Francisella Tularensis Virulence: Comparison
Please note this is a comparison between Version 2 by Dean Liu and Version 1 by Pavla Stojkova.

Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.

  • Francisella
  • virulence
  • transcription factor
  • pathogenesis
  • gene regulation
Please wait, diff process is still running!

References

  1. Rohmer, L.; Fong, C.; Abmayr, S.; Wasnick, M.; Larson Freeman, T.J.; Radey, M.; Guina, T.; Svensson, K.; Hayden, H.S.; Jacobs, M.; et al. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol. 2007, 8, R102.
  2. McCoy, G.W.; Chapin, C.W. Further Observations on a Plague-Like Disease of Rodents with a Preliminary Note on the Causative Agent, Bacterium tularense. J. Infect. Dis. 1912, 10, 61–72.
  3. Francis, E. Tularemia Francis 1921: A new Diseasae of Man. J. Am. Med. Assoc. 1922, 78, 1015–1018.
  4. Checroun, C.; Wehrly, T.D.; Fischer, E.R.; Hayes, S.F.; Celli, J. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. USA 2006, 103, 14578–14583.
  5. Clemens, D.L.; Lee, B.-Y.; Horwitz, M.A. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun. 2004, 72, 3204–3217.
  6. Golovliov, I.; Baranov, V.; Krocova, Z.; Kovarova, H.; Sjöstedt, A. An Attenuated Strain of the Facultative Intracellular Bacterium Francisella tularensis Can Escape the Phagosome of Monocytic Cells. Infect. Immun. 2003, 71, 5940–5950.
  7. Santic, M.; Molmeret, M.; Barker, J.R.; Klose, K.E.; Dekanic, A.; Doric, M.; Abu Kwaik, Y. A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell. Microbiol. 2007, 9, 2391–2403.
  8. Santic, M.; Asare, R.; Skrobonja, I.; Jones, S.; Abu Kwaik, Y. Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect. Immun. 2008, 76, 2671–2677.
  9. Gill, V.; Cunha, B.A. Tularemia pneumonia. Semin. Respir. Infect. 1997, 12, 61–67.
  10. Stewart, S.J. Tularemia: Association with hunting and farming. FEMS Immunol. Med. Microbiol. 1996, 13, 197–199.
  11. Sandström, G.; Löfgren, S.; Tärnvik, A. A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect. Immun. 1988, 56, 1194–1202.
  12. Su, J.; Yang, J.; Zhao, D.; Kawula, T.H.; Banas, J.A.; Zhang, J.-R. Genome-wide identification of Francisella tularensis virulence determinants. Infect. Immun. 2007, 75, 3089–3101.
  13. Miller, S.I.; Ernst, R.K.; Bader, M.W. LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 2005, 3, 36–46.
  14. Wang, X.; Ribeiro, A.A.; Guan, Z.; Abraham, S.N.; Raetz, C.R.H. Attenuated virulence of a Francisella mutant lacking the lipid A 4′-phosphatase. Proc. Natl. Acad. Sci. USA 2007, 104, 4136–4141.
  15. Ancuta, P.; Pedron, T.; Girard, R.; Sandström, G.; Chaby, R. Inability of the Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins. Infect. Immun. 1996, 64, 2041–2046.
  16. Sandström, G.; Sjöstedt, A.; Johansson, T.; Kuoppa, K.; Williams, J.C. Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol. Immunol. 1992, 5, 201–210.
  17. Pierson, T.; Matrakas, D.; Taylor, Y.U.; Manyam, G.; Morozov, V.N.; Zhou, W.; van Hoek, M.L. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res. 2011, 10, 954–967.
  18. Klimentova, J.; Pavkova, I.; Horcickova, L.; Bavlovic, J.; Kofroňová, O.; Benada, O.; Stulik, J. Francisella tularensis subsp. holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front. Microbiol. 2019, 10.
  19. Lindgren, H.; Golovliov, I.; Baranov, V.; Ernst, R.K.; Telepnev, M.; Sjöstedt, A. Factors affecting the escape of Francisella tularensis from the phagolysosome. J. Med. Microbiol. 2004, 53, 953–958.
