
mathematics

Article

Compressible Navier-Stokes Equations in Cylindrical
Passages and General Dynamics of Surfaces—(I)-Flow
Structures and (II)-Analyzing Biomembranes under
Static and Dynamic Conditions

Terry E. Moschandreou 1,*,† and Keith C. Afas 2,†

1 Department of Applied Mathematics, Faculty of Science, Western University, London, ON N6A 5C1, Canada
2 Department of Medical Biophysics, Faculty of Medical Science, Western University, London, ON N6A 5C1,

Canada; kafas@uwo.ca
* Correspondence: TMoschandreou@lia-edu.ca; Tel.: +1-519-661-2111
† These authors contributed equally to this work.

Received: 31 August 2019; Accepted:27 October 2019 ; Published: date
����������
�������

Abstract: A new approach to solve the compressible Navier-Stokes equations in cylindrical
co-ordinates using Geometric Algebra is proposed. This work was recently initiated by corresponding
author of this current work, and in contrast due to a now complete geometrical analysis, particularly,
two dimensionless parameters are now introduced whose correct definition depends on the scaling
invariance of the N-S equations and the one parameter δ defines an equation in density which can be
solved for in the tube, and a geometric Variational Calculus approach showing that the total energy
of an existing wave vortex in the tube is made up of kinetic energy by vortex movement and internal
energy produced by the friction against the wall of the tube. Density of a flowing gas or vapour
varies along the length of the tube due to frictional losses along the tube implying that there is a
pressure loss and a corresponding density decrease. After reducing the N-S equations to a single
PDE, it is here proven that a Hunter-Saxton wave vortex exists along the wall of the tube due to a
vorticity argument. The reduced problem shows finite-time blowup as the two parameters δ and
α approach zero. Finally we propose a CMS (Calculus of Moving Surfaces)–invariant variational
calculus to analyze general dynamic surfaces of Riemannian 2-Manifolds in R3. Establishing fluid
structures in general compressible flows and analyzing membranes in such flows for example flows
with dynamic membranes immersed in fluid (vapour or gas) with vorticity as, for example, in the
lungs there can prove to be a strong connection between fluid and solid mechanics.

Keywords: Navier-Stokes; compressible; cylindrical; Hunter-Saxton; Hodge; tensor; differential;
form; variational; CMS; geometry; surface; physics

1. Introduction

The fundamental lemma of Geometric-Algebra is that the geometric product can be decomposed
into an inner product and outer product of two complex vectors. It can be proven that the bivector
product of two complex vectors is a complex vector. With this in mind we introduce complex vectors
for the representation of the inertial term ~f = ~a · ∇~a and the velocity~b = ~a

ρ . In the transformation
of the governing Navier Stokes equations it can be proven that there is a density time dependent
derivative present in the transformed equation which presents a pseudo-scalar in the transformed
Navier-Stokes-Continuity equations. The stage is set to discuss solutions to two types of problems
one which is in the setting of Geometric Algebra/Calculus using multivectors and the second type of
solution being one in which the elements of the partial differential equations derived are not complex
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vectors(exponential function in time variable is not multivector dependent). We attempt to address
one type of solution, the simpler one which leads to the existence of a Hunter-Saxton wave vortex
in the large regimes of fluid flowing in a horizontal tube configuration. In the present work the
full 3D compressible cylindrical Navier-Stokes equations are reduced using a new procedure to a
Hunter-Saxton equation expressed in terms of the azimuthal angle in the flow. Also it is shown that
there exists a complex vector ~F which can be expressed as ~F = ~f + Ic~b with multivectors. Here we
are interested in the angle in both the plane of rotation and outside the plane of rotation between the
vectors~b and ~f in the plane I.

Having introduced the goal of the paper for fluid dynamics of compressible flow in a tube
at this stage of the paper, we are interested in further establishing a theoretical means to discuss
the interaction of vortices with solid and flexible walls of tubes. Impingement of vortices on small
biomembranes immersed inside tubes is also of general interest. These biological structures undergo
large deformations under forces induced by vortices. Given this we now discuss a framework to
analyze such membranes first in general and then with connection to fluid dynamics. It is important to
do this in order to formulate a language to discuss fluid-membrane interaction problems in general.
Variational Calculus is extremely useful in deriving laws regarding physical phenomena by minimizing
the total energy required to form a system [17]. How such a system evolves may be determined by
variating the integral of the total energy density known as the Action S of the system. This method of
analyzing membranes has been often used in several physical fields such as physics and chemistry but
is not seen as widespread in the Biomedical Sciences, particularly where it would have potential for
analyzing Biological Phospholipid Bilayer Membranes [18]. The paper is organized into two parts, the
first is (i)Flow Structures and the second is (ii) Analyzing Biomembranes under Static and Dynamic
Conditions. The discussion consists of a relationship between these two parts with a conclusion
connecting and summarizing these.

2. Flow Structures

2.1. A New Composite Velocity Formulation

The 3D compressible cylindrical unsteady Navier-Stokes equations are written in expanded form,
for each component, ur,uθ and uz:

∂ur
∂t + ur

∂ur
∂r + uθ

r
∂ur
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u2
θ
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∂ur
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r2 + ∂2ur
∂r2 + 1

r
∂ur
∂r + 1

r2
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(2.3)

where ur is the radial component of velocity, uθ is the azimuthal component and uz is the velocity
component in the direction along tube, ρ is density, µ is dynamic viscosity ,Fgr, Fgθ , Fgz are body
forces on fluid. The total gravity force vector is expressed as ~FT = (Fgr, Fgθ , Fgz). The following
relationships between starred and non-starred dimensional quantities together with a non-dimensional
quantity δ are used:

ur =
1
δ

u∗r (2.4)
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uθ =
1
δ

u∗θ (2.5)

uz =
1
δ

u∗z (2.6)

r = δr∗ (2.7)

θ = θ∗ (2.8)

z = δz∗, t = δ2t∗ (2.9)

The density is defined in general as,

ρ =

−iρ1

√
− sin(αθ)

αθ αθ ∈ (−π, 0),

ρ1

√
sin (αθ)

αθ αθ ∈ (0, π)

where i =
√
−1, α > 0, ρ1 is general function, and further below in this paper a geometric proof is

shown that the sign of the radial velocity ur will change on a surface given by z∗ =
√(

r∗2 − θ∗2
)

.

It can also be observed that the density as defined above is real valued on (−π, π).
Replacing Equations (2.10, 2.11) in Reference [29], we use new Equations (2.4-2.9) above,

multiplying scale invariant Equations (2.1-2.3) by Cartesian unit vectors ~er∗ = (1, 0, 0), 2 ~eθ∗ = (0, 2, 0)
and ~k = (0, 0, 1) respectively and adding modified equations for Equations (2.1-2.3) giving the
following equations, for the resulting composite vector ~L1 = 1
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expanding previous 2 equations leads to, due to invariance of Navier Stokes equations, ~L2 = u∗r∗ ~er∗ +

2u∗θ∗ ~eθ∗ + u∗z∗~k. Here the δ drops out of the equation.
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2.2. A Solution Procedure for δ Arbitrarily Small in Quantity

Multiplication of Equation (2.10) by ρ and Equation (2.12) below by ~L1, addition of the resulting
equations [29], and using the ordinary product rule of differential multivariable calculus a form as in
Equation (2.13) is obtained whereby~a is given by~a = ρ~L2.

The continuity equation in cylindrical co-ordinates is

∂ρ

∂t∗
+ u∗r∗

∂ρ

∂r∗
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Taking the geometric product in the previous equation with the inertial vector term,

~f =~a · ∇~a (2.14)

where~b = ~a
ρ is defined, where in the context of Geometric Algebra, the following scalar and vector

grade equations arise,
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The geometric product of two vectors [30] is defined by ~A~B = ~A · ~B + ~A × ~B. Taking the
divergence of Equation (2.16) results in[
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with the divergence of the following non-linear terms,
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where vorticity in the z∗ direction appears. It will be assumed for now that the vorticity is linear
in r∗ and separable in r∗ from remaining independent variables. It can be generalized to a form
r∗F(r∗, θ∗, z∗, t∗) with the restricton that F is increasing in r∗ towards the wall of the tube. For the
moment, Div=0 will be set without justification and δ ≈ 0(but not zero) which imply,

u∗r∗ =



2u∗
θ∗ sin(αθ∗)θ∗

(
ω3r∗−u∗

θ∗

)
2 sin(αθ∗)

(
∂

∂θ∗ u∗
θ∗

)
θ∗−u∗

θ∗

(
cos(αθ∗)αθ∗+sin(αθ∗)

) θ∗ ∈ (−π, 0),

2u∗
θ∗ sin(αθ∗)θ∗

(
ω3r∗−u∗

θ∗

)
2 sin(αθ∗)

(
∂

∂θ∗ u∗
θ∗

)
θ∗−u∗

θ∗

(
cos(αθ∗)αθ∗+sin(αθ∗)

) θ∗ ∈ (0, π),

The fact that the vorticity is twice the angular velocity (~ω = 2 ~ωA) is used; it can be seen that the
angular velocity will be high near the wall due to viscous friction and negligible near r∗ = 0.

