Analytics: A Probabilistic Approach for Capacity Planning Using Bayesian Networks. Comput. Ind. Eng. 2019, 128, 920–936. Zhao, H.; Deng, J.; Zhang, H.; Pan, J.; Sun, S. Big Data Based Analysis of Key Parameters of Airbus A321 Flight Trajectory. In Proceedings of the 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Changsha, China, 20-22 October 2021; pp. 336–341.
  38. Daily, J.; Peterson, J. Predictive Maintenance: How Big Data Analysis Can Improve Maintenance. In Supply Chain Integration Challenges in Commercial Aerospace: A Comprehensive Perspective on the Aviation Value Chain; Richter, K., Walther, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 267–278. ISBN 978-3-319-46155-7. Jiang, Y.; Liu, Y.; Liu, D.; Song, H. Applying Machine Learning to Aviation Big Data for Flight Delay Prediction. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, Canada, 17-22 August 2020; pp. 665–672.
  39. Sternberg, F.; Hedegaard Pedersen, K.; Ryelund, N.K.; Mukkamala, R.R.; Vatrapu, R. Analysing Customer Engagement of Turkish Airlines Using Big Social Data. In Proceedings of the 2018 IEEE International Congress on Big Data (BigData Congress), Seattle, WA, USA, 10–13 December 2018; pp. 74–81. Gui, G.; Liu, F.; Sun, J.; Yang, J.; Zhou, Z.; Zhao, D. Flight Delay Prediction Based on Aviation Big Data and Machine Learning. IEEE Trans. Veh. Technol. 2020, 69, 140–150. https://doi.org/10.1109/TVT.2019.2954094.
  40. Khalil, A.; Awan, M.J.; Yasin, A.; Singh, V.P.; Shehzad, H.M.F. Flight Web Searches Analytics through Big Data. IJCAT 2022, 68, 260. Shi, H.; Zheng, Y.; Zhang, X.; Sun, H. Evaluation of Residual Airspace Resources Based on Civil Aviation Operation Big Data. In Proceedings of the 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Changsha, China, 20-22 October 2021; pp. 194–198.
  41. Ling, H.; Weiguo, C. Exploring the Relationship between Aviation Service Quality and Customer Satisfaction Based on Big Data Technology. In Proceedings of the 2020 2nd International Conference on Big Data and Artificial Intelligence, Johannesburg, South Africa, 28–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2021; pp. 168–173. Sun, J.; Gui, G.; Sari, H.; Gacanin, H.; Adachi, F. Aviation Data Lake: Using Side Information to Enhance Future Air-Ground Vehicle Networks. IEEE Veh. Technol. Mag. 2021, 16, 40–48. https://doi.org/10.1109/MVT.2020.3014598.
  42. Unmanned Aircraft Systems/Drones|Risk Management & Audit Services. Available online: https://rmas.fad.harvard.edu/unmanned-aircraft-systems-drones (accessed on 22 March 2023).Dinis, D.; Barbosa-Póvoa, A.; Teixeira, Â.P. Valuing Data in Aircraft Maintenance through Big Data Analytics: A Probabilistic Approach for Capacity Planning Using Bayesian Networks. Comput. Ind. Eng. 2019, 128, 920–936. https://doi.org/10.1016/j.cie.2018.10.015.
  43. Li, J.; He, Y.; Zhang, X.; Wu, Q. Simultaneous Localization of Multiple Unknown Emitters Based on UAV Monitoring Big Data. IEEE Trans. Ind. Inform. 2021, 17, 6303–6313. Daily, J.; Peterson, J. Predictive Maintenance: How Big Data Analysis Can Improve Maintenance. In Supply Chain Integration Challenges in Commercial Aerospace: A Comprehensive Perspective on the Aviation Value Chain; Richter, K., Walther, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 267–278. ISBN 978-3-319-46155-7.
