MAPK/ERK Dysfunction in Neurodegenerative Diseases

The signaling pathway of the microtubule-associated protein kinase or extracellular regulated kinase (MAPK/ERK) is a common mechanism of extracellular information transduction from extracellular stimuli to the intracellular space. The transduction of information leads to changes in the ongoing metabolic pathways and the modification of gene expression patterns. In the central nervous system, ERK is expressed ubiquitously, both temporally and spatially. The MAP-ERK pathway is a key element of the neuroinflammatory pathway triggered by glial cells during the development of neurodegenerative diseases, such as Parkinson's and Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, as well as prionic diseases. The process triggered by MAPK/ERK activation depends on the stage of development (mature or senescence), the type of cellular element in which the pathway is activated, and the anatomic neural structure. However, extensive gaps exist with regards to the targets of the phosphorylated ERK in many of these processes.

MAPK signaling pathways intervene and control cellular functions, resulting in a direct function of memory and emotional processes. Therefore, alterations or modulations of these pathways can lead to different processes implicated in various human diseases. Throughout this and the next section, we will analyze the state-of-the-art of MAPK signaling pathways in human disease, with a special focus on neurodegenerative disorders (Table 1).

The role of the MAPK/ERK pathway in neurodegenerative diseases is mainly related to glial cell function and the inflammatory response. The activation of resident immune cells of the brain, glial cells (microglia and astroglia), triggers the pro-inflammatory state with the production of nitric oxide (NO), cytokines, and chemokines and the implication of inflammatory-related pathways. Most of the components of these pathways are cytosolic targets of ERK, suggesting an essential function of the MAPK pathway in the production or sustaining of such a pathological hallmark, and consequently, in the noxious events that lead to the specific neurodegeneration.

Parkinson’s Disease

Parkinson's disease (PD) is an age-associated disease mostly identified by an extrapyramidal alteration of movement. From a pathological point of view, PD is characterized by the selective and progressive loss of dopaminergic-melanized neurons located in caudoventral regions of the substantia nigra, reactive gliosis, and intracytoplasmic inclusions of a-synuclein known as the Lewy bodies. In this sense, α-Synuclein promotes inflammation via activating p38, ERK, and JNK pathways in human microglial cells, resulting in the production of IL-1β and TNF-α. The disappearance of neurons in the substantia nigra leads to dopamine deficiency in their target areas (in the striatum and other nuclei of the basal ganglia), producing serial functional lesions and the manifestation of symptoms and clinical signs. Many genes, including 23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance, such as SNCA, Parkin, DJ-1, PINK 1, LRRK2, and VPS35, and over 20 common variants with small effect sizes and 12 genetic risk factors, have been associated with PD in recent years.

Table 1. Participation of Erk in neurodegenerative diseases.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Summary</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson´s disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRRK2</td>
<td>p-ERK present in Lewy bodies</td>
<td>[7][8][9]</td>
</tr>
<tr>
<td>6-OHDA model</td>
<td>6-OHDA elicits sustained ERK phosphorylation related to LID</td>
<td>[10][11]</td>
</tr>
<tr>
<td>MPTP model</td>
<td>ERK phosphorylation is implicated in neuroinflammation</td>
<td>[12][13]</td>
</tr>
<tr>
<td>PD patients</td>
<td>ERK phosphorylated deposits close to Lewy bodies</td>
<td>[14]</td>
</tr>
<tr>
<td>Alzheimer´s disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD patients</td>
<td>Ab dysregulates hippocampal ERK</td>
<td>[15][16][17]</td>
</tr>
<tr>
<td>SH-SY5Y cells</td>
<td>α7nACh induce tau phosphorylation and neurofibrillary tangle formation after binding to soluble Ab</td>
<td>[18]</td>
</tr>
<tr>
<td>PC12 cells</td>
<td>HO1 protects against Aβ-induced oxidative stress</td>
<td>[19]</td>
</tr>
<tr>
<td>Transgenic mice</td>
<td>ERK-signaling induces Aβ-associated behavioral deficits</td>
<td>[20][21][22][23]</td>
</tr>
<tr>
<td>ALS and HD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD1 transgenic mice</td>
<td>ERK is down regulated, which induces a dysregulation in axonal transport</td>
<td>[24]</td>
</tr>
<tr>
<td>Mutant Htt model</td>
<td>ERK deficiency triggers striatal degeneration and increases glutamate susceptibility</td>
<td>[25][26]</td>
</tr>
<tr>
<td>Prion diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prion infected mice</td>
<td>ERK is neuroprotective following prion infection</td>
<td>[27][28]</td>
</tr>
</tbody>
</table>

