Molecular Biomarkers of Nasopharyngeal Carcinoma: Comparison
Please note this is a comparison between Version 2 by Amina Yu and Version 1 by Shiau Chuen Cheah.

Nasopharyngeal carcinoma (NPC) is a cancer that arises from the squamous epithelial cells that cover the lateral wall of the nasopharynx. In contrast to head and neck cancers, NPC has a distinct epidemiology, pathology, clinical characteristics, and treatment response. NPC is an endemic form of malignancy in certain parts of the world.

  • nasopharyngeal carcinoma (NPC)
  • Epstein–Barr virus
  • epigenetics
  • biomarkers
  • therapeutic resistance

1. Introduction

A well-known risk factor of NPC is the Epstein–Barr virus (EBV). Despite that, distinct ethnic and geographical dissemination of NPC indicates both genetic and environmental factors (diet and tobacco smoking) play an important role in its aetiology [2][1]. Complex interactions of multiple factors including viral infection, an individual’s genetic susceptibility, environmental factors, and dietary factors have driven the pathogenesis of this malignancy.

Up to 80% of NPC patients are diagnosed at advanced stages (clinical stages III and IV) and 10% at distant metastasis, which is associated with unfavourable outcome and poor prognosis [8,9,10,11][2][3][4][5]. This is mainly due to the fact that it is asymptomatic in its early stages, its high metastatic rate, and its inaccessibility for examination, whereby examination of the local primary tumour in the small curved structure of the nasal cavity is difficult [12][6]. The common symptoms of NPC include epistaxis, nasal obstruction, hearing loss, otitis media, headache, diplopia, numbness, and neck lump [13,14][7][8].

In recent decades, the advancement of diagnostic imaging and the use of concurrent radio and systemic therapy have improved overall prognosis and treatment outcomes [8][2]. The tumour-node-metastasis (TNM) staging system developed by the American Joint Committee on Cancer and the National Comprehensive Cancer Network (NCCN) is used in treatment decisions for NPC patients at different stages. Radiotherapy (RT) is used as a standard treatment for early stage NPC, while concurrent chemotherapy (CT) followed by adjuvant chemotherapy is the preferred treatment for stages III and IV NPC.

Although overall survival (OS) has improved due to these advanced treatments, there are still many controversies regarding these treatment approaches. For example: (1) patients still encounter tumour recurrence or develop distant metastasis after undergoing RT, especially those in the advanced stages, resulting in death [2][1]; (2) most patients, especially those in the advanced stages of NPC, did not benefit from the abovementioned NPC treatments [15,16][9][10]; (3) a weak tolerance to the high toxic side effects of these therapeutics has led to a delay in treatment, and ultimately death (for example, nasopharynx haemorrhage, a dangerous and serious condition resulting from radiotherapy has led to 35.7% to 100% mortality [13,17][7][11]); (4) these treatments eventually allow for tumour progression and emergency due to radio- or chemo-resistance [18,19][12][13]; (5) the advanced stages of NPC are associated with poor prognosis and poor response towards the available treatments; and (6) the absence of a reliable prediction tool for NPC recurrence and metastasis. Treatment failure for advanced stages (distant metastasis) is the primary cause of mortality from NPC, accounting for 50,000 deaths annually [10][4]. Since the 10-year OS rate for stage I patients is as high as 98%, it seems that the mortality rate can be reduced if the NPC is diagnosed at an earlier stage [20][14]. Currently, the TNM staging system does not provide information on predicting or identifying the risk of NPC progression. This has highlighted the issues of NPC diagnosis and prognosis, as well as treatment. Hence, most studies now focus on uncovering the molecular biomarkers in NPC to improve the early diagnosis approaches and discover prognostic indicators. In the current review, we have reviewed the research status of biomarkers in NPC for early diagnosis and prognosis (metastasis and recurrence).

2. Diagnostic and Prognostic Biomarker Discovery for NPC

The use of biomarkers in cancer management has recently been increased with advancements in genomics, proteomics, and transcriptomics, as well as associated technologies. Studying the biomarkers involved in NPC progression and metastasis enables us to understand the disease, identify an individual’s susceptibility to the disease, and predict or monitor patients’ response toward a therapeutic treatment. Based on their role in disease management, biomarkers can be categorised into two groups: (1) prognostics, which allow for the assessment of the risk of clinical outcomes including recurrence, metastasis, and progression; and (2) diagnostic markers, which identify whether an individual has the specific disease or condition.

Therefore, biomarkers can improve the early diagnosis and prognosis approaches by assisting in identifying patients who are susceptible to developing NPC or who are at a high risk or distant metastasis or recurrence. Biomarkers are the key to preventing NPC progression, recurrence, and metastasis, as well as to developing effective therapeutic treatments. With the aid of high throughput ‘omics’ technologies, knowledge on the aetiology, tumorigenesis, and progression of NPC has progressed much faster, thus allowing researchers to identify potential molecular biomarkers. Several types of potential NPC molecular biomarker, including DNA (genomic), mRNA (transcriptomic), protein (proteomic), and metabolite (metabolomics) biomarkers, have been identified ( Table 1 ).