The angular velocity of a fluid particle in 3D is,

~ωA =
~r× ~u

|~r|2

and as a result, the vorticity ω3 is calculated as,

ω3 =
2

|~r|2
(

r∗u∗θ∗ − θ∗u∗r∗
)

,

Substitution into the formula for u∗r∗ above and solving for u∗r∗ results in,

u∗r∗ =
(

2u∗2θ∗ θ∗ sin(αθ∗)
(

r∗2 − θ∗2 − z∗2
))
×(

2θ∗ sin(αθ∗)(r∗2 + θ∗2 + z∗2)
(

∂u∗
θ∗

∂θ∗

)
+
(
((4r∗ + 1)θ∗2 + r∗2 + z∗2) sin(αθ∗)

+αθ∗ cos(αθ∗)(r∗2 + θ∗2 + z∗2)
)

u∗θ∗

)−1
(2.18)

The radial velocity, u∗r∗ , depends on the terms u∗θ∗ and hyperbolic part,
(

r∗2 − θ∗2 − z∗2
)

. The sign

of the radial velocity will change on the surface given by z∗ =
√(

r∗2 − θ∗2
)

2.3. Characterization of the Sign of the Vorticity

The cylindrical function (z∗)2 = (r∗)2 − (θ∗)2 defines interior and exterior regions where the
radial velocity will be positive and conversely negative; the radial velocity will vanish on regions which
belong to the cylindrical surface outlined by the cylindrical function. Graphing modalities encounter
difficulties due to plotting softwares protocols in handling square root functions. This cylindrical
function has a natural representation which can be found by warping the cylindrical coordinate
system from (r∗, θ∗) to (φ, ξ) which is outlined by the substitution {r∗ = φ cosh ξ, θ∗ = φ}.
This transformation has the surface jacobian outlined by:

Jα
α′ =

[
cosh ξ φ sinh ξ

1 0

]
(2.19)
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In this natural representation, the Radial Velocity null-surface is outlined by:

x =

φ cosh ξ cos φ

φ cosh ξ sin φ

φ sinh ξ

 , ξ ∈ [0, ξmax] , φ ∈ [0, φmax] (2.20)

where ξmax is specified to be coincident with a cylinder of radius r∗ = rmax oriented along the z-axis at
the value z∗ = zmax. Since it is known that the conditions specify the equalities zmax = φmax sinh ξmax

and rmax = φmax cosh ξmax, the value of ξmax can be given by

tanh ξmax =
zmax

rmax
, φ2

max = r2
max − z2

max (2.21)

This image can be plotted continuously (See Figures 1–3). An important property of this surface
is that taking the cylindrical representation of the function, in the large regimes of r, the function
reduces to a cone. This represents the quality that far from the center of the tube, the induced vorticity
dissipates near the wall. At infinity for z∗, we approach a perfect circle as shown partially in Figure 1.

Figure 1. Plot of contours obtained by using Maple 2019 software; red corresponds to the values z = 0,
0.5, 1, 1.5, blue to the values z = 2, 2.5, 3, 3.5, green to the values z = 4, 4.5, 5, 5.5 and yellow to the values
z = 6, 6.5, 7, 7.5. It can be observed that as z approaches infinity a perfect circular contour is formed.

Figure 2. Contour plot obtained using Maple 2019 software, taking contours at various z values up to
z = 20.
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Figure 3. A cylinder in green with embedded surface r =
√

θ2 − z2 in red obtained using Maple
2019 software.

2.4. Non-Linear Further Reduction

The other nonlinear terms in Equation (2.16), that is, 2r∗−2
(

2
∂u∗r∗
∂θ∗ ~eθ∗ −

∂u∗
θ∗

∂θ∗ ~er∗
)

have a divergence
equal to,

−
(

4
∂2

∂θ∗2 u∗r∗ (r
∗, θ∗, z∗, t∗)

r∗3 + 4
∂

∂θ∗ u∗`∗ (r
∗, θ∗, z∗, t∗)
r∗3 − 2

∂2

∂θ∗∂r∗ u∗`∗ (r
∗, θ∗, z∗, t∗)

r∗2

)
which is equal to

∂

∂θ∗

(
4r∗−2[∇×~b]∗z − 2r∗−2 ∂u∗θ∗

∂r∗
− 8r∗−2 u∗θ∗

r∗

)
=

∂

∂θ∗

(
4r∗−2ω3

(
r∗, θ∗, z∗, t∗

)
−

r∗−2

2
ω3
(
r∗, θ∗, z∗, t∗

)
− 4r∗−2 ω3

(
r∗, θ∗, z∗, t∗

) )
The value of r∗ is chosen to be large as mentioned previously for δ small in value. This implies

that the above expression is negligible and can be omitted from the subsequent analysis. This is true
since ω3 is assumed to be linear in r∗ as will be further clarified below. It is known that the three
dimensional vorticity controls the breakdown of smooth solutions of the 3D Euler equations [31].

We denote the following in Equation (2.15)

Ψ = 2r∗−2

2
∂u∗r∗
∂θ∗

~f · ~eθ∗ −
∂u∗θ∗
∂θ∗

~f · ~er∗


and in Equation (2.16) we denote by ψ

ψ = ∇ · 2r∗−2

2
∂u∗r∗
∂θ∗

~eθ∗ −
∂u∗θ∗
∂θ∗

~er∗


As it will be shown in this work, for r∗ not very large so that the flow is confined to a central core

in the tube, the term ψ is significant but not unbounded on t∗ ∈ (0, ∞). It is only when r∗ → ∞ that
solutions breakdown outside the central core in the vicinity of the wall of the tube. So ψ dependent on
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ω3 does control the breakdown of smooth solutions of the 3D compressible equations as will be seen
in this study.

The expression ~f · Ψ in Equation (2.15) will vanish further below when we take a dot product
in the z∗ direction of flow or~k direction downstream in tube. We therefore do not include it after
Equation(2.24) below. Upon multiplication of Equation (2.17) by,

H =
ρ~b · ~f

∂ρ
∂t

(2.22)

the resulting equation is[
ρ2H ∂

∂t (∇ ·~b) + ρ2~b · ~f∇ ·~b + H~b · ∇(ρ ∂ρ
∂t )
]
+ H∇ · (~bρ2∇ ·~b) =

µH∇ · ∇2~b + µ
3 H∇ · (∇(∇ ·~b)) + H∇ · (∇P) + H∇ · ρ~FT

(2.23)

which results upon using Equation (2.15) in,

ρ2H ∂
∂t (∇ ·~b)− ~f ·

(
ρ2 ∂~b

∂t + ρ~b ∂ρ
∂t

)
−
∥∥∥~f∥∥∥2

+ ~f · ∇2~b + µ
3
~f · ∇(∇ ·~b)− ~f · ∇P + H~b · ∇(ρ ∂ρ

∂t )+

H∇ · (~bρ2∇ ·~b) = µH(∇ · ∇2~b) + µ
3 H∇ · (∇(∇ ·~b)) + H∇ · (∇P) + H∇ · ρ~FT + Ψ

(2.24)

The continuity equation is written in terms of~b as,

∂ρ

∂t
+ ρ∇ ·~b +~b · ∇ρ = 0 (2.25)

and
∇ ·~b = −1

ρ

∂ρ

∂t
− 1

ρ
∇ρ ·~b (2.26)

where the following compact expression is given,

Y∗ = ∇ ·~b (2.27)

For the term ρ~f ·~b ∂ρ
∂t in Equation (2.24) we obtain upon using Equations (2.15) again, (2.26) and

multiplying by (~f · ~f )−1 in Equation (2.24) and, using properties of third derivatives involving the
gradient and in particular the fact that the Laplacian of the divergence of a vector field is equivalent to
the divergence of the Laplacian of a vector field, leads to the following form,

W∗ ∂Y∗
∂t − G(ρ, ∂ρ

∂t )W
∗ − F(ρ, ∂ρ

∂t )
~b~f (1 + ~f · ∇P)− ρ−2V(µ)W∗∇2(Y∗)− 2~b~f ∂ρ

∂t
ρ−1∥∥∥~f∥∥∥2

~f ·
(

∂~b
∂t

)
+ Ω+

2~b~f ∂ρ
∂t

ρ−3∥∥∥~f∥∥∥2 µ~f · ∇2~b + 2~b~f ∂ρ
∂t

ρ−3∥∥∥~f∥∥∥2
µ
3
~f · ∇(∇ ·~b)− ρ−2~b~f 1∥∥∥~f∥∥∥2

~b · ~f ∇ ·
(
~bρ2∇ ·~b +∇P + ρ~FT

)
= 0

(2.28)

where Ω = ρ−2H~b · ∇(ρ ∂ρ
∂t ) in Equation (2.28).

We consider Ω term now. We use Equation (2.15) and the following identities,

~b · ∇(∇2~b) =
1
2
∇(∇2~b · ∇2~b)−∇2~b× (∇×∇2~b)

~b · ∇(ρ2 ∂~b
∂t

) = ∇( b2

2
)−~b×∇× (ρ2 ∂~b

∂t
)
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Further in this paper we will take curl of the desired equation and the curl of the previous expression
above when dotted with~b will be zero. As a result the term that is left over is,

L1 = ∇× (2∇2~b +∇2~b×∇2~ω)

If the Laplacian of the vorticity vector is the triple (-2,-2,-2)( ie. vorticity is quadratic), then using the
following identity,

∇× (~a×~s) =~a(∇ ·~s)−~s(∇ ·~a) + (~s · ∇)~a− (~a · ∇)~s,

L1 = 0

Next,

W∗ =

 ~f ·~b∥∥∥~f∥∥∥2
~f

~b =

 ~f ·~b∥∥∥~f∥∥∥2
~f

 ·~b +
 ~f ·~b∥∥∥~f∥∥∥2

~f

×~b = ξ + ~f ×

 ~f ·~b∥∥∥~f∥∥∥2
~b

 (2.29)

This involves the vector projection of~b onto ~f which is written in the conventional form,

projf b =
f · b
‖f‖2 f (2.30)

Equation (2.28) can be written compactly as

∂Y∗

∂t
− G(ρ,

∂ρ

∂t
)− ρ−2V(µ)∇2Y∗ − ρ−2∇2P =

U~f

[
Q(ρ, ∂ρ

∂t ,~b, ∂~b
∂t ,∇P, ~FT) + ~f

]
U~f

~b
(2.31)

where U~f
~ξ is the scalar projection for~b, G = 1

ρ2

(
∂ρ
∂t

)2
, Q (a differential operator defined by Equations

(2.16) and (2.28) and hence for a constant positive function α,

∂Y∗

∂t
− G(ρ,

∂ρ

∂t
)− ρ−2V(µ)∇2Y∗ − ρ−2∇2P =

∥∥∥Q(ρ, ∂ρ
∂t ,~b, ∂~b

∂t ,∇P, ~FT) + ~f
∥∥∥∥∥∥~b∥∥∥ = α ≥ 0 (2.32)

with solution in terms of a function B,

Y∗ = ∇ ·~b = B(α, r, θ, z, t) (2.33)

At this stage of the analysis we introduce the vorticity equation for compressible flow,

∂~ω

∂t
+ (~a · ∇)~ω = (~ω · ∇)~a− ~ω(∇ ·~a) + ∇ρ

ρ2 ×∇P +∇× (
∇ · τ

ρ
) +∇× (

F
ρ
)

We consider the third component of the vorticity equation in z∗. It is assumed that the vorticity is an
exponential function of z∗ and t∗ , ie ω = r∗G(θ∗)e− tanh(α z∗)e− tanh(α t∗), for some general function of θ∗.
Recall that a1 = ρb1 = 0 on surface r∗2− θ∗2− z∗2 = 0, a2 = ρb2 = 1

2r∗ω(r∗, θ∗, z∗, t∗)(r∗2 + θ∗2 + z∗2).
This can be non-zero except at the center of the tube where there the flow is irrotational, also G(θ∗) 6= 0
further away from the center of tube. Substitution of this form of ~ω into the vorticity equation and
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letting a∗3 be an increasing linear function in the form βz∗, results in∇ ·~a being solved for and expanded
in a series for small α and large β, resulting in,

∇ ·~b = O(1/r∗) (2.34)

It is worthy to note that ρ is decreasing down the tube and a∗3 is increasing and this is physically
true for gas pipe flows.