  44. Fernández-Caramés, T.M.; Blanco-Novoa, O.; Froiz-Míguez, I.; Fraga-Lamas, P. Towards an Autonomous Industry 4.0 Warehouse: A UAV and Blockchain-Based System for Inventory and Traceability Applications in Big Data-Driven Supply Chain Management. Sensors 2019, 19, 2394. Sternberg, F.; Hedegaard Pedersen, K.; Ryelund, N.K.; Mukkamala, R.R.; Vatrapu, R. Analysing Customer Engagement of Turkish Airlines Using Big Social Data. In Proceedings of the 2018 IEEE International Congress on Big Data (BigData Congress), Seattle, USA, 10-13 December 2018; pp. 74–81.
  45. Hu, Z.; He, T.; Zeng, Y.; Luo, X.; Wang, J.; Huang, S.; Liang, J.; Sun, Q.; Xu, H.; Lin, B. Fast Image Recognition of Transmission Tower Based on Big Data. Prot. Control Mod. Power Syst. 2018, 3, 15. Khalil, A.; Awan, M.J.; Yasin, A.; Singh, V.P.; Shehzad, H.M.F. Flight Web Searches Analytics through Big Data. IJCAT 2022, 68, 260, doi:10.1504/IJCAT.2022.124949.
  46. Guo, W. Partially Explainable Big Data Driven Deep Reinforcement Learning for Green 5G UAV. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications, Dublin, Ireland, 7–11 June 2020; pp. 1–7. Ling, H.; Weiguo, C. Exploring the Relationship between Aviation Service Quality and Customer Satisfaction Based on Big Data Technology. In Proceedings of the 2020 2nd International Conference on Big Data and Artificial Intelligence, Johannesburg, South Africa, 28-30 April 2020; Association for Computing Machinery: New York, NY, USA, 2021; pp. 168–173.
  47. Xu, J.; Ota, K.; Dong, M. Big Data on the Fly: UAV-Mounted Mobile Edge Computing for Disaster Management. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2620–2630. Unmanned Aircraft Systems/Drones|Risk Management & Audit Services. Available online: https://rmas.fad.harvard.edu/unmanned-aircraft-systems-drones (accessed on 22 March 2023).
  48. Jung, S.; Yun, W.J.; Kim, J.; Kim, J.-H. Infrastructure-Assisted Cooperative Multi-UAV Deep Reinforcement Energy Trading Learning for Big-Data Processing. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, South Korea, 13–16 January 2021; pp. 159–162. Li, J.; He, Y.; Zhang, X.; Wu, Q. Simultaneous Localization of Multiple Unknown Emitters Based on UAV Monitoring Big Data. IEEE Trans. Ind. Inform. 2021, 17, 6303–6313. https://doi.org/10.1109/TII.2020.3048987.
  49. Wan, S.; Lu, J.; Fan, P.; Letaief, K.B. Toward Big Data Processing in IoT: Path Planning and Resource Management of UAV Base Stations in Mobile-Edge Computing System. IEEE Internet Things J. 2020, 7, 5995–6009. Fernández-Caramés, T.M.; Blanco-Novoa, O.; Froiz-Míguez, I.; Fraga-Lamas, P. Towards an Autonomous Industry 4.0 Warehouse: A UAV and Blockchain-Based System for Inventory and Traceability Applications in Big Data-Driven Supply Chain Management. Sensors 2019, 19, 2394. https://doi.org/10.3390/s19102394.
  50. Zhao, Y.; Wu, R.; Polk, A.; Xi, M.; Kendall, T. Big Data and Deep Learning Models for Automatic Dependent Surveillance Broadcast (ADS-B). In Proceedings of the AAAI Fall Symposium on Reasoning and Learning in Real-World Systems for Long-Term Autonomy, Arlington, TX, USA, 18–20 October 2018; pp. 111–114. Hu, Z.; He, T.; Zeng, Y.; Luo, X.; Wang, J.; Huang, S.; Liang, J.; Sun, Q.; Xu, H.; Lin, B. Fast Image Recognition of Transmission Tower Based on Big Data. Prot. Control Mod. Power Syst. 2018, 3, 15. https://doi.org/10.1186/s41601-018-0088-y.