Table 1. Potential biomarkers for early diagnosis of NPC.
BiomoleculesFull NameRoleAberrationSources
Genomic biomarkers
COX-2Cyclooxygenase-2Cell proliferation, apoptosisPolymorphism in rs5275[15]
MCP-1Monocyte chemoattractant protein-1Monocytes or macrophages migration and infiltrationPolymorphism in rs1024611[16]
GRP78Glucose-regulated proteinApoptosisPolymorphism in rs3216733[17]
DC-SIGNDendritic cells specific intercellular adhesion molecule 3-grabbing nonintegrinInduced immune cellsPolymorphism in rs7252229, rs735240, rs4804803 or rs2287886[18][19]
HLA-A2-B46 (Chinese)Human leukocyte antigen-A2-B46Immune responsePolymorphism in chromosome 6p21[20][21]
HLA-A2-B-17 (Chinese)Human leukocyte antigen-A2-B-17Immune response
HLA-B5 (Caucasians)Human leukocyte antigen-B5Immune response
IL-13Interleukin-13 Polymorphism in rs20541 (TT genotype)[22]
Chromosome 3p and 9pN/AN/AChromosomal loss[23]
Chromosome 12N/AN/AGain number[24]
RASSF1Ras association (RalGDS/AF-6) domain family member 1ATumour suppression, cell growth, proliferationcopy number variant in in 3p21[25]
CDKN2A, CDKN2BCyclin-dependent kinase inhibitor 2A, 2BTumour suppression, cell cycleAllelic deletion in 9p21.3[26]
EGFREpidermal growth factor receptorCell proliferation, cell cycles, apoptosisUpregulation[27][28]
BamH1-WBacillus amyloliquefaciens 1 WZhetViral replicative cycleUpregulation[29][30]
A73N/ACell proliferation and angiogenesisPolymorphism in A157154C[14][31]
RPMS1N/ACell proliferation and angiogenesisPolymorphism in G155391A
BALF2N/AViral infection and replicationEBV variants with 162476_C or 163364_T[32]
miRNA biomarkers
miR17-92MicroRNA17-92Targeting PTEN and apoptosis proteinUpregulation[33]
miR-155MicroRNA-155LeucosisUpregulation[34]
miR-378MicroRNA-378Affect tumour suppression, cell cycleUpregulation[35][36]
miR-141MicroRNA-141
miR144-3pMicroRNA-144-3pTargeting PTEN/Akt, cell cycle, apoptosisUpregulation[37]
miR-17-5pMicroRNA-17-5p
miR-20a-5pMicroRNA-20a-5p
miR-20b-5pMicroRNA-20b-5p
miR-205-5pMicroRNA-205-5p
miR-16MicroRNA-16Cell proliferation, invasionUpregulation[34]
miR-21MicroRNA-21Targets PDCD4, PTEN, SPRY, ERCK, and Bcl-2 family proteins
miR-24MicroRNA-24Epithelial-to-mesenchymal transitionUpregulation
miR-146a InflammationUpregulation[38]
miR-34MicroRNA-34Tumour suppressionDownregulation[33]
miR-143MicroRNA-143Tumour suppression
miR-145MicroRNA-145Tumour suppression
let-7b-5pMicroRNA let-7b-5pCell proliferationDownregulation[37]
miR-140-3pMicroRNA-140-3pCell proliferation
Platelet miR-34c-3pMicroRNA-34c-3pTumour suppressionUpregulation[22]
Platelet miR-18a-5pMicroRNA-18a-5pTumour suppression
MALAT1metastasis associated with lung adenocarcinoma transcript 1InvasionUpregulation[39]
AFAP1-AS1actin filament-associated protein 1-antisense RNA1Invasion
AL359062N/AN/A
EBEREpstein–Barr encoding regionCell proliferation, apoptosis, innate immunityFour base deletion SNPs[40]
miR-BART7-3pBamH1 A rightward transcript 7-3pCell proliferation targeting NF-κB signalling, angiogenesis targeting AMPK/mTOR/HIF1 signallingUpregulation[2][41][42]
miR-BART13-3pBamH1 A rightward transcript 13-3pCell proliferation targeting NF-κB signalling, angiogenesis targeting AMPK/mTOR/HIF1 signalling
Protein biomarkers
PAI-1Plasminogen activator inhibitor 1Angiogenesis, signalling activitiesUpregulation[43]
FibronectinN/ACell adhesion
Mac-2 BPMac-2-binding proteinCell adhesion
CTSDCathepsin DApoptosisUpregulation[44]
POSTNPeriostinCell adhesionUpregulation[45]
CK18Cytokeratin 18TranscriptionUpregulation[46]
KRT8Keratin-8Tumour necrosis factor-mediated signaling pathway, cell differentiationUpregulation[44]
STMN1Stathmin-1Signal transduction
LCP1L-plastinCell differentiationUpregulation[47]
LGALS1Galectin-1ApoptosisUpregulation[48]
S100A9S100 calcium-binding protein A9Cell proliferation, innate immunity, apoptosisUpregulation[47]
CCL5C-C motif chemokine 5Cell adhesion, migration, apoptosisUpregulation[49]
CLIC1Chloride intracellular channel 1Cell cycle, signal transductionUpregulation[50]
LMP1Latent membrane proteinSignalling activitiesUpregulation[51]
P-Thr-sv-5N/AGene expression (sub-variant of EBNA1)subvariant of EBNA1[52]
EBNA1/IgAEBV nuclear antigens immunoglobulin AAntibody against EBV antigenIncreased level[53][54]
VCA/IgAViral capsid antigen immunoglobulin AAntibody against EBV antigen
BALF2/AbBALF2 antibodiesAntibody against EBV antigenIncreased level[32]
Metabolite biomarkers
kynurenineN/AMetabolismUpregulation[55]
N-acetylglucosaminylamineN/AMetabolism
N-acetylglucosamine hydroxyphenylpyruvateN/AMetabolism
PyroglutamateN/AMetabolismUpregulation[56]
GlucoseN/AMetabolism
GlutamateN/AMetabolism
Glycerol 1-hexadecanoateN/AMetabolismUpregulation[57]
b-hydroxybutyrateN/AMetabolism
Arachidonic acidN/AMetabolism
Stearic acidN/AMetabolism
Linoleic acidN/AMetabolism
ProlineN/AMetabolism

N/A. Not available.

3. NPC Diagnostic Biomarkers

Consistent findings have revealed that NPC diagnostic accuracy could be enhanced by using a panel of miRNA biomarkers. Liu et al. (2013) reported the sensitivity and specificity of an NPC diagnostic method using five plasma mi-RNAs (miR-16, miR-21, miR-24, miR-155, and miR-378) were 87.7% and 82.0%, respectively [39][34]. Another study compiling 12-miRNA signatures for early diagnosis of NPC demonstrated an accuracy of up to 100% [90][58]. These 12-miRNA were found to play an important role in NPC development by modulating its target genes to inhibit NF-κB kinase regulator apoptosis and regulate platelet-derived growth factor receptor α. Collectively, these findings have provided an encouraging message on the use of miRNA as a biomarker for the early diagnosis of NPC.

Recently, tumour-educated platelets that have accurate diagnostic efficiency in various other types of cancer look like a promising avenue for NPC diagnostic marker discovery. Two platelet miRNAs, namely miR-34c-3p and miR-18a-5p, which have been detected in NPC patients and healthy controls, were found to have high diagnostic ability with a sensitivity of 92.59% and specificity of 86.11% [28][22]. However, further functional and validation studies were not carried out. Nevertheless, it still seems to be promising as the platelets can alter the transcriptome and molecular signal by affecting its pre-mRNA splicing upon instructions given by the tumour [91][59]. Additionally, in contrast to other samples, its RNA expression is not affected by the genomic DNA, thus the RNA expression truly corresponds to the pathological condition of the cancer.

Proteins are found to be involved in regulating many physiological processes, including immune response, metabolism, and cellular signalling pathways, while tumour cells can utilise the protein by-product to make their favourite proteins, thus affecting anabolism and catabolism, eventually leading to an alteration of protein expression patterns. Therefore, these tumour synthesised oncogenic proteins can be used to reflect the real time state of diseases and used for NPC biomarker research.

Most of these studies have used high throughput mass spectrometry technology, data processing, system integration, cluster index analysis, and integration with information modelling to look for metabolites that reflect clinical disease phenotypes [106][60]. Numerous metabolites, including kynurenine, N-acetylglucosaminylamine, N-acetylglucosamine hydroxyphenylpyruvate, pyroglutamate, glucose, and glutamate, have been evaluated as potential biomarkers for early NPC diagnosis [59,60][55][56]. Further studies conducted in larger NPC cohorts also validated that a panel of seven metabolites including glycerol 1-hexadecanoate, b-hydroxybutyrate, linoleic acid, arachidonic acid, stearic acid, glucose, and proline provided strong NPC diagnosis from disease free controls, with a sensitivity of 88.0% and a specificity of 92.0% [61][57].

4. NPC Prognosis Biomarkers

Up to 40% of NPC patients have disease recurrence or distant metastasis even after they receive a series of CT or RT [121][61]. This indicates that tumour cells are able to recover from damaged cells and survive by having resistance to current therapies (CT or RT). Therefore, prediction of NPC recurrence or metastasis risk after treatment is crucial since it is the major cause of mortality in NPC patients. Particularly, molecular components that are metastasis susceptible or capable of affecting the radio- or chemo-sensitivity can be used as a prognosis biomarker ( Table 2 ).