Here we note that due to the appearance of the z∗-direction of vorticity in the cylindrical Navier
Stokes equations that this expression’s form can control the breakdown of smooth solutions for 3-D
cylindrical compressible equations as we will see below in this paper. The compressible Navier-Stokes
equations have regular solutions that blow up in finite time. The remaining part of paper is to prove
this using integral calculus methods. It will also be seen that if ρ is independent of t∗ then there are
classical global solutions in t∗.

Recall from the very onset definition of ρ that it is changing exponentially in time. It may be
proven that B is written in terms of a non-homogeneous Green’s function in spatial and time variables.
Next we have from Equation (2.31),[

∂Y∗
∂t − G(ρ, ∂ρ

∂t )− ρ−2V(µ)∇2Y∗ − ρ−2∇2P

]
~f ·~b =

~f ·
[
Q(ρ, ∂ρ

∂t ,~b, ∂~b
∂t ,∇P, ~FT) + ~f

]
where ~f drops out on both sides to obtain[

~b ∂Y∗
∂t −~bG(ρ, ∂ρ

∂t∗ )−~bρ−2V(µ)∇2Y∗ −~bρ−2∇2P

]
=[

Q(ρ, ∂ρ
∂t ,~b, ∂~b

∂t ,∇P, ~FT) + ~f
] (2.35)

Using Equation (2.34) that is, ∇ ·~b = O(1/r∗) and substituting in the left side of Equation (2.35)
and taking the limit as r∗ → ∞ for ρ as defined in this work, the left side of Equation (2.35) vanishes
with the exception of term, −~bG(ρ, ∂ρ

∂t∗ ) (cancels with exact term that is part of Q) and we obtain the
following for Q, [

−2 ∂~b
∂t −

1
ρ
~b ∂ρ

∂t − F(ρ, ∂ρ
∂t )(

~fb + ~FT)
]
− ρ−2~b∇ · ~FT = 0 (2.36)

where F(ρ, ∂ρ
∂t ) = ρ−3 ∂ρ

∂t . Ω in Equation (2.28) vanishes due to assumption on rate of change of density

with respect to t and c = 1/δ. Also, F(ρ, ∂ρ
∂t )

~f = ρ−3 ∂ρ
∂t ρ2~b · ∇~b = ρ−1 ∂ρ

∂t
~b · ∇~b = c~fb.

We obtain the following upon taking the curl of Equation (2.36),

− 2
∂

∂t∗
∇×~b− c∇× ~fb −∇×

(
ρ−2~b∇ · ~FT

)
= 0 (2.37)

where the conservative gravity force drops out.
Multiply Equation (2.37) by the normal vector cos(θ)~a which is the normal component of~a at wall

of moving control volume (CV) in the z∗ direction,(direction of flow downstream in tube)

cos(θ)~a ·
[
−2

∂

∂t∗
∇×~b− c∇× ~fb −∇×

(
ρ−2~b∇ · ~FT

)]
= 0 (2.38)
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2.5. Stokes Theorem Applied to Dynamic Surfaces

Recalling Divergence theorem and Stoke’s theorem, for general F,
˚

V

(∇ · F)dV =

‹

S(V)

F · n̂dS

¨

S

(∇× F) · dS =

˛
C

F(r) · dr (2.39)

where C is the contour of a circle in control volume of tube and S consists of all surfaces of
control volume.

The geometry of the present problem is shown as a cross section of a tube in Figure 4 below.

Figure 4. Vector~bg which is pointing in the direction of increasing gravitational force. The right angle
triangles show vector addition as expressed by solution, ~L2 =~b = u∗r∗ ~er∗ + u∗θ∗ ~eθ∗ .

Defining the following vector field,

~W = − ∂

∂t
∇×~b− 1

2
∇×

(
ρ−2~b∇ · ~FT

)
, (2.40)

‹

S(V)

W · n̂dS =

˚

V

(∇ ·W)dV (2.41)

=
c
2

˛
C

fb(r) · dr (2.42)

where n̂ = cos(θ)~a and Stoke’s theorem has been used. Applying Stoke’s theorem to ~W, hence~b. It is
evident that the derivative of the circulation

d
dt∗

˛
C
~b · dr =

˛
C

∂~b
∂t∗
· dr +

˛
C
~b · d~b =

˛
C

∂~b
∂t∗
· dr +

˛
C

d
∣∣∣~b∣∣∣2 /2.

The last integral in previous series of equalities is an integral of a perfect differential around a
closed path and is therefore equal to zero. To use Stokes theorem for dynamic surfaces that change
with time, it can be seen in Appendix B that using the Calculus of Moving Surfaces (CMS) [18,32],
the only requirement is that the paraboloid surface considered here has the same boundary as a
disk which is coincident to the boundary of the paraboloid. Under this observation, the boundary is
stationary and so the surface integral over a dynamic surface can be reduced down to the line integral
around the stationary path, and is thus equivalent to the path integral around a closed disk coincident
with the mouth of the paraboloid. Therefore, the dynamic nature of the paraboloids studied in this
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paper is not a point of concern when applying Stokes Equation to obtain a line integral. Refer to
Appendix A for general time derivatives of dynamic line integrals. Proceeding we obtain,

c
2

˛
C
~fb(r) · ~Tds = −

˛
C
(

∂~b
∂t∗

+
1
2

ρ−2~b∇ · ~FT) · dr (2.43)

where ~T is unit tangent vector to closed curve C and ds is arc length,

˛
C
(

c
2
~fb(r) +

∂~b
∂t∗

+
1
2

ρ−2~b∇ · ~FT) · dr = 0 (2.44)

The third term in the parenthesis in Equation (2.44) is integrated by parts for line integral and we
obtain the following, ˛

C
(

c
2
~fb(r) +

∂~b
∂t∗
− 1

2
~FT∇ · (ρ−2~b)) · dr = 0 (2.45)

Parametrizing the circle as r = g(θ) in polar coordinates it can be proven that the line integral in
Equation (2.45) is,

˛
C
(c

fb1

2
+

∂b1

∂t∗
− 1

2
FT1∇ · (ρ

−2~b)) · dθ −
˛

C
(c

fb2

2
+

∂b2

∂t∗
− 1

2
FT2∇ · (ρ

−2~b)) · dr = 0 (2.46)

The normal form of Green’s theorem can be used for the line integral in Equation (2.46),
setting first,

M =
∂b1

∂t∗
+ cb1

∂b1

∂r∗
+ c

b2
∂b1
∂θ

r∗
− 1

2
FT1∇ · (ρ

−2~b) (2.47)

N =
∂b2

∂t∗
+ cb1

∂b2

∂r∗
+ c

b2
∂b2
∂θ

r∗
− 1

2
FT2∇ · (ρ

−2~b) (2.48)

The line integral in Equation (2.46) is equal to the following,

¨
R

(
∂M
∂r

+
∂N
∂θ

)
drdθ (2.49)

where M and N are given by Equations (2.47) and (2.48) respectively and R is the open disk with
boundary C. The gravity force FT1 which includes multiplication by δ3(see Equations (2.10),(2.11)), is
expressed as follows,

~FT = −∇φ = −g∇h = g∇
∥∥∥(~bTSi(αθ))

∥∥∥ (2.50)

where Si is the sine integral, φ is a potential function, h is the negative height in the direction of the
vector ~bg in Figure 4, T = 1

α is a time constant and g is gravity constant. Upon substitution of M and N
into Equation (2.49) and further substitution of,

b1 =
(

2b2
2 θ∗ sin(αθ∗)

(
r∗2 − θ∗2 − z∗2

))
×(

2θ∗ sin(αθ∗)(r∗2 + θ∗2 + z∗2)
(

∂b2
∂θ∗

)
+
(
((4r∗ + 1)θ∗2 + r∗2 + z∗2) sin(αθ∗)

+αθ∗ cos(αθ∗)(r∗2 + θ∗2 + z∗2)
)

b2

)−1
(2.51)
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gives us a very complicated pde to solve. However it is noteworthy to see that it is in fact separable in
time t (Maple verification). The form is b2 = U(r∗, θ∗, z∗)H(t∗), where H(t∗) is given by an ode,

d
dt

H
(
t∗
)
= c4

(
H
(
t∗
))2

(2.52)

2.6. The Hunter-Saxton Equation

Vorticity is assumed to be in the form ω3 = r∗F (θ∗, z∗, t∗) and in Equation (??) ρavg is taken to
be negligible,

1
2

FT2∇ · (ρ
−2~b) = − sin(αθ)

αθ
b2(r∗, θ∗, z∗, t∗)