  51. Dästner, K.; Brunessaux, S.; Schmid, E.; zu Roseneckh-Köhler, B.v.H.; Opitz, F. Classification of Military Aircraft in Real-Time Radar Systems Based on Supervised Machine Learning with Labelled ADS-B Data. In Proceedings of the 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 9–11 October 2018; pp. 1–6. Guo, W. Partially Explainable Big Data Driven Deep Reinforcement Learning for Green 5G UAV. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications, Dublin, Ireland, 7-11 June 2020; pp. 1–7.
  52. Norman, R.; Bolin, J.; Powell, E.T.; Amin, S.; Nacker, J. Using Big Data Analytics to Create a Predictive Model for Joint Strike Fighter. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3590–3596. Xu, J.; Ota, K.; Dong, M. Big Data on the Fly: UAV-Mounted Mobile Edge Computing for Disaster Management. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2620–2630. https://doi.org/10.1109/TNSE.2020.3016569.
  53. Frantis, P. Big Data in the Air Force–Process, Use and Understand for Safety. In Proceedings of the 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), Colorado Springs, CO, USA, 5–9 October 2014; pp. 8C2-1–8C2-6. Jung, S.; Yun, W.J.; Kim, J.; Kim, J.-H. Infrastructure-Assisted Cooperative Multi-UAV Deep Reinforcement Energy Trading Learning for Big-Data Processing. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, South Korea, 13-16 January 2021; pp. 159–162.
  54. Cai, J.; Liu, H.; Wang, Z.; Zhu, J. Developments of EHM under the Conditions of Big Data Technology; Atlantis Press: Amsterdam, The Netherlands, 2018; pp. 447–453. Wan, S.; Lu, J.; Fan, P.; Letaief, K.B. Toward Big Data Processing in IoT: Path Planning and Resource Management of UAV Base Stations in Mobile-Edge Computing System. IEEE Internet Things J. 2020, 7, 5995–6009. https://doi.org/10.1109/JIOT.2019.2954825.
  55. Morgan, B.L.; Schramm, H.C.; Smith, J.R.; Lucas, T.W.; McDonald, M.L.; Sánchez, P.J.; Sanchez, S.M.; Upton, S.C. Improving U.S. Navy Campaign Analyses with Big Data. Interfaces 2018, 48, 130–146. Zhao, Y.; Wu, R.; Polk, A.; Xi, M.; Kendall, T. Big Data and Deep Learning Models for Automatic Dependent Surveillance Broadcast (ADS-B). In Proceedings of the AAAI Fall Symposium on Reasoning and Learning in Real-World Systems for Long-Term Autonomy, Arlington, USA, 18-20 October 2018; pp. 111-114.
  56. Lin, L.; Hou, Z. Combat COVID-19 with Artificial Intelligence and Big Data. J. Travel Med. 2020, 27, taaa080. Dӓstner, K.; Brunessaux, S.; Schmid, E.; Roseneckh-Köhler, B. von H. zu; Opitz, F. Classification of Military Aircraft in Real-Time Radar Systems Based on Supervised Machine Learning with Labelled ADS-B Data. In Proceedings of the 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 9-11 October 2018; pp. 1–6.
  57. Gallego, I.; Font, X. Changes in Air Passenger Demand as a Result of the COVID-19 Crisis: Using Big Data to Inform Tourism Policy. J. Sustain. Tour. 2021, 29, 1470–1489. Norman, R.; Bolin, J.; Powell, E.T.; Amin, S.; Nacker, J. Using Big Data Analytics to Create a Predictive Model for Joint Strike Fighter. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, USA, 10-13 December 2018; pp. 3590–3596.
  58. Jia, Q.; Guo, Y.; Wang, G.; Barnes, S.J. Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework. Int. J. Environ. Res. Public Health 2020, 17, 6161. Frantis, P. Big Data in the Air Force–Process, Use and Understand for Safety. In Proceedings of the 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), Colorado Springs, USA, 5-9 October 2014; pp. 8C2-1–8C2-6.