  20. Nano, F.E.; Zhang, N.; Cowley, S.C.; Klose, K.E.; Cheung, K.K.M.; Roberts, M.J.; Ludu, J.S.; Letendre, G.W.; Meierovics, A.I.; Stephens, G.; et al. A Francisella tularensis pathogenicity island required for intramacrophage growth. J. Bacteriol. 2004, 186, 6430–6436.
  21. Bröms, J.E.; Sjöstedt, A.; Lavander, M. The Role of the Francisella tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front. Microbiol. 2010, 1.
  22. de Bruin, O.M.; Ludu, J.S.; Nano, F.E. The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 2007, 7, 1.
  23. Larsson, P.; Elfsmark, D.; Svensson, K.; Wikström, P.; Forsman, M.; Brettin, T.; Keim, P.; Johansson, A. Molecular Evolutionary Consequences of Niche Restriction in Francisella tularensis, a Facultative Intracellular Pathogen. PLoS Pathog. 2009, 5.
  24. Larsson, P.; Oyston, P.C.F.; Chain, P.; Chu, M.C.; Duffield, M.; Fuxelius, H.-H.; Garcia, E.; Hälltorp, G.; Johansson, D.; Isherwood, K.E.; et al. The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat. Genet. 2005, 37, 153–159.
  25. Santic, M.; Molmeret, M.; Klose, K.E.; Jones, S.; Kwaik, Y.A. The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell. Microbiol. 2005, 7, 969–979.
  26. Bröms, J.E.; Lavander, M.; Meyer, L.; Sjöstedt, A. IglG and IglI of the Francisella Pathogenicity Island Are Important Virulence Determinants of Francisella tularensis LVS. Infect. Immun. 2011, 79, 3683–3696.
  27. Lauriano, C.M.; Barker, J.R.; Yoon, S.-S.; Nano, F.E.; Arulanandam, B.P.; Hassett, D.J.; Klose, K.E. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc. Natl. Acad. Sci. USA 2004, 101, 4246–4249.
  28. Brotcke, A.; Weiss, D.S.; Kim, C.C.; Chain, P.; Malfatti, S.; Garcia, E.; Monack, D.M. Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect. Immun. 2006, 74, 6642–6655.
  29. Guina, T.; Radulovic, D.; Bahrami, A.J.; Bolton, D.L.; Rohmer, L.; Jones-Isaac, K.A.; Chen, J.; Gallagher, L.A.; Gallis, B.; Ryu, S.; et al. MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J. Bacteriol. 2007, 189, 6580–6586.
  30. Charity, J.C.; Costante-Hamm, M.M.; Balon, E.L.; Boyd, D.H.; Rubin, E.J.; Dove, S.L. Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog. 2007, 3, e84.
  31. Brotcke, A.; Monack, D.M. Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect. Immun. 2008, 76, 3473–3480.
  32. Charity, J.C.; Blalock, L.T.; Costante-Hamm, M.M.; Kasper, D.L.; Dove, S.L. Small molecule control of virulence gene expression in Francisella tularensis. PLoS Pathog. 2009, 5, e1000641.
  33. Dai, S.; Mohapatra, N.P.; Schlesinger, L.S.; Gunn, J.S. Regulation of Francisella tularensis virulence. Front. Microbiol. 2010, 1, 144.
  34. Baron, G.S.; Nano, F.E. MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol. Microbiol. 1998, 29, 247–259.
  35. Bönquist, L.; Lindgren, H.; Golovliov, I.; Guina, T.; Sjöstedt, A. MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect. Immun. 2008, 76, 3502–3510.
  36. Cuthbert, B.J.; Brennan, R.G.; Schumacher, M.A. Structural and Biochemical Characterization of the Francisella tularensis Pathogenicity Regulator, Macrophage Locus Protein A (MglA). PLoS ONE 2015, 10, e0128225.
  37. Rohlfing, A.E.; Dove, S.L. Coordinate control of virulence gene expression in Francisella tularensis involves direct interaction between key regulators. J. Bacteriol. 2014, 196, 3516–3526.
  38. Ramsey, K.M.; Osborne, M.L.; Vvedenskaya, I.O.; Su, C.; Nickels, B.E.; Dove, S.L. Ubiquitous Promoter-Localization of Essential Virulence Regulators in Francisella tularensis. PLoS Pathog. 2015, 11.