2
α θ z2 (rγ)2 b1 (r∗, θ∗, z∗, t∗) ln (r)

sin (α θ)

e−
(ln(r))2

δ2

2

rδ2

−

α θ z2 (rγ)2 b1 (r∗, θ∗, z∗, t∗) γ

sin (α θ)

e−
(ln(r))2

δ2

2

r

− 1/2
α θ z2 (rγ)2 ∂

∂r∗ b1 (r∗, θ∗, z∗, t∗)

sin (α θ)

e−
(ln(r))2

δ2

2 +

1
2r

(
α2θ z2 (rγ)2 b2 (r∗, θ∗, z∗, t∗) cos (α θ)

(
sin (α θ)

)2

e−
(ln(r))2

δ2

2 − α z2 (rγ)2 b2 (r∗, θ∗, z∗, t∗)

sin (α θ)

e−
(ln(r))2

δ2

2 −

α θ z2 (rγ)2 ∂
∂θ∗ b2 (r∗, θ∗, z∗, t∗)

sin (α θ)

e−
(ln(r))2

δ2

2

)

Differentiate with respect to θ∗, use Equation (2.51), substitute r∗2 − θ∗2 − z∗2 = 0, so that we are
on the circle at infinity and letting

b2
(
r∗, θ∗, z∗, t∗

)
= 1/2 F

(
θ∗, z∗, t∗

) (
r∗2 + θ∗2 + z∗2

)
(2.53)

A denotes the partial derivative ∂b2
∂θ∗ and B the azimuthal velocity b2. Letting the entire expression

above for the derivative of FT2 term with respect to θ be denoted by G and scaling G by dividing by
4−1r∗3z∗6 and taking the limit as z∗ approaches infinity gives,

−
r2γ−4 exp( 2 ln(r)2

δ2 )

2θ∗2 sin(αθ∗)2

(
θ∗2 A2 + 2 θ∗ BA− B2

)(
cos (α θ∗)

)2
+

2 AB sin (α θ∗) cos (α θ∗) α θ∗2 +
(
−B2α2 − A2

)
θ∗2 − 2 θ∗ BA + B2

(2.54)

Substituting A = r∗2 A2 and B = r∗2B2 where A2 and B2 are independent of r∗ as previously
assumed due to vorticity being in this form as well(note we could have chosen A2,B2 to be dependent
on r∗ with similar results to follow since the form of ω3 can be generalized), we obtain for Equation
(2.54) in the limit as α→ 0 the following,

1/2
A2

2 (rγ)2

r4

e
(ln(r))2

δ2

2

(2.55)
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Finally taking the limit as α→ 0, since γ = 1− 1
δ and matching r∗ large for δ small (recall r = r∗δ),

we obtain,

lim
α→0

∂N
∂θ∗

=
A2

2
2

=
1
2
(

∂b2

∂θ∗
)2 (2.56)

It follows that the right hand side of ∂N
∂θ∗ is precisely 1

2 A2
2= 1

2 (
∂b2
∂θ∗ )

2 Using Equations (2.47-2.49) and
integrating out r∗ parts and setting all constants to unity gives us a Hunter-Saxton-like equation at
z∗ = ∞ on a perfect circle, that is,

∂

∂θ∗

(
∂b2

∂t∗
+ b2

∂b2

∂θ∗

)
=

1
2

(
∂b2

∂θ∗

)2
(2.57)

This equation is a Hunter-Saxton Equation that describes the evolution of the vorticity at the
boundary of the tube. For very large regimes of the tube the fluid propagates as a Hunter-Saxton-like
wave vortex along the boundary of the tube. It can be seen that b1 = 0 and Equation (2.47) vanishes
since FT1 = 0 on the surface r∗2 − θ∗2 − z∗2 = 0. To transform the Hunter-Saxton Equation into
cartesian co-ordinates, we use the chain rule, with the following transformation,

r∗ =
√

x2 + y2 (2.58)

θ∗ = tan−1(y/x) (2.59)

To obtain the following evaluation of the derivatives:

∂b2

∂x
=

∂b2

∂r∗
∂r∗

∂x
+

∂b2

∂θ∗
∂θ∗

∂x
(2.60)

∂b2

∂y
=

∂b2

∂r∗
∂r∗

∂y
+

∂b2

∂θ∗
∂θ∗

∂y
(2.61)

By multiplying and subtracting(adding) x and y it can be shown that the following commutator
relations hold,

∂b2

∂θ∗
= x

∂b2

∂y
− y

∂b2

∂x
∂b2

∂r∗
= (x2 + y2)−1/2

(
x

∂b2

∂x
+ y

∂b2

∂y

)
(2.62)

Upon further differentiation it can be shown that,

y2 ∂2b2

∂x2 − x2 ∂2b2

∂y2 =
y4 − x4

(x2 + y2)3/2
∂b2

∂r∗
+

y4 − x4

(x2 + y2)2
∂2b2

∂θ∗2 +

(
2y3x + 2x3y

)
(x2 + y2)2

∂b2

∂θ∗
(2.63)

Using Equations (2.48) and (2.63) we obtain a pde which is separable in time and exhibits finite
time blowup. The spatial part of the solution has been solved numerically. It is a simple exercise to
show that waves at infinity occur showing that there is a vortex wave stucture there.

2.7. Non-Blowup Result

In Equation (2.55) it can be seen that if δ approaches infinity then this term approaches zero and
we do not have a Hunter-Saxton equation. We have from Equations (??) and (2.13) that ρ will tend to
zero and solutions will exist since only the viscosity term, pressure gradient and gravitational force
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terms will survive in Equation (2.13). To give the definition of density replacing Equations (??) and (??)
for large δ, we write,

δ =

∂
∂θ ρ1(r, θ, z, t) + z

(
∂
∂z ρ1(r, θ, z, t)

)
(

∂
∂r ρ1(r, θ, z, t)

)
r + ρ1(r, θ, z, t)− ρavg

(2.64)

ρ1(r, θ, z, t) = ρavg +

Fρ

(
θδ+ln(r)

δ , zr−
1
δ , t
)

r
(2.65)

this would prove positive for the existence of regular solutions to the Incompressible Cylindrical
Navier-Stokes equations. It is immediate that as δ→ ∞, ρ1 → ρavg 6= 0 in general.

2.8. Geometrical and Variational Analysis of the Hunter-Saxton Equation

The Hunter-Saxton equation mentioned above for b2(θ
∗, t∗) contains geometrical significance.

Primarily, to define the region upon which the Hunter-Saxton equation is prescribed in this case,
let Σ ⊂ R2 represent an infinite cylindrical tube of radius R oriented along the z axis given by the
following embedding in R3:

R =

R cos θ∗

R sin θ∗

z

 , θ∗ ∈ [0, 2π], z ∈ (−∞,+∞), R ∈ R (2.66)

For such a surface, a Lagrangian upon it would usually utilize L(θ∗, z) but in this case it is
sufficient to describe the Lagrangian as only dependent on θ∗ (and possibly time, t∗). The Lagrangian
for the above formulation of the Hunter-Saxton Equation can be seen to be described by the following
Surface Integral over the coordinate space of Σ denoted dR2 = dθ ∗ dzdt∗ of an Energy Density
prescribed by L:

E =

ˆ t∗f

t∗i

ˆ z̃

−z̃

ˆ 2π

0
L
(

b2,
∂b2

∂θ∗
,

∂b2

∂t∗

)
dθ∗dzdt∗ , where L =

1
2

∂b2

∂t∗
∂b2

∂θ∗
+

1
2

b2

(
∂b2

∂θ∗

)2
(2.67)

Using Variational Calculus reproduces the following:

δE = 0→
(

∂L
∂b2
− ∂

∂θ∗
∂L

∂ (∂θ∗b2)
− ∂

∂t∗
∂L

∂ (∂tb2)

)
δb2 =

0→ ∂2b2

∂θ∗∂t∗
+

∂

∂θ∗

(
b2

∂b2

∂θ∗

)
=

1
2

(
∂b2

∂θ∗

)2

which is the Hunter-Saxton Equation. The Lagrangian has difficulty being interpreted in the
significance of the terms and how they would correspond to the geometry of the Surface it is defined on.
If one considers the prototypical example of a cylindrical surface, a cylinder as prescribed above with
Radius 1, it can be shown that the Lagrangian can be expressed in terms of CMS (Calculus of Moving
Surfaces) objects on the surface Σ (the cylinder with radius 1) and expressing them through differential
forms on b2 = b2(θ

∗, t) by the following using the conventions of Ivancevic & Ivancevic [33]:

L =
1
2

〈
S1∇̇b2,

(
d(Σ)b2

)]〉
Σ
+

1
2

b2(R ·N)2
〈(

d(Σ)b2

)]
,
(

d(Σ)b2

)]〉
Σ

(2.68)
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where 〈·, ·〉Σ is the inner product induced by the metric tensor on Σ, S1 is the tangent vector to Σ in
the θ direction (thus curves around the cylinder), ∇̇ is the Invariant Time Derivative from CMS [18]
defined on Σ, d(Σ) is the differential of a function on Σ, (·)] is the “sharp” notation taking 1-forms to
their corresponding 1-vector through the metric tensor on Σ and N is the Normal on Σ. It can be shown
that while this holds for Σ as defined, it also holds for small dynamic deformations of Σ. Defining the
original Lagrangian for static surfaces as L0, if Σ is dynamic, the Lagrangian must be modified to the
following:

Ldynamic = L0 +
1
2

〈
V||,

(
d(Σ)b2

)]〉
Σ

(2.69)

where the Vector V|| denotes the tangential velocity of the Surface. Through integrating the Lagrangian

over the surface, the additional term becomes converted into a line integral of b2

〈
V||, n∂Σ

〉
Σ

around
the boundary of the cylindrical tube ∂Σ where n∂Σ is the normal to the boundary in the z direction
(since n∂Σ is perpendicular to both S1 and N). It can be noted that the normal to the boundary ∂Σ is in
the longitudinal direction whereas the tangential velocity strictly curves around the boundary of the
tube and thus, the additional value vanishes. So:

ˆ
t

ˆ
Σ
LdynamicdΣdt =

ˆ
t

ˆ
Σ
L0dΣdt

And thus produces the same variation. Therefore the Dynamic Nature of the Surface represents
a gauge invariance in the Lagrangian which is fixed by the choice of the definition of the Invariant
Time Derivative from CMS ∇̇ = ∂t − ~V|| · ∇Σ which maps tensors to tensors on Σ whilst the surface is
deforming. Defining the Inner Product Norm on Σ, (·, ·)Σ =

´
Σ〈·, ·〉ΣdΣ, the Energy Density may be

written in an alternate form:

E =

ˆ
t

1
2

(
S1∇̇b2,

(
d(Σ)b2

)])
Σ
+

1
2

(√
b2R ·N

(
d(Σ)b2

)]
,
√

b2R ·N
(

d(Σ)b2

)])
Σ

dt (2.70)

This may be simplified if we defined the 1-form A = d(Σ)b2 and the 1-vector ~B =
√

b2R ·NA]:

E =

ˆ
t

1
2

(
S1∇̇b2,A]

)
+

1
2

(
~B, ~B

)
dt (2.71)

From this expression for the Energy Density, it is clear what the Variational Result which is the
Hunter-Saxton Equation is communicating. The First integrand is a method to calculate the work that
the Kinetic Energy of the moving vortex is contributing to the total energy, while the second integrand
describes the internal energy produced by the friction against Σ induced by the Hunter Saxton vortex
wave solution to the Variational Equation. If the Hodge Star operator ? is defined on Σ, integrating the
function over the surface, produces the following equivalent expression of the energy density using
the adjoint nature of the Hodge Star to the inner product on Σ:

E =

ˆ
t

ˆ
Σ

1
2
∇̇b2dθ ∧ ?A+

1
2
~B[ ∧ ?~B[dt (2.72)

In this way, the Hunter Saxton Equation for the current setting (regarding fluid dynamics) with
vorticity is intuitively obtained.

3. Analyzing Bio-Membranes under Steady and Dynamic Conditions

3.1. The Static Local Energy Density

A summary of the techniques used to analyze Biomembranes in steady regimes is presented
here. This usually involves a notion of some sort of total energy densityH. It can also be shown that
Hamiltonian’s Variational Equations are tensorial if the Hamiltonian Density is tensorial itself [17].
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Therefore, it can be easily seen why a Hamiltonian must be tensorial in its terms and over all
scalar-valued

3.1.1. Geometrical Preliminaries, Defining the Biomembrane Continuum

The analysis of the Local Energy Density is assumed to be on a Riemannian 2-Manifold Σ that is
locally isomorphic to R2. Since it is a smooth Riemannian Manifold the manifold possesses a Vector
Space at every point S̃ ∈ Σ referred to as the Tangent Space at S̃, TS̃Σ with a dual co-tangent space T∗S̃ Σ.
Tensors and Differential Forms at S̃ ∈ Σ may be constructed as elements of the Tensor Product Spaces
for a Tensor of rank (p, q) and as an element Exterior Product Space for a κ-Differential Form. The space
of Tensors of rank (p, q) at S̃ ∈ Σ, is denoted by T (p,q)

S̃
(Σ) and the space of κ-Forms constructed from

the Exterior Product Spaces of either the Tangent Space or its dual are denoted as Λκ
S̃(Σ) or Λκ∗

S̃ (Σ),
respectively. They are constructed using the conventions from Ivancevic and Ivancevic [33] as such:

T (p,q)
S̃

(Σ) =

 p⊗
m=1

TS̃Σ

⊗
 q⊗

n=1

T∗S̃ Σ

 , Λκ
S̃(Σ) =

κ∧
m=1

TS̃Σ , Λκ∗

S̃ (Σ) =
q∧

n=1

T∗S̃ Σ (3.1)

It can be seen that since the exterior product ∧ is a restriction of the tensor product ⊗, the
space of Differential Forms from the tangent/co-tangent exterior product spaces is a subset of the
space of Tensors such that Λκ

S̃(Σ) ⊂ T
(κ,0)

S̃
(Σ) and Λκ∗

S̃ (Σ) ⊂ T (0,κ)
S̃

(Σ). Also since the distinction is
made between cotangent/tangent exterior product spaces and tensor product spaces, the musical
isomorphisms are defined as (·)] and (·)[ where (·)] : Λκ∗

S̃ (Σ)→ Λκ
S̃(Σ) and (·)[ : Λκ

S̃(Σ)→ Λκ∗
S̃ (Σ).

Accordingly, several geometric tensors and forms from Hodge-DeRham Theory and Differential
Geometry may be defined on Σ such as Σ’s Surface 2-Form dΣ ∈ Λ2∗

S̃ (Σ) such that dΣ = 1
2 εαβdSα ∧

dSβ =
√

det gS̃dS1 ∧ dS2 = ?Σ1. dΣ is the Unique Co-tangent 2-form defined on the Riemannian
2-Manifold Σ where εαβ is the components of the Levi-Civita cotangent 2-Form on Σ, det gS̃ is the

determinant of the Bilinear Symmetric (0,2)-Tensor gS̃(·, ·) ∈ T
(0,2)

S̃
(Σ) defined such that gS̃ : TS̃Σ×

TS̃Σ → R at S̃ ∈ Σ. This tensor is the Metric Tensor at S̃ ∈ Σ and ?Σ is the Hodge Star Operator on
Σ defined such that ?Σ : Λκ∗

S̃ (Σ) → Λ2−κ
S̃

(Σ) when operating on cotangent differential κ-forms or

equivalently, ?Σ : Λκ
S̃(Σ)→ Λ(2−κ)∗

S̃
(Σ) when operating on tangent differential κ-forms.

Differential Operators may also be defined on Σ. The exterior derivative d̃ : Λκ∗
S̃ (Σ)→ Λ(κ+1)∗

S̃
(Σ)

may be defined and the co-differential defined explicitly by δ̃ = (−1) ?Σ d̃?Σ may also be defined on Σ.
Since the exterior derivative operates strictly on cotangent κ-forms, the codifferential must necessarily
act on tangent κ-forms given by A ∈ Λκ

S̃(Σ) and is generally defined as δ̃ : Λκ
S̃(Σ) → Λκ−1

S̃
(Σ) .

Using these, the nominal Laplace-DeRham operator ∆̃ : Λκ∗
S̃ (Σ) → Λκ∗

S̃ (Σ) may be defined on a

cotangent κ-form A ∈ Λκ∗
S̃ (Σ) explicitly by ∆̃A = d̃(δ̃A])[ + (δ̃(d̃A)])[. Since the manifold is restricted

to R2, the operator can only be defined on cotangent 0-forms and 1-forms. It can be shown that for a
0-form (a function) f , since δ̃ f = 0, then ∆̃ f = −∇2

Σ f where∇2
Σ is the Laplace-Beltrami Operator on Σ

explicitly given by ∇2
Σ f = ∇α∇α f where ∇α = ιSa∇ is the components of the covariant derivative

on Σ using the notiation of ιA as the insertion operator on Σ. With these preliminary definitions,
the Energy Density Action on Σ may be analyzed.

3.1.2. Introducing the Energy Density Action

On such a manifold, the Local Energy to be variated is typically formulated in the following
general form:

S =

ˆ
Σ
H(Sαβ, Bαβ)dΣ (3.2)
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where Sαβ are the components of the Metric Tensor gS̃(·, ·) and Bαβ are the components of the curvature
tensor on Σ. It is assumed that ∂Σ = 0 and thus an analogue of Stokes Theorem which resembles
Gauss’ Divergence Theorem on Σ holds for a 1-form A ∈ Λ1

S̃(Σ) [18] :

ˆ
Σ
−δ̃A dΣ =

˛
∂Σ
(ιAn∂Σ)d(∂Σ) (3.3)

where n∂Σ ∈ T (1,0)
S̃

(Σ) is the surface vector which points outwards at the boundary ∂Σ.
Consequentially, as per this constraint, since ∂Σ = 0, then for all vectors V,

´
Σ δ̃VdΣ = 0 for all Σ .

3.1.3. Properties and Requirements of the Hamiltonian and Its variation

The General Hamiltonian outlined in Equation (3.2) contains several interesting properties. First,
it is important to note that so long as the Hamiltonian Energy Density H(Sαβ, Bαβ) is constructed
from tensorial geometric objects on Σ, it will be invariant to changes of coordinates Sα′ = Sα′(Sα).
In addition, the Energy Density must be scalar-valued. Finally the Static Hamiltonian (as the name
suggests) does not variate in time, in the sense that

d
dt
S = 0

As mentioned before, this indicates that this Hamiltonian Formulation is not suited for analyzing
moving surfaces and if it is to be reformulated the new formulation must preserve all the scalar and
invariant properties.

In component form, the Variation of the Energy Density with respect to the surface configuration
R explicitly given by R′ = R + ε δR results in the following form [24,34]:

δS =
dS [R′]

dε

∣∣∣∣∣
ε=0

=

ˆ
Σ
∇αf α · δRdΣ−

ˆ
Σ
∇β(f

β · δR)dΣ +

ˆ
Σ
∇β

(
∂H

∂Bαβ
N · ∇αδR

)
dΣ (3.4)

where f α is given by:

f α = ∇β

(
∂H

∂Bαβ

)
N−

(
HSαβ +

∂H
∂Bγβ

Bα
γ + 2

∂H
∂Sαβ

)
Sβ (3.5)

Its worth to note that this can be abbreviated using the Normal Calculus of Moving Surface
outlined in Reference [35] by considering the vectors ξµ = {S1, S2, N} as an orthonormal vector basis:

f α = f αµξµ, f αµ =


f αβ = −

(
HSαβ + ∂H

∂Bγβ
Bα

γ + 2 ∂H
∂Sαβ

)
f α3 = ∇β

(
∂H

∂Bαβ

)
 (3.6)

3.1.4. Stress Tensor

It can be noted that if the deformation δR is allowed to correspond to constant translation, δR = a,
where ∇αa = 0, then the variation vanishes δS = 0. On a closed surface using the translation δR = a,
the variation reduces to:

δS = a ·
˛

Σ
∇αf αdΣ = 0

This reflects that the quantity f α is conserved and is accordingly defined as the Stress for the
system [25]. Accordingly, the tensor f αµ = f α · ξµ is defined as the Stress Tensor of the System as
per the Normal CMS Conventions outlined in Reference [35]. This makes physical intuitive sense; In
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equilibrium, the stress of the Surface should be conserved and the Surface’s according Equilibrium
Configuration is determined by the Value of ∇αf α.