Leucine-rich repeat kinase 2 (LRRK2), also known as dardarin, is a 2527 amino acid (~280 kDa) protein that, in humans, is encoded by the PARK8 human gene and constituted by several functional domains, including leucine-rich repeats, an Ras-related GTPase domain, an MAP3K domain, and multiple potential protein interaction domains [7]. Several mutations in the Ras-related GTPase and MAP3K domains of LRRK2 have been associated with familial and...
Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of dementia and the most prevalent neurodegenerative disease [33]. AD is a neurodegenerative disorder of an unknown etiology characterized by the progressive loss of memory and other cognitive functions that lead to dementia. The brains of AD patients have several distinctive neuropathological features: Intracellular neurofibrillary tangles (NFTs), whose main component is the abnormally phosphorylated tau protein [34]; senile plaques (SP), primarily consisting of beta-amyloid (Aβ) [35]; and neurodegeneration [36], especially relevant in the basal telencephalon, the origin of cortical and hippocampal cholinergic innervation [37,38]. Besides, the disease progresses through a reduction of synaptic proteins [39], changes in the synaptic morphology and structure [35], and neuroinflammation [40]. AD usually occurs sporadically, but approximately 5–10% of patients manifest it in a familiar way.

MAPK pathways differentially activate during AD. All three MAP-kinases are implicated in mild and severe cases (Braak stages III–VI), both ERK and JNK/SAPK are implicated in Braak stages I and II and in non-demented cases without pathology hallmarks (Braak stage 0), and either ERK alone or JNK/SAPK alone can be activated [41]. This different participation suggests that both oxidative stress (JNK/SAPK and p38) and mitotic signaling alterations (ERK)
Amyloid b, the principal component of amyloid plaques, constitutes the main link with ERK pathway activation. In this sense, it has been established in both in vivo and in vitro studies that chronically elevated levels of Ab induce the dysregulation of hippocampal ERK MAPK. Additionally, increased p-ERK was revealed in brain extracts of AD patients. On the other hand, the oxidative stress induced by Ab activates p38 MAPK and triggers the hyperphosphorylation of tau, which is the other main neuropathological hallmark in AD.

Interacting with both AD-associated proteins, the α7 nicotinic acetylcholine receptor (α7nAChR) binds to soluble amyloid-beta, resulting in tau phosphorylation and the formation of neurofibrillary tangles. Moreover, α7nAChR mediates the activation of p38 MAPK and ERK1/2 signaling pathways, suggesting an essential role of both α7nAChR and MAPK signaling pathways in the uptake and accumulation of b-amyloid.

Furthermore, during the last decade, it has been suggested that mitochondrial dysfunction is an early pathological feature of AD related to oxidative stress and Ca2+ homeostasis that triggers Ab-induced synaptic dysfunction. It has been proved that heme oxygenase-1 (HO-1) plays a role in protecting neurons against Aβ-induced oxidative stress. Recent studies have demonstrated that acteoside induces HO-1 expression through Nrf2 activation. This activation depends on ERK and PI3K/Akt pathways, but not on JNK and p38MAPK pathways.