  59. Rocklöv, J.; Tozan, Y.; Ramadona, A.; Sewe, M.O.; Sudre, B.; Garrido, J.; de Saint Lary, C.B.; Lohr, W.; Semenza, J.C. Using Big Data to Monitor the Introduction and Spread of Chikungunya, Europe, 2017. Emerg. Infect. Dis. 2019, 25, 1041–1049. Cai, J.; Liu, H.; Wang, Z.; Zhu, J. Developments of EHM Under the Conditions of Big Data Technology; Atlantis Press: Amsterdam, The Netherlands, 2018; pp. 447–453.
  60. Lu, C.; Liu, H.; Song, D.; Yang, X.; Tan, Q.; Hu, X.; Kang, X. The Establishment of LTO Emission Inventory of Civil Aviation Airports Based on Big Data. IOP Conf. Ser. Earth Environ. Sci. 2018, 128, 012069. Morgan, B.L.; Schramm, H.C.; Smith, J.R.; Lucas, T.W.; McDonald, M.L.; Sánchez, P.J.; Sanchez, S.M.; Upton, S.C. Improving U.S. Navy Campaign Analyses with Big Data. Interfaces 2018, 48, 130–146. https://doi.org/10.1287/inte.2017.0900.
  61. Martínez-Prieto, M.A.; Bregon, A.; García-Miranda, I.; Álvarez-Esteban, P.C.; Díaz, F.; Scarlatti, D. Integrating Flight-Related Information into a (Big) Data Lake. In Proceedings of the 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), St. Petersburg, FL, USA, 17–21 September 2017; pp. 1–10. Lin, L.; Hou, Z. Combat COVID-19 with Artificial Intelligence and Big Data. J. Travel Med. 2020, 27, taaa080. https://doi.org/10.1093/jtm/taaa080.
  62. Zhao, Y.; Shi, P.; Guo, W. Design of Urban Air Quality Monitoring System Based on Big Data and UAV. In Proceedings of the Advanced Hybrid Information Processing, Virtual Event, 22–24 October 2021; Liu, S., Xia, L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 159–169. Gallego, I.; Font, X. Changes in Air Passenger Demand as a Result of the COVID-19 Crisis: Using Big Data to Inform Tourism Policy. J. Sustain. Tour. 2021, 29, 1470–1489. https://doi.org/10.1080/09669582.2020.1773476.
  63. Athanasis, N.; Themistocleous, M.; Kalabokidis, K.; Chatzitheodorou, C. Big Data Analysis in UAV Surveillance for Wildfire Prevention and Management. In Proceedings of the 2018 European and Mediterranean Conference on Information Systems, Limassol, Cyprus, 4–5 October 2018; Themistocleous, M., Rupino da Cunha, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 47–58. Jia, Q.; Guo, Y.; Wang, G.; Barnes, S.J. Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework. Int. J. Environ. Res. Public Health 2020, 17, 6161. https://doi.org/10.3390/ijerph17176161.
  64. Dong, W.; Xiao, L.; Niu, S.; Niu, J.; Wang, F. Application Research of Big Data for Launch Support System at Space Launch Site. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China, 22–24 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–6. Rocklöv, J.; Tozan, Y.; Ramadona, A.; Sewe, M.O.; Sudre, B.; Garrido, J.; de Saint Lary, C.B.; Lohr, W.; Semenza, J.C. Using Big Data to Monitor the Introduction and Spread of Chikungunya, Europe, 2017. Emerg. Infect. Dis. 2019, 25, 1041–1049. https://doi.org/10.3201/eid2506.180138.
  65. Prysyazhnyuk, A.; McGregor, C. Spatio-Temporal Visualisation of Big Data Analytics during Spaceflight. In Proceedings of the International Astronautical Congress, Bremen, Germany, 1–5 October 2018. Lu, C.; Liu, H.; Song, D.; Yang, X.; Tan, Q.; Hu, X.; Kang, X. The Establishment of LTO Emission Inventory of Civil Aviation Airports Based on Big Data. IOP Conf. Ser. Earth Environ. Sci. 2018, 128, 012069. https://doi.org/10.1088/1755-1315/128/1/012069.