Table 2. Potential prognosis and predictive biomarkers for NPC therapeutic resistance or metastasis and recurrence after treatment.
BiomoleculesNameRoleAberrationSources
β-catenin 1Beta-catenin1Activate multiple downstream growth signalling components such as cyclin D1 and c-MycPolymorphism in rs1880481 or rs3864004[122]
GSK-3βglycogen synthase kinase-3βCell growth, metabolism, gene transcription, protein translation, cytoskeletal organisationPolymorphism in rs3755557
APCadenomatous polyposis coliCell adhesionPolymorphism in rs454886
XRCC1X-ray repair cross-complementing 1DNA repairPolymorphism in rs25489 or Codon399[123,124,125,126]
CTCalcitonin receptorCalcium homeostasisPolymorphism in rs2528521
VCPValosin-containing proteinProteolysisPolymorphism in rs2074549
IL-13Interleukin-13Chinese population with IL-13 rs20541Polymorphisms in rs20541[28]
ERCC1Excision repair 1 endonuclease non-catalytic subunitDNA repairPolymorphism with C118T genotype[127]
EBV-DNAEpstein–Barr virus-DNAEBV genomeUpregulation[33]
YBX3Y-Box Binding Protein 3Apoptosis, Gene expressionUpregulation[128]
CBR3Carbonyl reductase 3Xenobiotic metabolic process
LRIG1Leucine-rich repeats and immunoglobulin-like domains 1Negative regulator of tyrosine kinases signalling
CXCL10Chemokine C-X-C motif ligand 10Chemokine receptors recruit tumour infiltrating T-lymphocytes, tumour microenvironment
DCTN1Dynactin-1G2/M transition of mitotic cell cycleDownregulation
GRM4Glutamate metabotropic receptor 4Tumour suppression
HDLBPHigh density lipoprotein binding proteinCholesterol metabolic process
ANXA1AnnexinCell cycle, apoptosis
POLR2MRNA polymerase II subunit MNegative regulator of transcriptional
CLASP1Cytoplasmic linker associated protein 1Dynamic microtubules stabilization
FNDC3BFibronectin type III domain-containing protein 3BPositive regulator of adipogenesis
WSB2WD repeat and SOCS box-containing protein 2Protein ubiquitination, post-translation modification
WNK1lysine deficient protein kinase 1T-cell receptor signalling pathway
miR-203MicroRNA-203Targeting IL-8/Akt signallingDownregulation[129]
miR-324-3pMicroRNA-324-3pTumour suppressionDownregulation[130,131]
miR-93-3pMicroRNA-93-3pTargeting Wnt/β-catenin signalling
miR-4501MicroRNA-4501Cellular process
miR-371a-5pMicroRNA-371a-5pCellular pathway, apoptosisUpregulation
miR-34c-5pMicroRNA-34c-5pCell proliferation, apoptosis, targeting JAK2/STAT3 signalling pathway
miR-1323MicroRNA-1323DNA repair
miR-9MicroRNA-9MHC class I and interferon-regulated gene expressionDownregulation[132]
miR-92aMicroRNA-92aInvasion, migrationUpregulation[133]
miR-574-5pMicroRNA-574-5pMesenchymal transitionDownregulation[9]
miR-296-3pMicro-296-3pCytoplasmic Translocation of c-MycDownregulation[134,135]
RNA_0000285 homeodomain interacting protein kinase 3 (HIPK3)Upregulation[136]
EGFREpidermal growth factor receptorCell proliferation, cell cycles, apoptosisUpregulation[137]
GSTP1Glutathione S-transferase P1Cell adhesion, apoptosis, negative regulator of NF-kB signalingMethylation[138]
IGF-1RInsulin-like growth factor-1 receptorCell proliferation, cell cycles and apoptosisUpregulation[137]
Jab1C-Jun activation domain-binding protein-1Cell proliferation, targeting negative regulator proteins and tumour suppressors (p27 and p53)Upregulation[139]
EMTEpithelial-to-mesenchymal transitionCarcinogenesis and metastatic progressionUpregulation[140]
β-cateninN/AActivate multiple downstream growth signalling components such as cyclin D1 and c-MycUpregulation[141]
E-cadherinN/ACell adhesion, tumour suppressionDownregulation
GnT-VN-acetylglucosaminyltransferase-VProtein glycosylation, cell proliferationUpregulation[142]
Bcl2B-cell lymphoma 2ApoptosisUpregulation[143,144]
SPARCSecreted protein acidic and Cysteine richExtracellular matrix synthesis, cell shapeUpregulation[145]
ERPIND1Serpin family D member 1SInvasion
C4BComplement C4BComponent of the classical activation pathway
PPIBPpeptidylprolyl lsomerase BCyclosporine A-mediated immunosuppression
FAM173AFamily with sequence similarity 173 member AAdenine nucleotide translocase
MaspinMammary serine protease inhibitorTumour suppressionUpregulation[146,147]
GRP78Glucose-regulated proteinApoptosis
Mn-SODManganese superoxide dismutaseApoptosis
14-3-3σ14-3-3 protein sigmaCell cycle arrest, DNA damage response, signal transductionDownregulation
ANXA1,3Annexin A1, A3Cell cycle, apoptosisDownregulation[148,149,150]
Nm23 H1Non-metastatic clone 23, isoform H1TGF-β signalingUpregulation
KRT1Keratin 1AngiogenesisUpregulation[151]
SAASerum amyloid AMAPK activities, innate immune responseDownregulation[152]
HSP27Heat shock protein 27Apoptosis, cell differentiationUpregulation[153]
BiomoleculesNameRoleAberrationSources
β-catenin 1Beta-catenin1Activate multiple downstream growth signalling components such as cyclin D1 and c-MycPolymorphism in rs1880481 or rs3864004[62]
GSK-3βglycogen synthase kinase-3βCell growth, metabolism, gene transcription, protein translation, cytoskeletal organisationPolymorphism in rs3755557
APCadenomatous polyposis coliCell adhesionPolymorphism in rs454886
XRCC1X-ray repair cross-complementing 1DNA repairPolymorphism in rs25489 or Codon399[63][64][65][66]
CTCalcitonin receptorCalcium homeostasisPolymorphism in rs2528521
VCPValosin-containing proteinProteolysisPolymorphism in rs2074549
IL-13Interleukin-13Chinese population with IL-13 rs20541Polymorphisms in rs20541[22]
ERCC1Excision repair 1 endonuclease non-catalytic subunitDNA repairPolymorphism with C118T genotype[67]
EBV-DNAEpstein–Barr virus-DNAEBV genomeUpregulation[28]
YBX3Y-Box Binding Protein 3Apoptosis, Gene expressionUpregulation[68]
CBR3Carbonyl reductase 3Xenobiotic metabolic process
LRIG1Leucine-rich repeats and immunoglobulin-like domains 1Negative regulator of tyrosine kinases signalling
CXCL10Chemokine C-X-C motif ligand 10Chemokine receptors recruit tumour infiltrating T-lymphocytes, tumour microenvironment
DCTN1Dynactin-1G2/M transition of mitotic cell cycleDownregulation
GRM4Glutamate metabotropic receptor 4Tumour suppression
HDLBPHigh density lipoprotein binding proteinCholesterol metabolic process
ANXA1AnnexinCell cycle, apoptosis
POLR2MRNA polymerase II subunit MNegative regulator of transcriptional
CLASP1Cytoplasmic linker associated protein 1Dynamic microtubules stabilization
FNDC3BFibronectin type III domain-containing protein 3BPositive regulator of adipogenesis
WSB2WD repeat and SOCS box-containing protein 2Protein ubiquitination, post-translation modification
WNK1lysine deficient protein kinase 1T-cell receptor signalling pathway
miR-203MicroRNA-203Targeting IL-8/Akt signallingDownregulation[69]
miR-324-3pMicroRNA-324-3pTumour suppressionDownregulation[70][71]
miR-93-3pMicroRNA-93-3pTargeting Wnt/β-catenin signalling
miR-4501MicroRNA-4501Cellular process
miR-371a-5pMicroRNA-371a-5pCellular pathway, apoptosisUpregulation
miR-34c-5pMicroRNA-34c-5pCell proliferation, apoptosis, targeting JAK2/STAT3 signalling pathway
miR-1323MicroRNA-1323DNA repair
miR-9MicroRNA-9MHC class I and interferon-regulated gene expressionDownregulation[72]
miR-92aMicroRNA-92aInvasion, migrationUpregulation[73]
miR-574-5pMicroRNA-574-5pMesenchymal transitionDownregulation[3]
miR-296-3pMicro-296-3pCytoplasmic Translocation of c-MycDownregulation[74][75]
RNA_0000285 homeodomain interacting protein kinase 3 (HIPK3)Upregulation[76]
EGFREpidermal growth factor receptorCell proliferation, cell cycles, apoptosisUpregulation[77]
GSTP1Glutathione S-transferase P1Cell adhesion, apoptosis, negative regulator of NF-kB signalingMethylation[78]
IGF-1RInsulin-like growth factor-1 receptorCell proliferation, cell cycles and apoptosisUpregulation[77]
Jab1C-Jun activation domain-binding protein-1Cell proliferation, targeting negative regulator proteins and tumour suppressors (p27 and p53)Upregulation[79]
EMTEpithelial-to-mesenchymal transitionCarcinogenesis and metastatic progressionUpregulation[80]
β-cateninN/AActivate multiple downstream growth signalling components such as cyclin D1 and c-MycUpregulation[81]
E-cadherinN/ACell adhesion, tumour suppressionDownregulation
GnT-VN-acetylglucosaminyltransferase-VProtein glycosylation, cell proliferationUpregulation[82]
Bcl2B-cell lymphoma 2ApoptosisUpregulation[83][84]
SPARCSecreted protein acidic and Cysteine richExtracellular matrix synthesis, cell shapeUpregulation[85]
ERPIND1Serpin family D member 1SInvasion
C4BComplement C4BComponent of the classical activation pathway
PPIBPpeptidylprolyl lsomerase BCyclosporine A-mediated immunosuppression
FAM173AFamily with sequence similarity 173 member AAdenine nucleotide translocase
MaspinMammary serine protease inhibitorTumour suppressionUpregulation[86][87]
GRP78Glucose-regulated proteinApoptosis
Mn-SODManganese superoxide dismutaseApoptosis
14-3-3σ14-3-3 protein sigmaCell cycle arrest, DNA damage response, signal transductionDownregulation
ANXA1,3Annexin A1, A3Cell cycle, apoptosisDownregulation[88][89][90]
Nm23 H1Non-metastatic clone 23, isoform H1TGF-β signalingUpregulation
KRT1Keratin 1AngiogenesisUpregulation[91]
SAASerum amyloid AMAPK activities, innate immune responseDownregulation[92]
HSP27Heat shock protein 27Apoptosis, cell differentiationUpregulation[93]