However, the role of ERK in AD is not clear, since an increase of total ERK, specifically within synaptosomes, is associated with a deficient memory task performance in AD transgenic mice. In this sense, the activation of ERK, downstream of NMDA NR2B receptor activity, plays an interesting role in regulating memory processes. Moreover, alterations in NR2B phosphorylation and MAPK/ERK signaling induce beta amyloid-associated behavioral deficits in an AD murine model. Recently, it has been demonstrated that changes in synaptosome MAPK/ERK signaling following ACE2-activator administration increased signaling through the NR2B receptor, inducing significant protection against cognitive decline and decreasing the amyloid accumulation.

Amyotrophic Lateral Sclerosis and Huntington’s Disease

Amyotrophic lateral sclerosis (ALS), a term proposed by Charcot in 1874, is a degenerative neurological disease that affects the pyramidal pathway along its first and second motor neurons and results in the progressive loss of bulbar and limb function. Therefore, the existence of lateral sclerosis involves the damage of projection axons of the first motor neuron and amyotrophic damage of the second motor neuron. The diagnosis of this pathology is primarily clinical, classically reflected in the criteria of El Escorial of 1998. Moreover, in 2008, electromyographic criteria were defined as a diagnostic tool for second motor neuron injury, despite the absence of semiological findings pathologically. Most ALS cases are sporadic; however, around 10% of cases may be familial due to mutations in genes, including those for Cu/Zn superoxide dismutase 1 (SOD1), dynactin, TAR DNA binding protein 43 (TDP-43), and chromosome 9 open reading frame 72 (C9orf72). Although the latest research suggests that p38 and JNK MAPK play a determinant role in ALS, ERK pathway alteration is also related, since SOD1(G93A) transgenic mice present a dysregulation in axonal transport associated with the down-regulation of ERK correlating with the up-regulation of JNK and caspase-8.

Huntington’s disease (HD) is one of nine autosomal dominant neurological diseases caused by an expansion mutation of CAG triplets encoding polyglutamine (polyQ) sequences in N-terminal domains. It affects 3–7 cases per 100,000 of the Western Europe population, and its symptoms include motor disorders (chorea and stiffness, among others), cognitive disorders (subcortical dementia), and psychological disorders (such as irritability and depression), which end with the death of patients. While the wild-type huntingtin (Htt) protein modulates intracellular vesicular trafficking and neuronal development, mutant Htt, with an elongated polyQ domain, generates toxic N-terminal fragments after undergoing proteolytic processing.

Mutant Htt presents kinase downstream ERK deficiency involved in transcriptional dysregulation and by triggering striatal degeneration, it also decreases the response to cortico-striatal BDNF signaling and downregulates ERK-dependent glutamate transporter expression, increasing cells susceptible to glutamatergic excitotoxicity.
Prion Diseases

A prion is the altered form of a 23-kDa constitutive protein (PrP in mammals) that has lost its normal function, but has acquired the property of transforming the standard form into a pathological form. This protein has a regular conformation called PrPc, encoded by a gene (PRNP) localized to human chromosome 20. In prion pathologies or prionopathies, an altered isoform originating as a result of the incomplete proteolysis of PrPc, called PrPsc, tends to form amyloid aggregates in the form of plaques in the brain. Prionopathies are disorders of the conformation of proteins, which manifest themselves as spongiform encephalopathy in animals, such as scrapie, and as neurodegenerative diseases in humans. The accumulation of PrPsc causes the involvement of the gray matter with neuronal death, gliosis, and spongiform changes. Activated microglia is a classic hallmark of neuroinflammation associated with prions, as these cells phagocytize and eliminate amyloid plaques [24][25]. As a part of the neuroinflammatory scenario, activated microglial cells regulate MAPK signaling pathways [24].

Scrapie-infected hamster's brains present an up-regulation of both pJNK and pERK [26]. ERK is neuroprotective following prion infection, since the inhibition of phospho-ERK triggered the death of scrapie-infected cells. Even more, membrane-resident PrP proteins trigger phospho-ERK activation [27]. After prion infection, there is an increased level of the phospho-ERK complex, but this is also related to a decrease in MEK complex activation, suggesting a divergent action of some phosphatases on ERK1/2 upon chronic prion infection [28].