  66. Yeung, J.; McGregor, C. Analyzing Countermeasure Effectiveness Utilizing Big Data Analytics for Space Medicine Decision Support: A Case Study. In Proceedings of the International Astronautical Congress, Washington, DC, USA, 21–25 October 2019. Martínez-Prieto, M.A.; Bregon, A.; García-Miranda, I.; Álvarez-Esteban, P.C.; Díaz, F.; Scarlatti, D. Integrating Flight-Related Information into a (Big) Data Lake. In Proceedings of the 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), St. Petersburg, USA, 17-21 September 2017; pp. 1–10.
  67. Huang, W.; Andrada, R.; Borja, D. A Framework of Big Data Driven Remaining Useful Lifetime Prediction of On-Orbit Satellite. In Proceedings of the 2021 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA, 24–27 May 2021; pp. 1–7. Zhao, Y.; Shi, P.; Guo, W. Design of Urban Air Quality Monitoring System Based on Big Data and UAV. In Proceedings of the Advanced Hybrid Information Processing, Virtual Event, 22-24 October 2021; Liu, S., Xia, L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 159–169.
  68. Robin, A.C.; Reylé, C.; Derrière, S.; Picaud, S. A Synthetic View on Structure and Evolution of the Milky Way. Astron. Astrophys. 2003, 409, 523. Athanasis, N.; Themistocleous, M.; Kalabokidis, K.; Chatzitheodorou, C. Big Data Analysis in UAV Surveillance for Wildfire Prevention and Management. In Proceedings of the 2018 European and Mediterranean Conference on Information Systems, Limassol, Cyprus, 4-5 October 2018 ; Themistocleous, M., Rupino da Cunha, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 47–58.
  69. Mor, R.; Robin, A.C.; Figueras, F.; Antoja, T. BGM FASt: Besançon Galaxy Model for Big Data-Simultaneous Inference of the IMF, SFH, and Density in the Solar Neighbourhood. AA 2018, 620, A79. Dong, W.; Xiao, L.; Niu, S.; Niu, J.; Wang, F. Application Research of Big Data for Launch Support System at Space Launch Site. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China, 22-24 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–6.
  70. Kiemle, S.; Molch, K.; Schropp, S.; Weiland, N.; Mikusch, E. Big Data Management in Earth Observation: The German Satellite Data Archive at the German Aerospace Center. IEEE Geosci. Remote Sens. Mag. 2016, 4, 51–58. Prysyazhnyuk, A.; McGregor, C. Spatio-Temporal Visualisation of Big Data Analytics during Spaceflight. In Proceedings of the International Astronautical Congress, Bremen, Germany, 1–5 October 2018.
  71. Huang, B.; Li, X.-M. Spaceborne SAR Wave Mode Data as Big Data for Global Ocean Wave Observation. In Proceedings of the EUSAR 2021; 13th European Conference on Synthetic Aperture Radar, Online Event, 29 March–1 April 2021; pp. 1–6. Yeung, J.; McGregor, C. Analyzing Countermeasure Effectiveness Utilizing Big Data Analytics for Space Medicine Decision Support: A Case Study. In Proceedings of the International Astronautical Congress, Washington, DC, USA, 21–25 October 2019.
  72. Zeng, K.; Wang, Y. A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images. Remote Sens. 2020, 12, 1015. Huang, W.; Andrada, R.; Borja, D. A Framework of Big Data Driven Remaining Useful Lifetime Prediction of On-Orbit Satellite. In Proceedings of the 2021 Annual Reliability and Maintainability Symposium (RAMS), Orlando, USA, 24-27 May 2021; pp. 1–7.
  73. Nagendra, N.P.; Narayanamurthy, G.; Moser, R. Management of Humanitarian Relief Operations Using Satellite Big Data Analytics: The Case of Kerala Floods. Ann. Oper. Res. 2022, 319, 885–910. Robin, A.C.; Reylé, C.; Derrière, S.; Picaud, S. A Synthetic View on Structure and Evolution of the Milky Way. Astron. Astrophys. 2003, 409, 523. https://doi.org/10.1051/0004-6361:20031117.