N/A. Not available

One study acknowledged the value of EBV-DNA for early NPC recurrence after treatment [155][94]. Most of the patients had EBV-DNA elevated prior to the disease recurrence [33][28]. The accuracy, sensitivity, and specificity of recurrence diagnostic using EBV-DNA were 87.0%, 82.3%, and 80.0%, respectively [33][28]. In another study, the circulating EBV-DNA concentration was found to be higher in recurrent NPC plasma compared to primary NPC plasma, thus implying that recurrence risk can be predicted by detecting the circulating EBV-DNA [156][95]. The National Comprehensive Cancer Network also recommends monitoring NPC patients with EBV-DNA [157][96]. This EBV-DNA biomarker was further strengthened by combination with a predictive tool, namely distant metastasis gene signature (DMGN), which constitutes 13 genes including DCTN1 , YBX3 , GRM4 , HDLBP, POLR2M , CLASP1 , CBR3 , FNDC3B , WSB2 , LRIG1 , ANXA1 , WNK1 , and CXCL10 to examine whether the patients can benefit from concurrent CT. The patients with the higher predicted metastasis risk would have less sensitivity to concurrent CT [128][68].

Moreover, by looking at mRNA involved in NPC progression, the subtype of disease, prognosis, and therapeutic effect in NPC could be predicted [93,158,159][97][98][99]. For example, analysed miRNA expression profile of radioresistant and radiosensitive NPC cell lines by next generation deep sequencing have revealed that downregulation of miR-203, miR-324-3p, miR-93-3p, and miR-4501 and upregulation of miR-371a-5p, miR-34c-5p, and miR-1323 contribute to mediating radio-resistance in NPC [129,130,148][69][70][88]. Additionally, miR-574-5p, miR-9 and miR92a, which modulate the expression of MHC class I and interferon-regulated genes associated with NPC metastasis, could potentially be non-invasive blood-based biomarkers for metastasis prediction [132,133][72][73]. RNA sequencing of NPC patients’ peripheral blood mononuclear cells (PBMC) before and after RT has revealed 11 potential mRNA prognostic biomarkers for NPC for post-RT evaluation [160][100]. RNA_0000285 at homeodomain interacting protein kinase 3 (HIPK3) was observed in high level radio-resistance NPC patients and low radiosensitive NPC patients, thus showing its ability to predict NPC radiosensitivity [136][76].

Furthermore, as mentioned previously, the residue of cigarette smoke promotes cancer progression. Cigarette smoke was found to be associated with poor prognosis of chemotherapy and radiotherapy. Nicotine in cigarette smoke promoted chemoresistance by affecting the ATP-biding cassette transporter G2 via downregulation of miR-296-3p and Akt-mediated pathways [134,135][74][75]. Furthermore, hypoxia induced through smoking can facilitate tumour angiogenesis, invasion, reoccurrence, and metastasis. Therefore, the downregulation of miR-296-3p in patients could be a potential prognosis or predictive biomarker for recurrence and metastasis.