  39. Cuthbert, B.J.; Ross, W.; Rohlfing, A.E.; Dove, S.L.; Gourse, R.L.; Brennan, R.G.; Schumacher, M.A. Dissection of the molecular circuitry controlling virulence in Francisella tularensis. Genes Dev. 2017, 31, 1549–1560.
  40. Wrench, A.P.; Gardner, C.L.; Siegel, S.D.; Pagliai, F.A.; Malekiha, M.; Gonzalez, C.F.; Lorca, G.L. MglA/SspA Complex Interactions Are Modulated by Inorganic Polyphosphate. PLoS ONE 2013, 8.
  41. Faron, M.; Fletcher, J.R.; Rasmussen, J.A.; Long, M.E.; Allen, L.-A.H.; Jones, B.D. The Francisella tularensis migR, trmE, and cphA Genes Contribute to F. tularensis Pathogenicity Island Gene Regulation and Intracellular Growth by Modulation of the Stress Alarmone ppGpp. Infect. Immun 2013, 81, 2800–2811.
  42. Stojkova, P.; Spidlova, P.; Lenco, J.; Rehulkova, H.; Kratka, L.; Stulik, J. HU protein is involved in intracellular growth and full virulence of Francisella tularensis. Virulence 2018, 9, 754–770.
  43. Meibom, K.L.; Forslund, A.-L.; Kuoppa, K.; Alkhuder, K.; Dubail, I.; Dupuis, M.; Forsberg, A.; Charbit, A. Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect. Immun. 2009, 77, 1866–1880.
  44. Lenco, J.; Tambor, V.; Link, M.; Klimentova, J.; Dresler, J.; Peterek, M.; Charbit, A.; Stulik, J. Changes in proteome of the Δhfq strain derived from Francisella tularensis LVS correspond with its attenuated phenotype. Proteomics 2014, 14, 2400–2409.
  45. Chambers, J.R.; Bender, K.S. The RNA Chaperone Hfq Is Important for Growth and Stress Tolerance in Francisella novicida. PLoS ONE 2011, 6.
  46. Mortensen, B.L.; Fuller, J.R.; Taft-Benz, S.; Kijek, T.M.; Miller, C.N.; Huang, M.T.H.; Kawula, T.H. Effects of the Putative Transcriptional Regulator IclR on Francisella tularensis Pathogenesis. Infect. Immun. 2010, 78, 5022.
  47. Weiss, D.S.; Brotcke, A.; Henry, T.; Margolis, J.J.; Chan, K.; Monack, D.M. In vivo negative selection screen identifies genes required for Francisella virulence. Proc. Natl. Acad. Sci. USA 2007, 104, 6037–6042.
  48. Fuller, J.R. Characterization of the Francisella Virulence Factor RipA. Ph.D. Thesis, University of North Carolina, Chapel Hill, NC, USA, 2008.
  49. Ma, Z.; Russo, V.C.; Rabadi, S.M.; Jen, Y.; Catlett, S.V.; Bakshi, C.S.; Malik, M. Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain. Mol. Microbiol. 2016, 101, 856–878.
  50. Lindgren, H.; Shen, H.; Zingmark, C.; Golovliov, I.; Conlan, W.; Sjöstedt, A. Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect. Immun. 2007, 75, 1303–1309.
  51. Marghani, D. Characterization of the Role of Transcriptional Regulator of AraC/XylS Family in Tularemia Pathogenesis. Ph.D. Thesis, Touro College, New York, NY, USA, 2019.
  52. Pérard, J.; Nader, S.; Levert, M.; Arnaud, L.; Carpentier, P.; Siebert, C.; Blanquet, F.; Cavazza, C.; Renesto, P.; Schneider, D.; et al. Structural and functional studies of the metalloregulator Fur identify a promoter-binding mechanism and its role in Francisella tularensis virulence. Commun. Biol. 2018, 1.
  53. Sullivan, J.T.; Jeffery, E.F.; Shannon, J.D.; Ramakrishnan, G. Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J. Bacteriol. 2006, 188, 3785–3795.
  54. Ramakrishnan, G.; Sen, B.; Johnson, R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J. Biol. Chem. 2012, 287, 25191–25202.
