

ω_3 does control the breakdown of smooth solutions of the 3D compressible equations as will be seen in this study.

The expression $\vec{f} \cdot \Psi$ in Equation (2.15) will vanish further below when we take a dot product in the z^* direction of flow or \vec{k} direction downstream in tube. We therefore do not include it after Equation(2.24) below. Upon multiplication of Equation (2.17) by,

$$H = \frac{\rho \vec{b} \cdot \vec{f}}{\frac{\partial \rho}{\partial t}} \quad (2.22)$$

the resulting equation is

$$\left[\rho^2 H \frac{\partial}{\partial t} (\nabla \cdot \vec{b}) + \rho^2 \vec{b} \cdot \vec{f} \nabla \cdot \vec{b} + H \vec{b} \cdot \nabla (\rho \frac{\partial \rho}{\partial t}) \right] + H \nabla \cdot (\vec{b} \rho^2 \nabla \cdot \vec{b}) = \mu H \nabla \cdot \nabla^2 \vec{b} + \frac{\mu}{3} H \nabla \cdot (\nabla (\nabla \cdot \vec{b})) + H \nabla \cdot (\nabla P) + H \nabla \cdot \rho \vec{F}_T \quad (2.23)$$

which results upon using Equation (2.15) in,

$$\rho^2 H \frac{\partial}{\partial t} (\nabla \cdot \vec{b}) - \vec{f} \cdot \left(\rho^2 \frac{\partial \vec{b}}{\partial t} + \rho \vec{b} \frac{\partial \rho}{\partial t} \right) - \left\| \vec{f} \right\|^2 + \vec{f} \cdot \nabla^2 \vec{b} + \frac{\mu}{3} \vec{f} \cdot \nabla (\nabla \cdot \vec{b}) - \vec{f} \cdot \nabla P + H \vec{b} \cdot \nabla (\rho \frac{\partial \rho}{\partial t}) + H \nabla \cdot (\vec{b} \rho^2 \nabla \cdot \vec{b}) = \mu H (\nabla \cdot \nabla^2 \vec{b}) + \frac{\mu}{3} H \nabla \cdot (\nabla (\nabla \cdot \vec{b})) + H \nabla \cdot (\nabla P) + H \nabla \cdot \rho \vec{F}_T + \Psi \quad (2.24)$$

The continuity equation is written in terms of \vec{b} as,

$$\frac{\partial \rho}{\partial t} + \rho \nabla \cdot \vec{b} + \vec{b} \cdot \nabla \rho = 0 \quad (2.25)$$

and

$$\nabla \cdot \vec{b} = -\frac{1}{\rho} \frac{\partial \rho}{\partial t} - \frac{1}{\rho} \nabla \rho \cdot \vec{b} \quad (2.26)$$

where the following compact expression is given,

$$Y^* = \nabla \cdot \vec{b} \quad (2.27)$$

For the term $\rho \vec{f} \cdot \vec{b} \frac{\partial \rho}{\partial t}$ in Equation (2.24) we obtain upon using Equations (2.15) again, (2.26) and multiplying by $(\vec{f} \cdot \vec{f})^{-1}$ in Equation (2.24) and, using properties of third derivatives involving the gradient and in particular the fact that the Laplacian of the divergence of a vector field is equivalent to the divergence of the Laplacian of a vector field, leads to the following form,

$$W^* \frac{\partial Y^*}{\partial t} - G(\rho, \frac{\partial \rho}{\partial t}) W^* - F(\rho, \frac{\partial \rho}{\partial t}) \vec{b} \vec{f} (1 + \vec{f} \cdot \nabla P) - \rho^{-2} V(\mu) W^* \nabla^2 (Y^*) - 2 \vec{b} \vec{f} \frac{\partial \rho}{\partial t} \frac{\rho^{-1}}{\left\| \vec{f} \right\|^2} \vec{f} \cdot \left(\frac{\partial \vec{b}}{\partial t} \right) + \Omega + 2 \vec{b} \vec{f} \frac{\partial \rho}{\partial t} \frac{\rho^{-3}}{\left\| \vec{f} \right\|^2} \mu \vec{f} \cdot \nabla^2 \vec{b} + 2 \vec{b} \vec{f} \frac{\partial \rho}{\partial t} \frac{\rho^{-3}}{\left\| \vec{f} \right\|^2} \frac{\mu}{3} \vec{f} \cdot \nabla (\nabla \cdot \vec{b}) - \rho^{-2} \vec{b} \vec{f} \frac{1}{\left\| \vec{f} \right\|^2} \vec{b} \cdot \vec{f} \nabla \cdot \left(\vec{b} \rho^2 \nabla \cdot \vec{b} + \nabla P + \rho \vec{F}_T \right) = 0 \quad (2.28)$$

where $\Omega = \rho^{-2} H \vec{b} \cdot \nabla (\rho \frac{\partial \rho}{\partial t})$ in Equation (2.28).