  74. Vela Nuñez, M.; Galli, E.; Loidolt, D.; Ziemke, C.; Pannocchia, A.; Noce, V.; del Vecchio Blanco, C.; Focardi, M.; Cosentino, R. PLATO Payload, Big Data PUS Packets Classifier and Astronomical Digital Imagette Data Decompression. In Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave; SPIE: Bellingham, WA, USA, 2022; Volume 12180, pp. 1744–1749. Mor, R.; Robin, A.C.; Figueras, F.; Antoja, T. BGM FASt: Besançon Galaxy Model for Big Data-Simultaneous Inference of the IMF, SFH, and Density in the Solar Neighbourhood. AA 2018, 620, A79. https://doi.org/10.1051/0004-6361/201833501.
  75. Breddels, M.A.; Veljanoski, J. Vaex: Big Data Exploration in the Era of Gaia. AA 2018, 618, A13. Kiemle, S.; Molch, K.; Schropp, S.; Weiland, N.; Mikusch, E. Big Data Management in Earth Observation: The German Satellite Data Archive at the German Aerospace Center. IEEE Geosci. Remote Sens. Mag. 2016, 4, 51–58. https://doi.org/10.1109/MGRS.2016.2541306.
  76. Castro-Ginard, A.; Jordi, C.; Luri, X.; Cid-Fuentes, J.Á.; Casamiquela, L.; Anders, F.; Cantat-Gaudin, T.; Monguió, M.; Balaguer-Núñez, L.; Solà, S.; et al. Hunting for Open Clusters in Gaia DR2: 582 New Open Clusters in the Galactic Disc. AA 2020, 635, A45. Huang, B.; Li, X.-M. Spaceborne SAR Wave Mode Data as Big Data for Global Ocean Wave Observation. In Proceedings of the EUSAR 2021; 13th European Conference on Synthetic Aperture Radar, Online Event, 29 March – 1 April 2021; pp. 1–6.
  77. Zeng, K.; Wang, Y. A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images. Remote Sens. 2020, 12, 1015. https://doi.org/10.3390/rs12061015.
  78. Nagendra, N.P.; Narayanamurthy, G.; Moser, R. Management of Humanitarian Relief Operations Using Satellite Big Data Analytics: The Case of Kerala Floods. Ann. Oper. Res. 2022, 319, 885–910. https://doi.org/10.1007/s10479-020-03593-w.
  79. Vela Nuñez, M.; Galli, E.; Loidolt, D.; Ziemke, C.; Pannocchia, A.; Noce, V.; del Vecchio Blanco, C.; Focardi, M.; Cosentino, R. PLATO Payload, Big Data PUS Packets Classifier and Astronomical Digital Imagette Data Decompression. In Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave; SPIE: Bellingham, WA, USA, 2022; Volume 12180, pp. 1744–1749. https://doi.org/10.1117/12.2628230.
  80. Breddels, M.A.; Veljanoski, J. Vaex: Big Data Exploration in the Era of Gaia. AA 2018, 618, A13. https://doi.org/10.1051/0004-6361/201732493.
  81. Castro-Ginard, A.; Jordi, C.; Luri, X.; Cid-Fuentes, J.Á.; Casamiquela, L.; Anders, F.; Cantat-Gaudin, T.; Monguió, M.; Balaguer-Núñez, L.; Solà, S.; et al. Hunting for Open Clusters in Gaia DR2: 582 New Open Clusters in the Galactic Disc. AA 2020, 635, A45. https://doi.org/10.1051/0004-6361/201937386.
  82. Nagendra, N.P.; Narayanamurthy, G.; Moser, R. Satellite Big Data Analytics for Ethical Decision Making in Farmer’s Insurance Claim Settlement: Minimization of Type-I and Type-II Errors. Ann. Oper. Res. 2022, 315, 1061–1082. https://doi.org/10.1007/s10479-020-03793-4.
More
Video Production Service