  55. Lindgren, H.; Honn, M.; Salomonsson, E.; Kuoppa, K.; Forsberg, Å.; Sjöstedt, A. Iron Content Differs between Francisella tularensis Subspecies tularensis and Subspecies holarctica Strains and Correlates to Their Susceptibility to H2O2-Induced Killing. Infect. Immun. 2011, 79, 1218–1224.
  56. Mukhamedyarov, D.; Makarova, K.S.; Severinov, K.; Kuznedelov, K. Francisella RNA polymerase contains a heterodimer of non-identical α subunits. BMC Mol. Biol. 2011, 12, 50.
  57. Grall, N.; Livny, J.; Waldor, M.; Barel, M.; Charbit, A.; Meibom, K.L. Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH. Microbiology 2009, 155, 2560–2572.
  58. Nonaka, G.; Blankschien, M.; Herman, C.; Gross, C.A.; Rhodius, V.A. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev. 2006, 20, 1776–1789.
  59. Alam, A.; Golovliov, I.; Javed, E.; Kumar, R.; Ådén, J.; Sjöstedt, A. Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence. PLoS Pathog. 2020, 16, e1008466.
  60. Durham-Colleran, M.W.; Verhoeven, A.B.; van Hoek, M.L. Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb. Ecol. 2010, 59, 457–465.
  61. Bell, B.L.; Mohapatra, N.P.; Gunn, J.S. Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: Role of phosphorylation and evidence of MglA/SspA interaction. Infect. Immun. 2010, 78, 2189–2198.
  62. Zogaj, X.; Wyatt, G.C.; Klose, K.E. Cyclic di-GMP stimulates biofilm formation and inhibits virulence of Francisella novicida. Infect. Immun. 2012, 80, 4239–4247.
  63. Ramsey, K.M.; Dove, S.L. A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor. Mol. Microbiol. 2016, 101, 688–700.
  64. Hoang, K.V.; Fitch, J.; White, P.; Mohapatra, N.P.; Gunn, J.S. The sensor kinase QseC regulates the unlinked PmrA response regulator and downstream gene expression in Francisella. J. Bacteriol. 2020.
  65. Freeman, Z.N.; Dorus, S.; Waterfield, N.R. The KdpD/KdpE Two-Component System: Integrating K+ Homeostasis and Virulence. PLoS Pathog. 2013, 9, e1003201.
  66. Dean, S.N.; Milton, M.E.; Cavanagh, J.; van Hoek, M.L. Francisella novicida Two-Component System Response Regulator BfpR Modulates iglC Gene Expression, Antimicrobial Peptide Resistance, and Biofilm Production. Front. Cell Infect. Microbiol. 2020, 10.
  67. De Reuse, H.; Taha, M.K. RegF, an SspA homologue, regulates the expression of the Neisseria gonorrhoeae pilE gene. Res. Microbiol. 1997, 148, 289–303.
  68. Merrell, D.S.; Hava, D.L.; Camilli, A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol. Microbiol. 2002, 43, 1471–1491.
  69. Xu, Q.; Dziejman, M.; Mekalanos, J.J. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl. Acad. Sci. USA 2003, 100, 1286–1291.
  70. Hansen, A.-M.; Jin, D.J. SspA up-regulates gene expression of the LEE pathogenicity island by decreasing H-NS levels in enterohemorrhagic Escherichia coli. BMC Microbiol. 2012, 12, 231.
  71. Hansen, A.-M.; Qiu, Y.; Yeh, N.; Blattner, F.R.; Durfee, T.; Jin, D.J. SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol. Microbiol. 2005, 56, 719–734.
  72. Honn, M.; Lindgren, H.; Sjöstedt, A. The role of MglA for adaptation to oxidative stress of Francisella tularensis LVS. BMC Microbiol. 2012, 12, 14.
  73. Paul, B.J.; Berkmen, M.B.; Gourse, R.L. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. USA 2005, 102, 7823–7828.
  74. Srivatsan, A.; Wang, J.D. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr. Opin. Microbiol. 2008, 11, 100–105.
  75. Rohmer, L.; Brittnacher, M.; Svensson, K.; Buckley, D.; Haugen, E.; Zhou, Y.; Chang, J.; Levy, R.; Hayden, H.; Forsman, M.; et al. Potential source of Francisella tularensis live vaccine strain attenuation determined by genome comparison. Infect. Immun. 2006, 74, 6895–6906.