We consider Ω term now. We use Equation (2.15) and the following identities,

$$\vec{b} \cdot \nabla (\nabla^2 \vec{b}) = \frac{1}{2} \nabla (\nabla^2 \vec{b} \cdot \nabla^2 \vec{b}) - \nabla^2 \vec{b} \times (\nabla \times \nabla^2 \vec{b})$$

$$\vec{b} \cdot \nabla (\rho^2 \frac{\partial \vec{b}}{\partial t}) = \nabla \left(\frac{b^2}{2} \right) - \vec{b} \times \nabla \times (\rho^2 \frac{\partial \vec{b}}{\partial t})$$

Further in this paper we will take curl of the desired equation and the curl of the previous expression above when dotted with \vec{b} will be zero. As a result the term that is left over is,

$$L_1 = \nabla \times (2\nabla^2 \vec{b} + \nabla^2 \vec{b} \times \nabla^2 \vec{\omega})$$

If the Laplacian of the vorticity vector is the triple (-2,-2,-2) (ie. vorticity is quadratic), then using the following identity,

$$\nabla \times (\vec{a} \times \vec{s}) = \vec{a}(\nabla \cdot \vec{s}) - \vec{s}(\nabla \cdot \vec{a}) + (\vec{s} \cdot \nabla)\vec{a} - (\vec{a} \cdot \nabla)\vec{s},$$

$$L_1 = 0$$

Next,

$$W^* = \left(\frac{\vec{f} \cdot \vec{b}}{\|\vec{f}\|^2} \vec{f} \right) \vec{b} = \left(\frac{\vec{f} \cdot \vec{b}}{\|\vec{f}\|^2} \vec{f} \right) \cdot \vec{b} + \left(\frac{\vec{f} \cdot \vec{b}}{\|\vec{f}\|^2} \vec{f} \right) \times \vec{b} = \xi + \vec{f} \times \left(\frac{\vec{f} \cdot \vec{b}}{\|\vec{f}\|^2} \vec{b} \right) \quad (2.29)$$

This involves the vector projection of \vec{b} onto \vec{f} which is written in the conventional form,

$$\text{proj}_{\mathbf{f}} \mathbf{b} = \frac{\mathbf{f} \cdot \mathbf{b}}{\|\mathbf{f}\|^2} \mathbf{f} \quad (2.30)$$

Equation (2.28) can be written compactly as

$$\frac{\partial Y^*}{\partial t} - G(\rho, \frac{\partial \rho}{\partial t}) - \rho^{-2} V(\mu) \nabla^2 Y^* - \rho^{-2} \nabla^2 P = \frac{U_{\vec{f}} [\mathbf{Q}(\rho, \frac{\partial \rho}{\partial t}, \vec{b}, \frac{\partial \vec{b}}{\partial t}, \nabla P, \vec{F}_T) + \vec{f}]}{U_{\vec{f}} \vec{b}} \quad (2.31)$$

where $U_{\vec{f}} \vec{\xi}$ is the scalar projection for \vec{b} , $G = \frac{1}{\rho^2} \left(\frac{\partial \rho}{\partial t} \right)^2$, \mathbf{Q} (a differential operator defined by Equations (2.16) and (2.28) and hence for a constant positive function α ,

$$\frac{\partial Y^*}{\partial t} - G(\rho, \frac{\partial \rho}{\partial t}) - \rho^{-2} V(\mu) \nabla^2 Y^* - \rho^{-2} \nabla^2 P = \frac{\|\mathbf{Q}(\rho, \frac{\partial \rho}{\partial t}, \vec{b}, \frac{\partial \vec{b}}{\partial t}, \nabla P, \vec{F}_T) + \vec{f}\|}{\|\vec{b}\|} = \alpha \geq 0 \quad (2.32)$$

with solution in terms of a function \mathcal{B} ,

$$Y^* = \nabla \cdot \vec{b} = \mathcal{B}(\alpha, r, \theta, z, t) \quad (2.33)$$

At this stage of the analysis we introduce the vorticity equation for compressible flow,

$$\frac{\partial \vec{\omega}}{\partial t} + (\vec{a} \cdot \nabla) \vec{\omega} = (\vec{\omega} \cdot \nabla) \vec{a} - \vec{\omega} (\nabla \cdot \vec{a}) + \frac{\nabla \rho}{\rho^2} \times \nabla P + \nabla \times \left(\frac{\nabla \cdot \tau}{\rho} \right) + \nabla \times \left(\frac{F}{\rho} \right)$$

We consider the third component of the vorticity equation in z^* . It is assumed that the vorticity is an exponential function of z^* and t^* , ie $\omega = r^* G(\theta^*) e^{-\tanh(\alpha z^*)} e^{-\tanh(\alpha t^*)}$, for some general function of θ^* . Recall that $a_1 = \rho b_1 = 0$ on surface $r^{*2} - \theta^{*2} - z^{*2} = 0$, $a_2 = \rho b_2 = \frac{1}{2r^*} \omega(r^*, \theta^*, z^*, t^*) (r^{*2} + \theta^{*2} + z^{*2})$. This can be non-zero except at the center of the tube where there the flow is irrotational, also $G(\theta^*) \neq 0$ further away from the center of tube. Substitution of this form of $\vec{\omega}$ into the vorticity equation and