In practice, only the Normal Projection of ∇αf α is taken; this is because the tangential projection
can be eliminated by a sufficient reparametrization of the Surface [25]. Therefore the equilibrium
equation is as follows:

N · ∇αf α = f αβBαβ +∇α f α3 = 0 (3.7)

Defining the symmetric (2,0) tensor f̃ S = f αβSα ⊗ Sβ, the curvature tensor by B̄ = BαβSα ⊗ Sβ

and the 1-tensor fN = f α3Sα, the conservation equation can be rewritten in terms of Hodge-Theory
and also in a compressed conservation form through the Normal Calculus of Moving Surfaces [35] by
the following:

ιB̄ f̃ S = δ̃fN , ξµ3∇̃α f αµ = 0 (3.8)

3.1.5. The Dynamic Alternative to the Static Hamiltonian

As stated earlier, Variational Hamiltonian Equilibrium Configurations of Σ subject toH & have
been used to derive Variational Shape Equations for Surfaces under the Canham-Helfrich Energy [36]
(that is, H = HCH = 1

2 kc(Bα
α − c0)

2 + λ) or even simple Mean-Curvature squared Energy Densities
(i.e.,H = (Bα

α)
2) which have Biological Applications [18,37,38]. However these Energy Densities only

permit the determination of equilibrium, static configurations of surfaces and do not allow for their
Dynamic Modelling.

An apparent issue to ensuring the invariance of the Energy Density is shed light on by the
recent field of CMS. By trying to incorporate terms which to capture the speed of the surface such the
derivative with respect to time of the surface’s configuration V = ∂tR or higher order acceleration terms
such as ∂2

t R [32] and projections of the surface’s speed V · Sα, as well as historical measurements of the
speed such as R ·V and 1

2 V ·V [34,39], these terms violate of the Energy Density’s need to be invariant
under coordinate transformations of dynamic membranes who’s transformations are time dependent
Sα′(t, Sα) [18,32,40]. This presents issues in deriving physically realistic quantities to describe the
motion of membranes which are obtained by methods in classical mechanics. For this reason deriving
scalar quantities which capture the motion of surfaces and are CMS-invariant is essential.

3.2. Invariant Scalars of Motion, Linear and Quadratic Invariants and Normal Speed Gradients

Before attempting to construct an Energy Density which is dynamic, scalars of motion which are
CMS-invariant must be developed. Now the surface previously denoted by Σ must not be treated as Σt

indicating that it is in motion. All the Tensor Product Space and Exterior Product space constructions
remain the same but are denoted as originating from Σt. The jewel of CMS is the Invariant Time
Derivative Operator which is defined as ∇̇ : T (p,q)

S̃
(Σt)→ T (p,q)

S̃
(Σt) and captures the time variance of

the tensor operated on. It is defined on a scalar field Φ ∈ T (0,0)
S̃

(Σt) by the following [18,32,40]:

∇̇Φ = ∂tΦ− ιV‖
(d̃Φ)] (3.9)

where V‖ ∈ Λ1∗
S̃ (Σt) is the surface speed defined as the speed of the 2-Manifold in R3, pulled back to

the surface:
V‖ = (ιSα V)dxa

It is important to notice how if the surface is not moving, V = 0 guarantees that ∇̇ = ∂t [18].
Thus, ∇̇ only is a simple time derivative when acting on fields defined on Σt which is not in motion
or has an entirely normal motion of the form V = |V|N (as is the case with a uniformly expanding
sphere/cylinder surface) [32]. Otherwise, the partial time derivative operator ∂t does not produce
tensors on Σt, so objects which are constructed from the partial time derivative operator must either be
eliminated from a hypothetical Dynamic Energy Density or must be treated in a CMS-manner to ensure
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the invariant-scalar nature of the Energy Density and therefore the ensuing Variational Conditions.
The Invariant Time Derivative operator can also be extended to preserve the property that:

∇̇ : T (n,m)

S̃
(Σt)→ T (n,m)

S̃
(Σt) (3.10)

Ultimately we conclude that V = ∂tR is not a tensor and thus cannot be used in an Energy Density.
Therefore ∇̇ and its combination with other operators on Σt must be used to identify invariant scalars
of motion. It is known from CMS through the definition given in Equation (84), if R is the embedded
configuration of the surface in R3, then ∇̇R = CN, where the value C = V ·N is referred to as the
Normal Speed of Σt. It is a Linear Invariant of Motion with respect to R, and so any function of C is
also invariant and provides a manner of extending Invariants of Motion to higher-orders. As defined
earlier, the Laplace-Beltrami Operator which is obtained from the Laplace-DeRham Operator ∆̃ is
Invariant itself. So this another linear invariant of motion is ∆̃C = δ̃(d̃C)]. Therefore the two Linear
Invariants of Motion I1 and I2 on Σt are given by:

I1 = C , I2 = ∆̃C = (δ̃(d̃C)])[ (3.11)

To continue searching for higher order invariants, the Commutator [∇̇,∇α] = ∇̇∇α −∇α∇̇ can
find use [32,35,40]. It is known that the commutator acts on Φ ∈ T (0,0)

S̃
(Σt) as follows:

Sα[∇̇,∇α]Φ = CSαBβ
α∇βΦ = ιCB̄(d̃Φ)] (3.12)

Applying the commutator to R, we see that Sα∇̇Sα − d̃(CN) = CB̄ and since d̃N = −B̄, then we
see ∇̇Sα = N

(
ιSα(d̃C)]

)
confirming the CMS identity that ∇̇Sα = N∇αC. It also proves that the

1-form d̃C = (∇αC)dSα is as expected invariant. Thus the norm of this norm may be obtained as
||(d̃C)]||2 = gS̃((d̃C)], (d̃C)]) = Sαβ(∇αC)(∇βC). Noting that ∇̇(N ·N) = 0 and ∇̇(Sα ·N), it can be
confirmed with CMS that ∇̇N = −(d̃C)] reaffirming the tensorial nature of d̃C.

3.2.1. Temporal Curvature Trace Tensors

Thus far, the commutator [∇̇,∇α] was restricted to 0-forms and it was shown that Sα([∇̇,∇α])Φ =

ιCB̄(d̃Φ)]. Defining the cotangent 1-form operator Ξ̃ : T (n,m)

S̃
(Σt)→ T (n,m+1)

S̃
(Σt) such that Ξ̃ = dSαΞα

where Ξα = [∇̇,∇α] − CBβ
α∇β, it is seen that Ξ̃Φ = 0 This operator can easily be extended to the

Co-tangent Exterior Product Space to operate on 1-forms as Ξ̃ : Λκ∗
S̃ (Σt)→ Λ(κ+1)∗

S̃
(Σt). This will be

referred to as the Temporal Curvature Operator, as it can be seen that when applied to a section of the
tangent space or cotangent space, the Temporal Curvature Tensor Ṙ ∈ T (1,2)

S̃
(Σt) arises [32].

Ξαψβ = Ṙβ
αγψγ , Ξαψβ = −Ṙγ

αβψγ (3.13)

As expected, ΞαSα may be decomposed into a tangential and normal component. The normal
projection confirms the linear nature of ∆̃C while the surface projection confirms the identity of the
Temporal Curvature Tensor’s components Ṙγ

αβ already established in other sources [32,40]:

Ṙγ
αβ = 2SγδBα[β∇δ]C (3.14)

The Tensor admits three traces Ṙγ
γβ, Ṙγ

αγ, Ṙγ
αβSαβ and by the antisymmetric structure within the

Tensor, and the symmetric nature of the Metric Tensor, it can be easily seen that Ṙγ
αγ = 0. Thus there

are only two non-trivial traces in the Temporal Curvature Tensor. These will be denoted by a tangent
1-form and a cotangent 1-form T = TαSα = Ṙγ

αβSαβSγ & W̃ = WαdSα = Ṙγ
γαSα. It can be easily seen

that the equivalence exists as T = −W̃]. Therefore, the two traces are related by an isomorphism.
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This originates in the identity of the Temporal Curvature Tensor that Ṙ[α
βγSβ]γ = 0. Thus we define the

fundamental Temporal Curvature Trace 1-Form as

W̃ = ιB̄(d̃C)] − Trace(B̄)d̃C (3.15)

A natural Invariant of Motion which may be obtained from this is the 1-form’s norm given by
gS̃(W̃

], W̃]). Also since W̃ ∈ Λ1∗
S̃ (Σt), then another Linear Invariant of Motion is δ̃W̃.