  76. Dean, R.E.; Ireland, P.M.; Jordan, J.E.; Titball, R.W.; Oyston, P.C.F. RelA regulates virulence and intracellular survival of Francisella novicida. Microbiology 2009, 155, 4104–4113.
  77. Buchan, B.W.; McCaffrey, R.L.; Lindemann, S.R.; Allen, L.-A.H.; Jones, B.D. Identification of migR, a regulatory element of the Francisella tularensis live vaccine strain iglABCD virulence operon required for normal replication and trafficking in macrophages. Infect. Immun. 2009, 77, 2517–2529.
  78. Michán, C.; Manchado, M.; Dorado, G.; Pueyo, C. In Vivo Transcription of the Escherichia coli oxyRRegulon as a Function of Growth Phase and in Response to Oxidative Stress. J. Bacteriol. 1999, 181, 2759–2764.
  79. Honn, M.; Lindgren, H.; Bharath, G.K.; Sjöstedt, A. Lack of OxyR and KatG Results in Extreme Susceptibility of Francisella tularensis LVS to Oxidative Stress and Marked Attenuation In Vivo. Front. Cell Infect. Microbiol. 2017, 7.
  80. Alharbi, A.; Rabadi, S.M.; Alqahtani, M.; Marghani, D.; Worden, M.; Ma, Z.; Malik, M.; Bakshi, C.S. Role of peroxiredoxin of the AhpC/TSA family in antioxidant defense mechanisms of Francisella tularensis. PLoS ONE 2019, 14.
  81. Carlson, P.E.; Horzempa, J.; O’Dee, D.M.; Robinson, C.M.; Neophytou, P.; Labrinidis, A.; Nau, G.J. Global Transcriptional Response to Spermine, a Component of the Intramacrophage Environment, Reveals Regulation of Francisella Gene Expression through Insertion Sequence Elements. J. Bacteriol. 2009, 191, 6855–6864.
  82. Igarashi, K.; Kashiwagi, K. Polyamines: Mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 2000, 271, 559–564.
  83. Mahillon, J.; Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 1998, 62, 725–774.
  84. de Fernandez, M.T.F.; Eoyang, L.; August, J.T. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 1968, 219, 588–590.
  85. Azam, T.A.; Ishihama, A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 1999, 274, 33105–33113.
  86. Updegrove, T.B.; Correia, J.J.; Galletto, R.; Bujalowski, W.; Wartell, R.M. E. coli DNA associated with isolated Hfq interacts with Hfq’s distal surface and C-terminal domain. Biochim. Biophys. Acta 2010, 1799, 588–596.
  87. Diestra, E.; Cayrol, B.; Arluison, V.; Risco, C. Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane. PLoS ONE 2009, 4, e8301.
  88. Schiano, C.A.; Bellows, L.E.; Lathem, W.W. The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect. Immun. 2010, 78, 2034–2044.
  89. Mellin, J.R.; McClure, R.; Lopez, D.; Green, O.; Reinhard, B.; Genco, C. Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis. Microbiol. 2010, 156, 2316–2326.
  90. Sittka, A.; Pfeiffer, V.; Tedin, K.; Vogel, J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 2007, 63, 193–217.
  91. Gottesman, S.; Storz, G. Bacterial Small RNA Regulators: Versatile Roles and Rapidly Evolving Variations. Cold Spring Harb. Perspect. Biol. 2011, 3.
  92. Soper, T.J.; Woodson, S.A. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 2008, 14, 1907–1917.
  93. Pettijohn, D.E. Histone-like Proteins and Bacterial Chromosome Structure. J. Biol. Chem. 1988, 263, 12793–12796.
  94. Dillon, S.C.; Dorman, C.J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 2010, 8, 185–195.
  95. Bonnefoy, E.; Rouvière-Yaniv, J. HU and IHF, two homologous histone-like proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. EMBO J. 1991, 10, 687–696.
  96. Stojkova, P.; Spidlova, P.; Stulik, J. Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence. Front. Cell. Infect. Microbiol. 2019, 9.