References

  1. Alotaibi, A.D.; Ahmed, H.G.; Elasbali, A.M. Nasopharyngeal cancer in Saudi Arabia: Epidemiology and possible risk factors. J. Oncol. Sci. 2019, 5, 23–30.
  2. Lu, T.; Guo, Q.; Lin, K.; Chen, H.; Chen, Y.; Xu, Y.; Lin, C.; Su, Y.; Chen, Y.; Chen, M.; et al. Circulating Epstein-Barr virus microRNAs BART7-3p and BART13-3p as novel biomarkers in nasopharyngeal carcinoma. Cancer Sci. 2020, 111, 1711–1723.
  3. Mi, J.L.; Xu, M.; Liu, C.; Wang, R.S. Identification of novel biomarkers and small-molecule compounds for nasopharyngeal carcinoma with metastasis. Medicine 2020, 99, e21505.
  4. Mahdavifar, N.; Ghoncheh, M.; Mohammadian-Hafshejani, A.; Khosravi, B.; Salehiniya, H. Epidemiology and Inequality in the Incidence and Mortality of Nasopharynx Cancer in Asia. Osong Public Health Res. Perspect. 2016, 7, 360–372.
  5. Xia, W.X.; Zhang, H.B.; Shi, J.L.; Lu, X.; Wang, L.; Ye, Y.F.; Cao, K.J.; Qian, C.N.; Guo, X.; Xiang, Y.Q. A prognostic model predicts the risk of distant metastasis and death for patients with nasopharyngeal carcinoma based on pre-treatment serum C-reactive protein and N-classification. Eur. J. Cancer 2013, 49, 2152–2160.
  6. Wong, T.S.; Gao, W.; Chan, J.Y.W. Biomarkers in Nasopharyngeal Carcinoma and Ionizing Radiation. In Biomarkers in Cancer, Biomarkers in Disease: Methods, Discoveries and Applications; Preedy, V., Patel, V., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 875–890.
  7. Sireci, F.; Speciale, R.; Sorrentino, R.; Turri-Zanoni, M.; Nicolotti, M.; Canevari, F.R. Nasal packing in sphenopalatine artery bleeding: Therapeutic or harmful? Eur. Arch. Otorhinolaryngol. 2017, 274, 1501–1505.
  8. Wei, W.I.; Sham, J.S. Nasopharyngeal carcinoma. Lancet 2005, 365, 2041–2054.
  9. Sun, X.S.; Xiao, B.B.; Lu, Z.J.; Liu, S.L.; Chen, Q.Y.; Yuan, L.; Tang, L.Q.; Mai, H.Q. Stratification of Candidates for Induction Chemotherapy in Stage III-IV Nasopharyngeal Carcinoma: A Large Cohort Study Based on a Comprehensive Prognostic Model. Front. Oncol. 2020, 10, 255.
  10. Wang, Y.W.; Ho, S.Y.; Lee, S.W.; Chen, C.C.; Litsu, S.; Huang, W.T.; Yang, C.C.; Lin, C.H.; Chen, H.Y.; Lin, L.C. Induction Chemotherapy Improved Long Term Outcomes in Stage IV Locoregional Advanced Nasopharyngeal Carcinoma. Int. J. Med. Sci. 2020, 17, 568–576.
  11. Zhan, J.; Zhang, S.; Wei, X.; Fu, Y.; Zheng, J. Etiology and management of nasopharyngeal hemorrhage after radiotherapy for nasopharyngeal carcinoma. Cancer Manag. Res. 2019, 11, 2171–2178.
  12. Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80.
  13. Chen, Y.; Liu, M.Z.; Liang, S.B.; Zong, J.F.; Mao, Y.P.; Tang, L.L.; Guo, Y.; Lin, A.H.; Zeng, X.F.; Ma, J. Preliminary results of a prospective randomized trial comparing concurrent chemoradiotherapy plus adjuvant chemotherapy with radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma in endemic regions of china. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1356–1364.
  14. Wu, S.; Liu, W.; Li, H.; Zhao, Z.; Yang, Y.; Xiao, H.; Song, Y.; Luo, B. Conservation and polymorphism of EBV RPMS1 gene in EBV-associated tumors and healthy individuals from endemic and non-endemic nasopharyngeal carcinoma areas in China. Virus Res. 2018, 250, 75–80.
  15. Fu, J.; Li, Z.; Li, N. The association between COX-2 gene rs5275 polymorphism and Nasopharyngeal carcinoma risk. Pathol. Res. Pract. 2018, 214, 1579–1582.
  16. Niu, Y.; Zhou, G.; Wang, Y.; Qin, J.; Ping, J.; Zhang, Q.; Han, B.W.; Liu, Y.X.; Yang, C.; Zhai, Y.; et al. Association of MCP-1 promoter polymorphism with susceptibility to nasopharyngeal carcinoma. J. Cell Biochem. 2019, 120, 6661–6670.
  17. Wang, R.; Qin, H.M.; Qin, L.; Wei, J.X.; Wei, Y.X.; Wang, J.L. Genetic association of promoter in GRP78 gene with nasopharyngeal carcinoma in a Chinese population. Int. J. Clin. Oncol. 2019, 24, 359–365.
  18. Ning, S.; Yao, M.; Wu, Y.; Zhou, X.; Zhong, C.; Yan, K.; Wei, Z.; Xie, Y. Correlation of variable repeat number in the neck regions of DC-SIGN and DC-SIGNR with susceptibility to nasopharyngeal carcinoma in a Chinese population. Cancer Manag. Res. 2018, 10, 3193–3198.
  19. Li, S.; Lu, Z.; Yao, M.; Ning, S.; Wu, Y.; Zhou, X.; Zhong, C.; Yan, K.; Xie, Y.; Wei, Z. Association of Single-Nucleotide Polymorphisms in DC-SIGN with Nasopharyngeal Carcinoma Susceptibility. Dis. Markers 2017, 2017, 6309754.
  20. Lu, S.J.; Day, N.E.; Degos, L.; Lepage, V.; Wang, P.C.; Chan, S.H.; Simons, M.; McKnight, B.; Easton, D.; Zeng, Y.; et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 1990, 346, 470–471.
  21. Rietveld, C.A.; Medland, S.E.; Derringer, J.; Yang, J.; Esko, T.; Martin, N.W.; Westra, H.J.; Shakhbazov, K.; Abdellaoui, A.; Agrawal, A.; et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 2013, 340, 1467–1471.
  22. Wang, H.; Wei, X.; Wu, B.; Su, J.; Tan, W.; Yang, K. Tumor-educated platelet miR-34c-3p and miR-18a-5p as potential liquid biopsy biomarkers for nasopharyngeal carcinoma diagnosis. Cancer Manag. Res. 2019, 11, 3351–3360.
  23. Lo, K.W.; Chung, G.T.; To, K.F. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin. Cancer Biol. 2012, 22, 79–86.
  24. Wu, L.S.H. Construction of evolutionary tree models for nasopharyngeal carcinoma using comparative genomic hybridization data. Cancer Genet. Cytogenet. 2006, 168, 105–108.
  25. Dai, W.; Zheng, H.; Cheung, A.K.; Lung, M.L. Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chin. Clin. Oncol. 2016, 5, 16.
  26. Huang, D.P.; Lo, K.W.; van Hasselt, C.A.; Woo, J.K.; Choi, P.H.; Leung, S.F.; Cheung, S.T.; Cairns, P.; Sidransky, D.; Lee, J.C. A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyngeal carcinoma. Cancer Res. 1994, 54, 4003–4006.