References

5. Amin Karimi-Moghadam; Saeid Charsouei; Benjamin Bell; Mohammad Reza Jabalameli; Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process.. Cellular and Molecular Neurobiology 2018, 38, 1153-1178, 10.1007/s10571-018-0587-4.
7. Manish Verma; Erin K. Steer; Charleen T. Chu; ERKed by LRRK2: a cell biological perspective on hereditary and sporadic Parkinson’s disease.. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013, 1842, 1273-81, 10.1016/j.bbadis.2013.11.005.
11. Mohamed Rafiuddin Ahmed; Mithya Jayakumar; Mohamed Sohail Ahmed; Alsu I. Zamaeeva; Juan Tao; Eric Howard Li; Judith K. Job; Christopher Pittenger; Hiroshi Ohtsu; Jayakumar Rajadas; et al. Pharmacological antagonism of histamine H2R ameliorated L-DOPA-induced dyskinesia via normalization of GRK3 and by suppressing FosB and ERK in PD.. Neurobiology of Aging 2019, 81, 177-189, 10.1016/j.neurobiolaging.2019.06.004.
13. Yi Li; Ning Chen; Chao Wu; Yongquan Lu; Ge Gao; Chunli Duan; Hui Yang; Lingling Lu; Galectin-1 attenuates neurodegeneration in...
Parkinson's disease model by modulating microglial MAPK/IKk/NFκB axis through its carbohydrate-recognition domain.

14. Jian-Hui Zhu; Scott M. Kulich; Tim D. Oury; Charleen T. Chu; Cytoplasmic Aggregates of Phosphorylated Extracellular Signal-Regulated Protein Kinases in Lewy Body Diseases.

15. K T Dineley; M Westerman; D Bui; K H Ashe; J D Sweatt; Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease.

16. Karen A. Bell; Kenneth J O’riordan; J. David Sweatt; Kelly T. Dineley; MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time.

17. Claudio Russo; Virginia Dolcini; Serena Salis; Valentina Venezia; Elisabetta Violi; Pia Carlo; Nicola Zambrano; Tommaso Russo; Gennaro Schettini; Signal Transduction through Tyrosine-Phosphorylated Carboxy-Terminal Fragments of APP via an Enhanced Interaction with Shc/Grb2 Adaptor Proteins in Reactive Astrocytes of Alzheimer's Disease Brain.

18. W.N. Yang; K.G. Ma; Xiaolong Chen; L.L. Shi; G. Bu; X.D. Hu; H. Han; Y. Liu; Y.H. Qian; Mitogen-activated protein kinase signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor-mediated amyloid-β uptake in SH-SY5Y cells.

19. N Hettiarachchi; Mark L. Dallas; M Al-Owais; Heledd H. Jarosz-Griffiths; Nigel M. Hooper; J Scragg; J Boyle; Chris Peers; Heme oxygenase-1 protects against Alzheimer's amyloid-β(1-42)-induced toxicity via carbon monoxide production.

20. Charles E. Evans; Rhian S. Thomas; Thomas J. Freeman; Martha Hvoslef-Eide; Mark A. Good; Emma J. Kidd; Selective reduction of APP-BACE1 activity improves memory via NMDA-NR2B receptor-mediated mechanisms in aged PDAPP mice.

21. Grigory Krapivinsky; Luba Krapivinsky; Yunona Manasian; Anton Ivanov; Roman Tyzio; Christophe Pellegrino; Yehezkel Ben-Ari; David E. Clapham; Igor Medina; Grigory Krapivinsky; Luba Krapivinsky; Yunona Manasian; Anton Ivanov; Roman Tyzio; Christophe Pellegrino; Yehezkel Ben-Ari; David E. Clapham; Igor Medina; ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer's disease.

22. Eran Perlson; Goo-Bo Jeong; Jennifer L. Ross; Ram Dixit; Karen E. Wallace; Robert G. Kalb; Erika L.F. Holzbaur; Charles E. Evans; J. Scott Miners; Giulia Piva; Christine L. Willis; David M. Heard; Emma J. Kidd; Resistance of cell lines to prion toxicity aided by phospho-ERK expression.
The Journal of Neuroscience **2009**, 29, 9903-17, 10.1074/jn.108.150420.