  97. Bhowmick, T.; Ghosh, S.; Dixit, K.; Ganesan, V.; Ramagopal, U.A.; Dey, D.; Sarma, S.P.; Ramakumar, S.; Nagaraja, V. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat. Commun. 2014, 5, 4124.
  98. Oberto, J.; Nabti, S.; Jooste, V.; Mignot, H.; Rouviere-Yaniv, J. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE 2009, 4, e4367.
  99. Broyles, S.S.; Pettijohn, D.E. Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J. Mol. Biol. 1986, 187, 47–60.
  100. Bonnefoy, E.; Rouvière-Yaniv, J. HU, the major histone-like protein of E. coli, modulates the binding of IHF to oriC. EMBO J. 1992, 11, 4489–4496.
  101. Balandina, A.; Kamashev, D.; Rouviere-Yaniv, J. The Bacterial Histone-like Protein HU Specifically Recognizes Similar Structures in All Nucleic Acids DNA, RNA, And Their Hybrids. J. Biol. Chem. 2002, 277, 27622–27628.
  102. Kamashev, D.; Rouviere-Yaniv, J. The histone-like protein HU binds specifically to DNA recombination and repair intermediates. EMBO J. 2000, 19, 6527–6535.
  103. Rouvière-Yaniv, J.; Yaniv, M.; Germond, J.-E. E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA. Cell 1979, 17, 265–274.
  104. Boubrik, F.; Rouviere-Yaniv, J. Increased sensitivity to gamma irradiation in bacteria lacking protein HU. Proc. Natl. Acad. Sci. USA 1995, 92, 3958–3962.
  105. Lavoie, B.D.; Shaw, G.S.; Millner, A.; Chaconas, G. Anatomy of a flexer-DNA complex inside a higher-order transposition intermediate. Cell 1996, 85, 761–771.
  106. Chen, C.; Ghosh, S.; Grove, A. Substrate specificity of Helicobacter pylori histone-like HU protein is determined by insufficient stabilization of DNA flexure points. Biochem. J. 2004, 383, 343–351.
  107. Grove, A.; Saavedra, T.C. The Role of Surface-Exposed Lysines in Wrapping DNA about the Bacterial Histone-Like Protein HU. Biochemistry 2002, 41, 7597–7603.
  108. Krylov, A.S.; Zasedateleva, O.A.; Prokopenko, D.V.; Rouviere-Yaniv, J.; Mirzabekov, A.D. Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips. Nucleic Acids Res. 2001, 29, 2654–2660.
  109. Berger, M.; Gerganova, V.; Berger, P.; Rapiteanu, R.; Lisicovas, V.; Dobrindt, U. Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli. Sci. Rep. 2016, 6, 31512.
  110. Toyofuku, M.; Roschitzki, B.; Riedel, K.; Eberl, L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J. Proteome Res. 2012, 11, 4906–4915.
  111. Beckmann, J.F.; Markowski, T.W.; Witthuhn, B.A.; Fallon, A.M. Detection of the wolbachia-encoded dna binding protein, hu beta, in mosquito gonads. Insect Biochem. Mol. Biol. 2013, 43, 272–279.
  112. Konecna, K.; Hernychova, L.; Reichelova, M.; Lenco, J.; Klimentova, J.; Stulik, J.; Macela, A.; Alefantis, T.; Delvecchio, V.G. Comparative proteomic profiling of culture filtrate proteins of less and highly virulent Francisella tularensis strains. Proteomics 2010, 10, 4501–4511.
  113. Milanez, G.P.; Werle, C.H.; Amorim, M.R.; Ribeiro, R.A.; Tibo, L.H.S.; Roque-Barreira, M.C.; Oliveira, A.F.; Brocchi, M. HU-Lacking Mutants of Salmonella enterica Enteritidis Are Highly Attenuated and Can Induce Protection in Murine Model of Infection. Front. Microbiol. 2018, 9.
  114. Dieppedale, J.; Gesbert, G.; Ramond, E.; Chhuon, C.; Dubail, I.; Dupuis, M.; Guerrera, I.C.; Charbit, A. Possible Links Between Stress Defense and the Tricarboxylic Acid (TCA) Cycle in Francisella Pathogenesis. Mol. Cell Proteom. 2013, 12, 2278–2292.