  27. Rahman, S.; Subroto, H.; Budiman, B.; Asri, A.; Bachtiar, H. Expression of epidermal growth factor receptor in advance stage nonkeratinizing nasopharyngeal carcinoma in West Sumatra, Indonesia. Arch. Oncol. 2018, 24, 20–23.
  28. Chen, S.; Youhong, T.; Tan, Y.; He, Y.; Ban, Y.; Cai, J.; Li, X.; Xiong, W.; Zeng, Z.; Li, G.; et al. EGFR-PKM2 signaling promotes the metastatic potential of nasopharyngeal carcinoma through induction of FOSL1 and ANTXR2. Carcinogenesis 2020, 41, 723–733.
  29. Yip, T.T.; Ngan, R.K.; Fong, A.H.; Law, S.C. Application of circulating plasma/serum EBV DNA in the clinical management of nasopharyngeal carcinoma. Oral Oncol. 2014, 50, 527–538.
  30. Chan, K.C.A.; Woo, J.K.S.; King, A.; Zee, B.C.Y.; Lam, W.K.J.; Chan, S.L.; Chu, S.W.I.; Mak, C.; Tse, I.O.L.; Leung, S.Y.M.; et al. Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. New Engl. J. Med. 2017, 377, 513–522.
  31. Shen, J.J.; Niu, W.N.; Zhou, M.; Zhou, F.; Zhang, H.Y.; Wang, L. Association of Epstein Barr virus A73 gene polymorphism with nasopharyngeal carcinoma. Genet. Test. Mol. Biomark. 2015, 19, 187–190.
  32. Xu, M.; Yao, Y.; Chen, H.; Zhang, S.; Cao, S.M.; Zhang, Z.; Luo, B.; Liu, Z.; Li, Z.; Xiang, T.; et al. Genome sequencing analysis identifies Epstein-Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nat. Genet. 2019, 51, 1131–1136.
  33. Chen, H.C.; Chen, G.H.; Chen, Y.H.; Liao, W.L.; Liu, C.Y.; Chang, K.P.; Chang, Y.S.; Chen, S.J. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br. J. Cancer 2009, 100, 1002–1011.
  34. Liu, X.; Luo, H.N.; Tian, W.D.; Lu, J.; Li, G.; Wang, L.; Zhang, B.; Liang, B.J.; Peng, X.H.; Lin, S.X.; et al. Diagnostic and prognostic value of plasma microRNA deregulation in nasopharyngeal carcinoma. Cancer Biol. Ther. 2013, 14, 1133–1142.
  35. Chen, P.; Guo, X.; Zhou, H.; Zhang, W.; Zeng, Z.; Liao, Q.; Li, X.; Xiang, B.; Yang, J.; Ma, J.; et al. SPLUNC1 regulates cell progression and apoptosis through the miR-141-PTEN/p27 pathway, but is hindered by LMP1. PLoS ONE 2013, 8, e56929.
  36. Zhang, L.; Deng, T.; Li, X.; Liu, H.; Zhou, H.; Ma, J.; Wu, M.; Zhou, M.; Shen, S.; Li, X.; et al. microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis 2010, 31, 559–566.
  37. Zhang, H.; Zou, X.; Wu, L.; Zhang, S.; Wang, T.; Liu, P.; Zhu, W.; Zhu, J. Identification of a 7-microRNA signature in plasma as promising biomarker for nasopharyngeal carcinoma detection. Cancer Med. 2020, 9, 1230–1241.
  38. Lee, K.T.; Tan, J.K.; Lam, A.K.; Gan, S.Y. MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review. Crit. Rev. Oncol. Hematol. 2016, 103, 1–9.
  39. He, B.; Zeng, J.; Chao, W.; Chen, X.; Huang, Y.; Deng, K.; Huang, Z.; Li, J.; Dai, M.; Chen, S.; et al. Serum long non-coding RNAs MALAT1, AFAP1-AS1 and AL359062 as diagnostic and prognostic biomarkers for nasopharyngeal carcinoma. Oncotarget 2017, 8, 41166–41177.
  40. Hui, K.F.; Chan, T.F.; Yang, W.; Shen, J.J.; Lam, K.P.; Kwok, H.; Sham, P.C.; Tsao, S.W.; Kwong, D.L.; Lung, M.L.; et al. High risk Epstein-Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. Int. J. Cancer 2019, 144, 3031–3042.
  41. Xu, Y.J.; Zhou, R.; Zong, J.F.; Lin, W.S.; Tong, S.; Guo, Q.J.; Lin, C.; Lin, S.J.; Chen, Y.X.; Chen, M.R.; et al. Epstein-Barr virus-coded miR-BART13 promotes nasopharyngeal carcinoma cell growth and metastasis via targeting of the NKIRAS2/NF-κB pathway. Cancer Lett. 2019, 447, 33–40.
  42. Lyu, X.; Wang, J.; Guo, X.; Wu, G.; Jiao, Y.; Faleti, O.D.; Liu, P.; Liu, T.; Long, Y.; Chong, T.; et al. EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog. 2018, 14, e1007484.
  43. Wu, C.C.; Chien, K.Y.; Tsang, N.M.; Chang, K.P.; Hao, S.P.; Tsao, C.H.; Chang, Y.S.; Yu, J.S. Cancer cell-secreted proteomes as a basis for searching potential tumor markers: Nasopharyngeal carcinoma as a model. Proteomics 2005, 5, 3173–3182.
  44. Xiao, Z.; Li, G.; Chen, Y.; Li, M.; Peng, F.; Li, C.; Li, F.; Yu, Y.; Ouyang, Y.; Xiao, Z.; et al. Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J. Histochem. Cytochem. 2010, 58, 517–527.
  45. Li, M.; Li, C.; Li, D.; Xie, Y.; Shi, J.; Li, G.; Guan, Y.; Li, M.; Zhang, P.; Peng, F.; et al. Periostin, a stroma-associated protein, correlates with tumor invasiveness and progression in nasopharyngeal carcinoma. Clin. Exp. Metastasis 2012, 29, 865–877.
  46. Li, X.; Fasano, R.; Wang, E.; Yao, K.T.; Marincola, F.M. HLA associations with nasopharyngeal carcinoma. Curr. Mol. Med. 2009, 9, 751–765.
  47. Li, M.X.; Xiao, Z.Q.; Liu, Y.F.; Chen, Y.H.; Li, C.; Zhang, P.F.; Li, M.Y.; Li, F.; Peng, F.; Duan, C.J.; et al. Quantitative proteomic analysis of differential proteins in the stroma of nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissue. J. Cell Biochem. 2009, 106, 570–579.
  48. Ge, S.; Mao, Y.; Yi, Y.; Xie, D.; Chen, Z.; Xiao, Z. Comparative proteomic analysis of secreted proteins from nasopharyngeal carcinoma-associated stromal fibroblasts and normal fibroblasts. Exp. Ther. Med. 2012, 3, 857–860.
  49. Lin, S.J.; Chang, K.P.; Hsu, C.W.; Chi, L.M.; Chien, K.Y.; Liang, Y.; Tsai, M.H.; Lin, Y.T.; Yu, J.S. Low-molecular-mass secretome profiling identifies C-C motif chemokine 5 as a potential plasma biomarker and therapeutic target for nasopharyngeal carcinoma. J. Proteom. 2013, 94, 186–201.
  50. Chang, Y.H.; Wu, C.C.; Chang, K.P.; Yu, J.S.; Chang, Y.C.; Liao, P.C. Cell secretome analysis using hollow fiber culture system leads to the discovery of CLIC1 protein as a novel plasma marker for nasopharyngeal carcinoma. J. Proteome Res. 2009, 8, 5465–5474.
  51. Hao, S.P.; Tsang, N.M.; Chang, K.P.; Ueng, S.H. Molecular diagnosis of nasopharyngeal carcinoma: Detecting LMP-1 and EBNA by nasopharyngeal swab. Otolaryngol. Head Neck Surg. 2004, 131, 651–654.