3.3. Developing a CMS-Invariant Hamiltonian, Variating the Hamiltonian and Divergence form of
the Variation

Reflecting on all the CMS methods of measuring speeds on a membrane, a Dynamic Energy
Density may be constructed effectively. The resulting form of the Hamiltonian Action chosen is
as follows:

S =

ˆ
t

ˆ
Σ
H(Sαβ, Bαβ, C)dΣ dt (3.16)

For the purposes of this introduction so far, the specific form ofH will remain non-given however
this term will incorporate one of the Linear Invariant Scalars of Motion, C derived above. It is worthy
to note that the Energy Density must have units of [J/m2] = [N/m], so the Action has units of
[J · s]. As stated earlier in the Static Case regarding

´
Σ dΣ, the integral

´
t dt ranges over the interval

{t ∈ R|t0 ≤ t ≤ t f }meaning ∂t = {t0, t f }. Performing a Variation of the Hamiltonian much like the
previous case [24], the total variation results in:

δS =

ˆ
t

ˆ
Σ

[
∇αf α − ∇̇

(
∂H
∂C

N
)
+

∂H
∂C

CBα
αN

]
· δRdΣ dt

−
ˆ

t

ˆ
Σ
∇β

(
f β · δR− ∂H

∂Bαβ
N · ∇αδR

)
dΣ dt

+

ˆ
t

d
dt

(ˆ
Σ

∂H
∂C

N · δRdΣ
)

dt

where f α is the standard stress tensor from the previous Local Hamiltonian Energy Density [25].
This variation is fundamentally different from the Local Hamiltonian. It can be simplifed by defining
the following linear operator δ̃t = ∇̇ − CBα

α defined by the relation:

d
dt

ˆ
Σ

Φ dΣ =

ˆ
Σ
∇̇Φ− CBα

αΦ dΣ =

ˆ
Σ

δ̃tΦ dΣ (3.17)

In this case, the variation can be simplified to the following:

δS =

ˆ
t

ˆ
Σ

[
∇αf α − δ̃t

(
∂H
∂C

N
)]
· δRdΣ dt

+

ˆ
t

ˆ
Σ

δ̃t

(
∂H
∂C

N · δR
)
−∇β

(
f β · δR− ∂H

∂Bαβ
N · ∇αδR

)
dΣ dt

This equation may be put into a divergence form as outlined in Reference [24] by defining the
Spatiotemporal Operator ∇̇b where the latin lowercase index b takes on values {1, 2, 3}. In this case for
b = 1..2, ∇̇b = ιSα d̃ and for b = 3, ∇̇b = −δ̃t. In this case, by defining in a similar manner the vector
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~F b where for b = 1..2, ~F b = f α and for b = 3, ~F b = ∂H
∂C N, then the variation can be rephrased in the

following manner:

δS =

ˆ
t

ˆ
Σ
∇̇b ~F b · δRdΣ dt−

ˆ
t

ˆ
Σ
∇̇b(~F b · δR)dΣ dt

+

ˆ
t

ˆ
Σ
∇β

(
∂H

∂Bαβ
N · ∇αδR

)
dΣ dt

3.3.1. Defining a Surface Analog of ’Surface-Time’

In the definition of the Spatiotemporal Operator ∇̇b, there is an negative sign in the third
component ∇̇3 = −δ̃t. To account for this negative sign, a Positive Spatiotemporal Operator ∇̇b may
be defined as ∇̇c = σbc∇̇c by defining the 3× 3 Surface-Time Matrix using components from gS̃(·, ·):

σbc =

S11 S12 0
S21 S22 0
0 0 −1


It is noteworthy to note that with this Matrix, defining its determinant as σ = det(σbc), then the

following identity arises σ = −det(Sαβ). In this case, a 3 dimensional Surfacial-Temporal Space can
be defined where the volume element in such a space is defined as dσ̃ =

√
−σdS1 ∧ dS2 ∧ dt. This is

an interesting analogue to the Minkowski Space given in Elementary Physics Textbooks [34,41] And so
an integral in this space is formulated as such:

ˆ
σ̃

dσ̃ =

ˆ
t

ˆ
Σ

dΣ dt (3.18)

Therefore, the variation can be unformly expressed in this 3-dimensional Surface-Time:

δS =

ˆ
σ̃

σbc∇̇b ~F c · δR dσ̃−
ˆ

σ̃
σbc∇̇b(~F c · δR)dσ̃ +

ˆ
σ̃
∇β

(
∂H

∂Bαβ
N · ∇αδR

)
dσ̃ (3.19)

This 3-Dimensional Surface-Time shares several parallels with a 4-Dimensional Space Time.
This has several applications:

• The formulation of Surface-Time can be used for formulating and analyzing the geometry of
a 2-Dimensional analogue of Space-Time [41].

• The formulation of Surface-Time can also be used for introducing concepts of Relativity into
moving Membranes, biological or otherwise [26,27].

• Lastly, this formulation of Surface-Time can be used to describe a similar method for describing
4D Space-Time in a manner consistent with CMS [28].

3.3.2. Conservation Laws and the Stress Tensor

As with the Static Energy Density, if the deformation δR = a, then the variation vanishes
δS = 0 [24,25]. On a closed surface using the translation δR = a and assuming that the Surface Σ
evaluated at ∂t are equal ( that the Surface Geometry at the end of the deformation in time does not
change from the beginning), then the Variation reduces to:

δS = a ·
˛

σ̃
σbc∇̇b ~F c dσ̃ (3.20)

This reflect that the quantity ~F b is conserved and is defined as the Stress for the system.
Accordingly, the tensor F bµ = ξµ · ~F b, is defined as the Stress Tensor of the System in accordance
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with [35]. Just like the case with the Static Energy Density, the Stress of the Surface is Conserved and
the Surface’s Dynamic Evolution is determined by the value of σbc∇̇b ~F c.

Like the Local Static case, this paper will only examine the Normal Projection of the Stress’
Divergence. So therefore, the Dynamic Equilibrium Eqution is as follows:

N · σbc∇̇b ~F c = 0 (3.21)

3.3.3. Specific Lagrangian: Quadratic Speed Lagrangian

It is well known that the Standard Energy Density for measuring the kinetic speed of a continuum
(Surface or Volume) is given by [18,26,27,32,39]:

H =
1
2

ρV ·V (3.22)

It is well shown by several sources that the Energy Density H = 1/2ρV ·V is not tensorial on
a time-deforming surface Σt [18,32], due to the non-tensorial identity of V belonging to Σt [40]. Thus,
a modified CMS-invariant version is given by the Energy Density:

H =
1
2

ρC2 (3.23)

where ρ ∈ R represents the (assumed) homogeneous mass-density of the surface being analyzed; this
definition can be made precise by using continuum methods outlined in Reference [39]. Using this
Energy Density, it can be obtained that:

N · σbc∇̇b ~F c = 0 → ρ

(
∇̇C− 1

2
C2Bα

α

)
= 0 (3.24)

This is the equation of motion for a surface which does not have any Energy Density on it except
for its own motion. This is interesting in that the dynamics of the Surface are identical regardless of
the homogeneous mass sensity, analogous to Newtonian Physics [42]. It is noteworthy that if C=0,
the equation is satisfied. This can be satisfied by two ways:

• If the surface is not moving, V = 0.
• If the surface is only moving tangentially V = VαSα.

These two solutions are somewhat trivial but can be easily imagined. For example, a sphere
moving purely tangentially would be rolling along its surface. A sheet of paper moving tangentially
would be it moving in its plane. It is intuitive why these would minimize the Energy Density.
In addition, a non-trivial solution can be derived for the Sphere. A sphere which has a variable Radius,
R = R(t) simplifies the equation to the following:

d2R
dt2 +

1
R

(
dR
dt

)2
= 0

The solution to this equation is a straightforward one

R(t) =
√

c1t + c2 (3.25)

For the sphere, this result implies a linear increase in Area knowing that the area for a sphere is
A = 4πR2. Therefore a sphere which minimizes its kinetic energy density Hamlitonian will increase
and decrease its Area linearly.
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It is worthy to note that if the Hamiltonian was constrained by having a constant Volume and
a Constant Surface Tension, the Action would have been modified to [24,25]:

S =

ˆ
t

ˆ
Σ
HdΣ dt + µ

ˆ
t

ˆ
Σ

dΣ dt + P
ˆ

t

ˆ
Ω

dΩ dt (3.26)

where Ω Represents the Volume the Surface Encloses. Obtaining the variational equations for this
Action results in the following:

∇̇C− 1
2

C2Bα
α = P− λBα

α (3.27)

For a Sphere, the equation simplifies to the following equation:

d2R
dt2 +

1
R

(
dR
dt

)2
− 2λ

R
− P = 0 (3.28)

The equation dictates the way that a Sphere will expand or contract in response to the Surface
Tension µ, and Pressure on the Membrane P. In equilibrium with the surrounding, the Time Derivatives
of the Radius Vanish and the equation results in the Young Laplace Equation [43]. In cases of non
equilibrium, the equation results in showing how the surface will evolve to reach an equilibium by
dictating the form of R(t). The equilibrium solution for the Variational Equation may be found by
setting C = 0. This results in the following:

Bα
α =

P
λ

(3.29)

This is a compact way of notating the Young-Laplace Law.
In the case where λ = 0, the Equilibrium Condition may be found by writing the Variational

Equation out in full and observing where Ṙ = 0; this will yield Boyle’s Law (P · Volume =

constant) [44] and if the converse is done, the equilibrium solution when P = 0 yields the Minimal
Surface Equation where stationary solutions have Bα

α = 0 which is the famous solution to Plateau’s
Minimal Surface Problem [18].

4. Work-Energy Theorem

The Form of the Lagrangian’s Variational Equations yields insights into the definition of the
various Tensors derived; this framework allows for an analogue of the Work-Energy Theorem [45] to
be formed on Σ. Under special circumstances, using an Energy Density ofH = U (C), the Variational
Equation becomes

∇̇
(

dU
dC

)
−
(

dU
dC
− U

C

)
CBα

α = 0

This equation can be restated in the following form:

d
dt

ˆ
Σ

(
C

dU
dC
−U

)
dΣ = 0 (4.1)

Therefore, the integrand is a constant of motion conserved on Σt. Since the only Energy on a
Surface is derived from U , the Equation can be interpreted as a form of a conservation of Kinetic Energy.

This can be generalized for an Energy Density H = G(Sαβ, Bαβ) + U (C). Assuming the above
energy density, the following results:

d
dt

ˆ
Σ

(
C

dU
dC
−U

)
dΣ =

ˆ
Σ

CN · ∇αgαdΣ

where gα is the analogue of the f α stress tensor derived for the Energy Density G(Sαβ, Bαβ).
This equation outlines a relationship between the Kinetic Energy derived from U (C), and the work
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exerted on the surface by CN · ∇αgα. This is a form of the Work Energy Theorem for Surfaces [45].
Therefore the equation is interpreted as the following:

d
dt

ˆ
Σ

(
C

dU
dC
−U

)
dΣ︸ ︷︷ ︸

Rate of Change of Kinetic Energy

=

ˆ
Σ

CN · ∇αgαdΣ︸ ︷︷ ︸
Mechanical Power on Surface

(4.2)

It is worthy to note that normally, Mechanical Power of a moving body is calculated using its
local continuum velocity v(x) [39]; the analogue of this work for Surfaces V(S), has been shown by
Grinfeld to be Non-tensorial for Surfaces [18,40]. However allowing the surface to move, and assuming
a general Energy Density H(Sαβ, Bαβ, C), results in the identification of the expression CN. This is
the only component of the Ambient Surface Velocity V = CN + VαSα that is Tensorial; therefore it
makes intuitive sense that this is the only component taken into account for Mechanical Power which
is commonly notated in Continuum Mechanics literature as

´
V v · b dV where b are all the body forces

acting on a Body. The Dynamic Framework presented up to now supports some possible extensions.