  115. Porcheron, G.; Dozois, C.M. Interplay between Iron Homeostasis and Virulence: Fur and RyhB as Major Regulators of Bacterial Pathogenicity. Available online: https://pubmed.ncbi.nlm.nih.gov/25888312/ (accessed on 22 June 2020).
  116. Troxell, B.; Hassan, H.M. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell Infect. Microbiol. 2013, 3.
  117. Troxell, B.; Sikes, M.L.; Fink, R.C.; Vazquez-Torres, A.; Jones-Carson, J.; Hassan, H.M. Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2011, 193, 497–505.
  118. Troxell, B.; Fink, R.C.; Porwollik, S.; McClelland, M.; Hassan, H.M. The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: Identification of new Fur targets. BMC Microbiol. 2011, 11, 236.
  119. Dubrac, S.; Touati, D. Fur Positive Regulation of Iron Superoxide Dismutase in Escherichia coli: Functional Analysis of thesodB Promoter. J. Bacteriol. 2000, 182, 3802–3808.
  120. Pan, X.; Tamilselvam, B.; Hansen, E.J.; Daefler, S. Modulation of iron homeostasis in macrophages by bacterial intracellular pathogens. BMC Microbiol. 2010, 10, 64.
  121. Ramakrishnan, G.; Meeker, A.; Dragulev, B. fslE is necessary for siderophore-mediated iron acquisition in Francisella tularensis Schu S4. J. Bacteriol. 2008, 190, 5353–5361.
  122. Molina-Henares, A.J.; Krell, T.; Guazzaroni, M.E.; Segura, A.; Ramos, J.L. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 2006, 30, 157–186.
  123. Harrison, S.C.; Aggarwal, A.K. DNA recognition by proteins with the helix-turn-helix motif. Annu. Rev. Biochem. 1990, 59, 933–969.
  124. Gray, C.G.; Cowley, S.C.; Cheung, K.K.M.; Nano, F.E. The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol. Lett. 2002, 215, 53–56.
  125. Alam, A.; Golovliov, I.; Javed, E.; Sjöstedt, A. ClpB mutants of Francisella tularensis subspecies holarctica and tularensis are defective for type VI secretion and intracellular replication. Sci. Rep. 2018, 8, 11324.
  126. Eneslätt, K.; Golovliov, I.; Rydén, P.; Sjöstedt, A. Vaccine-Mediated Mechanisms Controlling Replication of Francisella tularensis in Human Peripheral Blood Mononuclear Cells Using a Co-culture System. Front. Cell Infect. Microbiol. 2018, 8, 27.
  127. Lindgren, H.; Eneslätt, K.; Golovliov, I.; Gelhaus, C.; Rydén, P.; Wu, T.; Sjöstedt, A. Vaccine-Mediated Mechanisms Controlling Francisella tularensis SCHU S4 Growth in a Rat Co-Culture System. Pathogens 2020, 9, 338.
  128. Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 2000, 69, 183–215.
  129. van Hoek, M.L.; Hoang, K.V.; Gunn, J.S. Two-Component Systems in Francisella Species. Front. Cell Infect. Microbiol. 2019, 9, 198.
  130. Gao, R.; Stock, A.M. Biological insights from structures of two-component proteins. Annu. Rev. Microbiol. 2009, 63, 133–154.
  131. Alkhuder, K.; Meibom, K.L.; Dubail, I.; Dupuis, M.; Charbit, A. Identification of trkH, Encoding a Potassium Uptake Protein Required for Francisella tularensis Systemic Dissemination in Mice. PLoS ONE 2010, 5.
  132. Mohapatra, N.P.; Soni, S.; Bell, B.L.; Warren, R.; Ernst, R.K.; Muszynski, A.; Carlson, R.W.; Gunn, J.S. Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect. Immun. 2007, 75, 3305–3314.
  133. Sammons-Jackson, W.L.; McClelland, K.; Manch-Citron, J.N.; Metzger, D.W.; Bakshi, C.S.; Garcia, E.; Rasley, A.; Anderson, B.E. Generation and characterization of an attenuated mutant in a response regulator gene of Francisella tularensis live vaccine strain (LVS). DNA Cell Biol. 2008, 27, 387–403.
More