23. Charles E. Evans; J. Scott Miners; Giulia Piva; Christine L. Willis; David M. Heard; Emma J. Kidd; Mark A. Good; Patrick G Kehoe; ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer's disease.

24. Emmanuelle Roze; Sandrine BETTEAU; Carole DEYTS; Estelle MARCON; Karen BRAMI-CHERIER; Christiane PAGÈS; Sandrine Humbert; Karine Merienne; Jocelyne CACOBO; Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death.

25. Kay M. Uppington; David Brown; Resistance of cell lines to prion toxicity aided by phospho-ERK expression.

26. Rachel A. Lacasse; James F. Striebel; Cynthia Favara; Lisa Kercher; Bruce Chesebro; Role of Erk1/2 activation in prion disease pathogenesis: Absence of CCR1 leads to increased Erk1/2 activation and accelerated disease progression.

27. Roberto Di Maio; Eric K. Hoffman; Emily M. Rocha; Matthew T. Keeney; Laurie H. Sanders; Briana R. De Miranda; Alevtina Zharikov; Antonio F. Stepan; Thomas A. Lanz; et al.Julia K. Kofer; Edward A Burton; Dario Alessi; Teresa G. Hastingt; Timothy Greenamyre; LRRK2 activation in idiopathic Parkinson’s disease.

28. Edward D. Plowey; Salvador J. Cherrla; Yong-Jian Liu; Charleen T. Chu; Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells.

29. Cristina Gómez-Santos; Isidre Ferrer; Julia Reiriz; Francesc Viñals; Marta Barrachina; Santiago Ambrosio; MPP+ increases α-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells.

30. Sumit Sarkar; Edward Lu; James Raymick; Joseph Hanig; Qiang Gu; ERK/MAP Kinase Activation is Evident in Activated Microglia of

40. Michael T. Heneka; Monica J. Carson; Joseph El Khoury; Gary E. Landreth; Frederic Brosseron; Uглас L. Feinstein; Andreas H. Jacobs; Tony Wyss-Coray; Javier Vitorica; Richard M. Mansholt; et al. LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. *Journal of Clinical Investigation* **2015**, *124*, 53-57, 10.1172/JCI90605.

42. Katherine L. Gibbs; Bernardett Kalmár; Elena R. Rhymes; Alexander D. Fellows; Mahmoud Ahmed; Paul Whiting; Ceri H. Davies; Linda Greensmith; Giampietro Schiavo; Katherine L. Gibbs; Bernadett Kalmár; Elena R. Rhymes; Alexander D. Fellows; Mahmood Ahmed; Paul Whiting; Ceri H. Davies; Kevin Boylan; Amyotrophic Lateral Sclerosis: The Clinical-pathologic Genius of Jean-Martin Charcot. *Journal of neural transmission. Supplementum* **2000**, *59*, 175–183.

46. Michael T. Heneka; Monica J. Carson; Joseph El Khoury; Gary E. Landreth; Frederic Brosseron; Uглас L. Feinstein; Andreas H. Jacobs; Tony Wyss-Coray; Javier Vitorica; Richard M. Mansholt; et al. LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. *Journal of Clinical Investigation* **2015**, *124*, 53-57, 10.1172/JCI90605.

52. Michael T. Heneka; Monica J. Carson; Joseph El Khoury; Gary E. Landreth; Frederic Brosseron; Uглас L. Feinstein; Andreas H. Jacobs; Tony Wyss-Coray; Javier Vitorica; Richard M. Mansholt; et al. LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. *Journal of Clinical Investigation* **2015**, *124*, 53-57, 10.1172/JCI90605.

Keywords

learning; memory; hippocampus; septum; synapse; Amyotrophic lateral sclerosis; Huntington's disease; Prion diseases; Alzheimer's disease; Parkinson's disease

© 2020 by the author(s). Distribute under a Creative Commons CC BY license