5. Discussion

It has been earlier established in Section 2.8 that when modelling vorticity on a cylindrical tube,
the evolution of the vorticity at the cylindrical surface Σt can be obtained with the following Energy
Density:

S =

ˆ
t

1
2

(
S1∇̇b2,

(
d̃b2

)])
Σ
+

1
2

(√
b2R ·N

(
d̃b2

)]
,
√

b2R ·N
(

d̃b2

)])
Σ

dt (5.1)

where (A, B) =
´

Σ gS̃(A, B)dΣ. This Energy Density is seen to have the same stucture as the energy
densities explored in Part II of this paper. When the Energy Density is variated with respect to b2

(of Part I of paper), it results in the Hunter Saxton Equation. Defining the 1-form A = d̃b2, and the
1-vector ~B =

√
b2R ·NA]:

S =

ˆ
t

1
2

(
S1∇̇b2,A]

)
+

1
2

(
~B, ~B

)
dt (5.2)

Through the Energy Density, it can be seen that the vorticity b2 interacts with Σt through the
Metric Tensor, and through the Normal. In this particular interaction, Σt = Σ is Stationary and referred
to the static cylindrical tube. In the case where Σt is allowed to variate, the motion of a membrane with
a Vorticity that is pre-prescribed at Σt such as b2 = ω(R(Sα)) can be obtained through Variating the
Energy Density with respect to R. In this case, the Vorticity would affect the surface which minimizes
the Energy Caused by the interaction. This Minimization can be explored in the future when desiring
to observe the motion of a dynamic membrane immersed in a fluid with Vorticity.

6. Conclusions

A reduction of the compressible Navier Stokes equations coupled to the continuity equation
in cylindrical co-ordinates to a simpler problem has been shown. Dimensionless parameters were
introduced whereby in the small limit case for both of these a method of solution is sought for in
the tube. A wave pulse that travels downwards towards the wall exists in Figure 1 [46]. A Dirac
Delta density pulse exists exactly at the entrance of the tube and the density decreases downstream
in the tube due to frictional and pressure losses. The density is a Gaussian-like wave function with
an exponential in time. The result is finite time blowup for the velocity in the azimuthal direction.
The Hunter-Saxton equation is a special case appearing at z∗ = ∞ in θ∗,t∗. Future studies are required
for parallel methods derived from this paper that can be applied to the problem of the Clay Institute
for the Navier-Stokes Incompressible equations. The second objective of this paper was to develop a
Variational Framework which is Dynamic in order to potentially model Biological Membranes. Several
objectives were acheived:
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• The standard Variational Framework proposed in References [24,25] N · ∇αf α = 0 was extended
to Dynamic Surfaces by using the Calculus of Moving Surfaces (CMS) developed in Grinfeld’s
Textbook [18].

• Drawing, on previous extensions of CMS [32,35], several Invariants of Motion have been
developed in this paper (C, Qα

β∇α∇βC, Pα
β∇αC∇βC) which may be used in the Dynamic extension

of the Hamiltonian; however, in this paper, the only invariant of motion considered was C
for simplicity.

• Finally, the Dynamic Framework was utilized under a general Hamiltonian Energy Density
H = U (C) + G(Sαβ, Bαβ) to derive a constant of motion conserved with just the Normal Speed C
contributing to the Hamiltonian Energy (CU ′(C)−U(C)) and a general form of the Work-Energy
Theorem that states that the rate of change of Kinetic Energy is equal to the Mechanical Power
measured by CN · ∇αg α = 0 on the Surface.
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Appendix A. Time Derivative of Dynamic Line Integrals

Line Integrals are difficult to evaluate when they are restricted to the boundary ∂Σt of an open
surface Σt that is moving dynamically in time t; in several fields, but particularly in the Calculus of
Moving Surfaces (CMS), Σ is usually parametrized by the vector function RΣ = R(S, t), where S =

Sα = {S1, S2} represent the surface variables chosen to parametrize the Surface. The parametrization
of ∂Σt is usually given by Rλ = R(U, t), where U = Uψ = {U1} represents the variable used to
parametrize ∂Σt. Since the line is restricted to the boundary of the surface, RΣ is related to Rλ through
the composition Rλ = R(S(U), t). In this case, S(U) = {S1(U), S2(U)} refers to the relation of the
surface variables to the line variable. Consequentially, derivatives with respect to time of these line
integrals are difficult to evaluate as well. The line integral of a vector function F taken over the line
variable interval U1 ∈ [a, b] is simplified to:

˛
∂Σt

F · dr =
ˆ

∂Σt

F · TdU =

ˆ b

a
F · T

√
|U|dU1

where T is the unit tangent vector and U = Uφψ is the metric tensor on ∂Σt; all naming conventions on
the line and surface are outlined in Reference [18]. Using CMS, the time derivative can pass inside
the integral since it is an single integral taken over a variable independent of t. Thus, the following
develops:

d
dt

˛
∂Σt

F · dr =
ˆ

∂Σt

∂F
∂t
· T + F · εφ ∂Uφ

∂t
dU

It is important to note that the partial derivative in the second term measures how much the tangent
vector of the curve variates in time. This is evaluated further using tensors on the surface given in
Reference [32]

d
dt

˛
∂Σt

F · dr =
ˆ

∂Σt

(
∂F
∂t

+ (F · Γ̇β
αSβ)Sα

)
· TdU

if the tensor Γ̇ = Γ̇β
α(Sα ⊗ Sβ) is defined, then the following is given for the time derivative of

a line integral:
d
dt

˛
∂Σt

F · dr =
˛

∂Σt

(
∂F
∂t

+ Γ̇TF
)
· dr
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Appendix B. Using Stokes Theorem on Dynamic Surfaces & Special Cases

In general, Stokes Theorem is not typically able to be extended to open surfaces who are dynamic
in time. It is stated earlier that

d
dt

˛
∂Σt

F · dr =
˛

∂Σt

(
∂F
∂t

+ Γ̇TF
)
· dr

From CMS, it is known that an analogue of Gauss’ Divergence Theorem exists on open surfaces:
ˆ

∂Σ
nαSα · FdU =

ˆ
Σ
∇α(Sα · F)dΣ

Framing the above as a classic line integral results in the familiar form
˛

∂Σ
F · dr =

ˆ
Σ

εαβ∇α(F · Sβ)dΣ =

ˆ
Σ

Sβεαβ · ∇αFdΣ =

ˆ
Σ

N× Sα · ∇αFdΣ

where ∇α is the component representation of the covariant derivative on the surface Σ. Knowing that
∇αF = (Sα · ~∇)F, the above equation can be reduced to Stokes Equation, and so the equality can be
viewed as an extension of Stokes Theorem to surfaces which are in motion. Utilizing the formula for
the derivative of a line integral and substituting the right hand side in for the vector function, the
following is obtained:

d
dt

˛
∂Σt

F · dr =
ˆ

Σt

N× Sα · ∇α

(
∂F
∂t

+ Γ̇TF
)

dΣ

Again recalling that ∇αF = (Sα · ~∇)F, the surface integral can be broken up into two
surface integrals:

d
dt

˛
∂Σt

F · dr =
ˆ

Σt

~∇× ∂F
∂t
· dΣ +

ˆ
Σt

N× Sα · ∇α

(
˜̇ΓTF

)
dΣ (A1)

This is in general the relationship between the derivative of a line integral and the equivalent
surface integral assuming the surface is in motion. It is worth noting as expected that the Tensor which
captures the speed of the surface (and therefore the speed of the boundary), Γ̇ is included in the surface
integral as expected. A special case worth noting is that if in fact the speed on the surface evaluated at
the boundary is stationary (i.e., a surface deforming with a fixed boundary ∂Σt = ∂Σ), then it can be
seen that Γ̇ = 0 and thus the equation reduces to the desired result:

d
dt

˛
∂Σ

F · dr =
ˆ

Σt

~∇× ∂F
∂t
· dΣ , Γ̇

∣∣∣
∂Σ

= 0 (A2)

where the time derivative is taken over a stationary path ∂Σ, but the surface integral is taken over
a dynamic surface Σt. Therefore Stokes Theorem is valid for a surface that is moving in time,
provided that the boundary is stationary. This is useful to evaluate integrals which are in motion
as well.
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Appendix C. Specific Density Formulation According to Theorem 1

Using Theorem 1 it can be shown readily that a specific density form is as follows,

A =
(
(−0.02350111407 + 1.057985743 i) rYi (r)− 1.0 i Ji (r)r

)
J1+i (ir)+ (A1)(

(0.02350111407− 1.057985743 i) rYi (r) + 1.0 i Ji (r)r
)

Y1+i (ir)+(
(−1.057985743− 0.02350111407 i) rJi (ir) + (1.057985743 + 0.02350111407 i) rYi (ir)

)
Y1+i (r)+(

−1.0 rYi (ir) + rJi (ir)
)

J1+i (r) +
(
(1.057985743 + 0.02350111407 i)Yi (r)− 1.0 Ji (r)

)
Ji (ir)+(

(−1.057985743− 0.023501114 i)Yi (r) + Ji (r)
)

Yi (ir)

B = −2.0 Ji (r)r
(

Ji (ir)− 1.0 Yi (ir)
)

(A2)

The density can be taken as,

ρ = (B/A) exp(αθ) exp(ct)

In the above expression for A, B, we have complex order and argument Bessel functions.
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