  52. Banko, A.V.; Lazarevic, I.B.; Folic, M.M.; Djukic, V.B.; Cirkovic, A.M.; Karalic, D.Z.; Cupic, M.D.; Jovanovic, T.P. Characterization of the Variability of Epstein-Barr Virus Genes in Nasopharyngeal Biopsies: Potential Predictors for Carcinoma Progression. PLoS ONE 2016, 11, e0153498.
  53. Yu, X.; Ji, M.; Cheng, W.; Wu, B.; Du, Y.; Cao, S. Assessment of the Long-term Diagnostic Performance of a New Serological Screening Scheme in Large-scale Nasopharyngeal Carcinoma Screening. J. Cancer 2018, 9, 2093–2097.
  54. Liu, Z.; Ji, M.F.; Huang, Q.H.; Fang, F.; Liu, Q.; Jia, W.H.; Guo, X.; Xie, S.H.; Chen, F.; Liu, Y.; et al. Two Epstein-Barr virus-related serologic antibody tests in nasopharyngeal carcinoma screening: Results from the initial phase of a cluster randomized controlled trial in Southern China. Am. J. Epidemiol. 2013, 177, 242–250.
  55. Tang, F.; Xie, C.; Huang, D.; Wu, Y.; Zeng, M.; Yi, L.; Wang, Y.; Mei, W.; Cao, Y.; Sun, L. Novel potential markers of nasopharyngeal carcinoma for diagnosis and therapy. Clin. Biochem. 2011, 44, 711–718.
  56. Yi, L.; Dong, N.; Shi, S.; Deng, B.; Yun, Y.; Yi, Z.; Zhang, Y. Metabolomic identification of novel biomarkers of nasopharyngeal carcinoma. RSC Adv. 2014, 4, 59094–59101.
  57. Yi, L.; Song, C.; Hu, Z.; Yang, L.; Xiao, L.; Yi, B.; Jiang, W.; Cao, Y.; Sun, L. A metabolic discrimination model for nasopharyngeal carcinoma and its potential role in the therapeutic evaluation of radiotherapy. Metabolomics 2014, 10, 697–708.
  58. Wen, W.; Mai, S.J.; Lin, H.X.; Zhang, M.Y.; Huang, J.L.; Hua, X.; Lin, C.; Long, Z.Q.; Lu, Z.J.; Sun, X.Q.; et al. Identification of two microRNA signatures in whole blood as novel biomarkers for diagnosis of nasopharyngeal carcinoma. J. Transl. Med. 2019, 17, 186.
  59. Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676.
  60. Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 2018, 36, 316–320.
  61. Chen, W.; Hu, G.H. Biomarkers for enhancing the radiosensitivity of nasopharyngeal carcinoma. Cancer Biol. Med. 2015, 12, 23–32.
  62. Yu, J.; Huang, Y.; Liu, L.; Wang, J.; Yin, J.; Huang, L.; Chen, S.; Li, J.; Yuan, H.; Yang, G.; et al. Genetic polymorphisms of Wnt/β-catenin pathway genes are associated with the efficacy and toxicities of radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget 2016, 7, 82528–82537.
  63. Chen, H.; Wu, M.; Li, G.; Hua, L.; Chen, S.; Huang, H. Association between XRCC1 single-nucleotide polymorphism and acute radiation reaction in patients with nasopharyngeal carcinoma: A cohort study. Medicine 2017, 96, e8202.
  64. Guo, X.B.; Ma, W.L.; Liu, L.J.; Huang, Y.L.; Wang, J.; Huang, L.H.; Peng, X.D.; Yin, J.Y.; Li, J.G.; Chen, S.J.; et al. Effects of gene polymorphisms in the endoplasmic reticulum stress pathway on clinical outcomes of chemoradiotherapy in Chinese patients with nasopharyngeal carcinoma. Acta Pharmacol. Sin. 2017, 38, 571–580.
  65. Wang, J.; Guo, C.; Gong, X.; Ao, F.; Huang, Y.; Huang, L.; Tang, Y.; Jiang, C.; Xie, X.; Dong, Q.; et al. The impacts of genetic polymorphisms in genes of base excision repair pathway on the efficacy and acute toxicities of (chemo)radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget 2017, 8, 78633–78641.
  66. Zhai, X.M.; Hu, Q.C.; Gu, K.; Wang, J.P.; Zhang, J.N.; Wu, Y.W. Significance of XRCC1 Codon399 polymorphisms in Chinese patients with locally advanced nasopharyngeal carcinoma treated with radiation therapy. Asia Pac. J. Clin. Oncol. 2016, 12, e125–e132.
  67. Hui, E.P.; Ma, B.B.; Chan, K.C.; Chan, C.M.; Wong, C.S.; To, K.F.; Chan, A.W.; Tung, S.Y.; Ng, W.T.; Cheng, A.C.; et al. Clinical utility of plasma Epstein-Barr virus DNA and ERCC1 single nucleotide polymorphism in nasopharyngeal carcinoma. Cancer 2015, 121, 2720–2729.
  68. Tang, X.R.; Li, Y.Q.; Liang, S.B.; Jiang, W.; Liu, F.; Ge, W.X.; Tang, L.L.; Mao, Y.P.; He, Q.M.; Yang, X.J.; et al. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: A retrospective, multicentre, cohort study. Lancet Oncol. 2018, 19, 382–393.
  69. Qu, J.Q.; Yi, H.M.; Ye, X.; Zhu, J.F.; Yi, H.; Li, L.N.; Xiao, T.; Yuan, L.; Li, J.Y.; Wang, Y.Y.; et al. MiRNA-203 Reduces Nasopharyngeal Carcinoma Radioresistance by Targeting IL8/AKT Signaling. Mol. Cancer Ther. 2015, 14, 2653–2664.
  70. Li, G.; Qiu, Y.; Su, Z.; Ren, S.; Liu, C.; Tian, Y.; Liu, Y. Genome-wide analyses of radioresistance-associated miRNA expression profile in nasopharyngeal carcinoma using next generation deep sequencing. PLoS ONE 2013, 8, e84486.
  71. Li, L.; Huang, S.; Zhu, X.; Zhou, Z.; Liu, Y.; Qu, S.; Guo, Y. Identification of radioresistance-associated proteins in human nasopharyngeal carcinoma cell lines by proteomic analysis. Cancer Biother. Radiopharm. 2013, 28, 380–384.
  72. Gao, F.; Zhao, Z.L.; Zhao, W.T.; Fan, Q.R.; Wang, S.C.; Li, J.; Zhang, Y.Q.; Shi, J.W.; Lin, X.L.; Yang, S.; et al. miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem. Biophys. Res. Commun. 2013, 431, 610–616.
  73. Zhang, H.; Cao, H.; Xu, D.; Zhu, K. MicroRNA-92a promotes metastasis of nasopharyngeal carcinoma by targeting the PTEN/AKT pathway. OncoTargets Ther. 2016, 9, 3579–3588.
  74. Deng, X.; Liu, Z.; Liu, X.; Fu, Q.; Deng, T.; Lu, J.; Liu, Y.; Liang, Z.; Jiang, Q.; Cheng, C.; et al. miR-296-3p Negatively Regulated by Nicotine Stimulates Cytoplasmic Translocation of c-Myc via MK2 to Suppress Chemotherapy Resistance. Mol. Ther. 2018, 26, 1066–1081.
  75. Ouyang, P.Y.; Su, Z.; Mao, Y.P.; Liang, X.X.; Liu, Q.; Deng, W.; Xie, F.Y. Prognostic impact of cigarette smoking on the survival of patients with established nasopharyngeal carcinoma. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2285–2294.
  76. Shuai, M.; Hong, J.; Huang, D.; Zhang, X.; Tian, Y. Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity. Oncol. Lett. 2018, 16, 6495–6501.
  77. Yuan, Y.; Zhou, X.; Song, J.; Qiu, X.; Li, J.; Ye, L.; Meng, X.; Xia, D. Expression and clinical significance of epidermal growth factor receptor and type 1 insulin-like growth factor receptor in nasopharyngeal carcinoma. Ann. Otol. Rhinol. Laryngol. 2008, 117, 192–200.
  78. Ruan, L.; Li, X.H.; Wan, X.X.; Yi, H.; Li, C.; Li, M.Y.; Zhang, P.F.; Zeng, G.Q.; Qu, J.Q.; He, Q.Y.; et al. Analysis of EGFR signaling pathway in nasopharyngeal carcinoma cells by quantitative phosphoproteomics. Proteome Sci. 2011, 9, 35.
  79. Wang, S.; Pan, Y.; Zhang, R.; Xu, T.; Wu, W.; Zhang, R.; Wang, C.; Huang, H.; Calin, C.A.; Yang, H.; et al. Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3’UTR and 5’UTR of Jab1/CSN5. Oncogene 2016, 35, 6096–6108.
  80. Wu, Y.; Shen, Z.; Wang, K.; Ha, Y.; Lei, H.; Jia, Y.; Ding, R.; Wu, D.; Gan, S.; Li, R.; et al. High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: Role in TGF-β1-induced epithelia-to-mesenchymal transition. Sci. Rep. 2017, 7, 42507.
  81. Fan, X.; Xie, Y.; Chen, H.; Guo, X.; Ma, Y.; Pang, X.; Huang, Y.; He, F.; Liu, S.; Yu, Y.; et al. Distant Metastasis Risk Definition by Tumor Biomarkers Integrated Nomogram Approach for Locally Advanced Nasopharyngeal Carcinoma. Distant Metastasis Risk Definition by Tumor Biomarkers Integrated Nomogram Approach for Locally Advanced Nasopharyngeal Carcinoma. Cancer Control 2019, 26, 1073274819883895.
  82. Wu, J.B.; Shen, L.; Qiu, L.; Duan, Q.W.; Luo, Z.G.; Dong, X.X. Reversal effect of GnT-V on the radioresistance of human nasopharyngeal carcinoma cells by alteration β1, 6-GlcNAc branched N-glycans. Int. J. Clin. Exp. Pathol. 2015, 8, 9901–9911.
  83. Lu, Y.; Huang, H.; Yang, H.; Chen, D.; Wu, S.; Jiang, Z.; Wang, R. Small molecule inhibitor TW-37 is tolerable and synergistic with chemotherapy in nasopharyngeal carcinoma. Cell Cycle 2017, 16, 1376–1383.
  84. Su, W.; Lin, Y.; Wu, F.; Guo, H.; Li, L.; Zhu, S.; Lai, Z.; Liang, R.; Yang, Z. Bcl-2 regulation by miR-429 in human nasopharyngeal carcinoma in vivo. Int. J. Clin. Exp. Pathol. 2016, 9, 5998–6006.
  85. Zhang, G.; Zhang, K.; Li, C.; Li, Y.; Li, Z.; Li, N.; Zhou, Q.; Shen, L. Serum proteomics identify potential biomarkers for nasopharyngeal carcinoma sensitivity to radiotherapy. Biosci. Rep. 2019, 39, BSR20190027.
  86. Yi, H.M.; Yi, H.; Zhu, J.F.; Xiao, T.; Lu, S.S.; Guan, Y.J.; Xiao, Z.Q. A five-variable signature predicts radioresistance and prognosis in nasopharyngeal carcinoma patients receiving radical radiotherapy. Tumor Biol. 2016, 37, 2941–2949.
  87. Feng, X.P.; Yi, H.; Li, M.Y.; Li, X.H.; Yi, B.; Zhang, P.F.; Li, C.; Peng, F.; Tang, C.E.; Li, J.L.; et al. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res. 2010, 70, 3450–3462.
  88. Li, G.; Liu, Y.; Su, Z.; Ren, S.; Zhu, G.; Tian, Y.; Qiu, Y. MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. Eur. J. Cancer 2013, 49, 2596–2607.
  89. Liao, L.; Yan, W.J.; Tian, C.M.; Li, M.Y.; Tian, Y.Q.; Zeng, G.Q. Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma. Technol. Cancer Res. Treat. 2018, 17, 1533034617750309.
  90. Huang, L.; Liao, L.; Wan, Y.; Cheng, A.; Li, M.; Chen, S.; Li, M.; Tan, X.; Zeng, G. Downregulation of Annexin A1 is correlated with radioresistance in nasopharyngeal carcinoma. Oncol. Lett. 2016, 12, 5229–5234.
  91. Tang, S.; Huang, W.; Zhong, M.; Yin, L.; Jiang, H.; Hou, S.; Gan, P.; Yuan, Y. Identification Keratin 1 as a cDDP-resistant protein in nasopharyngeal carcinoma cell lines. J. Proteom. 2012, 75, 2352–2360.
  92. Huang, J.; Qi, Z.; Chen, M.; Xiao, T.; Guan, J.; Zhou, M.; Wang, Q.; Lin, Z.; Wang, Z. Serum amyloid A1 as a biomarker for radiation dose estimation and lethality prediction in irradiated mouse. Ann. Transl. Med. 2019, 7, 715.
  93. Zhang, B.; Qu, J.Q.; Xiao, L.; Yi, H.; Zhang, P.F.; Li, M.Y.; Hu, R.; Wan, X.X.; He, Q.Y.; Li, J.H.; et al. Identification of heat shock protein 27 as a radioresistance-related protein in nasopharyngeal carcinoma cells. J. Cancer Res. Clin. Oncol. 2012, 138, 2117–2125.
  94. Ferrari, D.; Codecà, C.; Bertuzzi, C.; Broggio, F.; Crepaldi, F.; Luciani, A.; Floriani, I.; Ansarin, M.; Chiesa, F.; Alterio, D.; et al. Role of plasma EBV DNA levels in predicting recurrence of nasopharyngeal carcinoma in a Western population. BMC Cancer 2012, 12, 208.
  95. Shao, J.Y.; Li, Y.H.; Gao, H.Y.; Wu, Q.L.; Cui, N.J.; Zhang, L.; Cheng, G.; Hu, L.F.; Ernberg, I.; Zeng, Y.X. Comparison of plasma Epstein-Barr virus (EBV) DNA levels and serum EBV immunoglobulin A/virus capsid antigen antibody titers in patients with nasopharyngeal carcinoma. Cancer 2004, 100, 1162–1170.
  96. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Head and Neck Cancer. Version 2. Available online: (accessed on 28 June 2019).
  97. Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 2014, 20, 460–469.
  98. Moor, A.E.; Itzkovitz, S. Spatial transcriptomics: Paving the way for tissue-level systems biology. Curr. Opin. Biotechnol. 2017, 46, 126–133.
  99. Wang, L.J.; Chou, Y.F.; Chen, P.R.; Su, B.; Hsu, Y.C.; Chang, C.H.; Lee, J.W. Differential miRNA expression in repeated recurrence of nasopharyngeal carcinoma. Cancer Lett. 2014, 344, 188–194.
  100. Liu, G.; Zeng, X.; Wu, B.; Zhao, J.; Pan, Y. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with radiotherapy response of nasopharyngeal carcinoma and prognosis of head and neck cancer. Cancer Biol. Ther. 2020, 21, 139–146.
More