Sort:
Show:
Page Size:
Topic review
Updated time: 25 Aug 2021
Submitted by: Bo Fu
Definition: Ultrafast lasers are the key component of ultrafast photonics, which have come into practice in various fields, such as micromachining, communication, medical procedures, gas detection, and remote sensing. With the advantages of stability, compactness, and easy implementation, mode-locking and Q-switching are two notable techniques to achieve ultrafast pulsed lasers, where SAs perform crucial roles in many types of ultrafast lasers, such as fiber, solid-state, and waveguide lasers.
Unfold
Topic review
Updated time: 19 Feb 2021
Submitted by: Atiqah Salleh
Definition: Silver (Ag) is a chemical element that has provided promising results in various fields such as medicine, electronics, and household applications, e.g., silver sulfadiazine has been used as a standard treatment for burn wounds to prevent the formation of biofilm on the wound area, thus enhancing the wound recovery progress. Silver is a part of transition metals and has been classified as a precious metal due to its decreasing availability. Silver has interesting properties, yet the uses of the materials are limited due to silver instability towards oxygen. Silver metal will oxidize spontaneously when exposed to free oxygen molecules. In these past few years, there has been an unprecedented rise in the application of nanoscience and nanotechnologies which lead to substantial progress in the production of nanomaterials. Thus, it had made possible to produce silver in nanoscale and these emerging nanoparticle products have attracted interest due to their physical, chemical, and biological properties in comparison with their macro-scaled counterparts. These properties are being assessed through various analytical techniques.
Unfold
Topic review
Updated time: 29 Oct 2020
Submitted by: Duangkamon Baowan
Definition: After the discovery of circular formations of single walled carbon nanotubes called fullerene crop circles, their structure has become one of the most researched amongst carbon nanostructures due to their particular interesting physical properties. Several experiments and simulations have been conducted to understand these intriguing objects, including their formation and their hidden characteristics. It is scientifically conceivable that these crop circles, nowadays referred to as carbon nanotori, can be formed by experimentally bending carbon nanotubes into ring shaped structures or by connecting several sections of carbon nanotubes. Toroidal carbon nanotubes are likely to have many applications, especially in electricity and magnetism. In this review, geometry, construction, modelling and possible applications are discussed and the existing known analytical expressions, as obtained from the Lennard-Jones potential and the continuum approximation, for their interaction energies with other nanostructures are summarised.
Unfold
Topic review
Updated time: 30 Oct 2020
Submitted by: Shyam Mohapatra
Definition: The burgeoning field of nanotechnology aims to create and deploy nanoscale structures, devices, and systems with novel, size-dependent properties and functions. The nanotechnology revolution has sparked radically new technologies and strategies across all scientific disciplines, with nanotechnology now applied to virtually every area of research and development in the US and globally. NanoFlorida was founded to create a forum for scientific exchange, promote networking among nanoscientists, encourage collaborative research efforts across institutions, forge strong industry-academia partnerships in nanoscience, and showcase the contributions of students and trainees in nanotechnology fields. The 2019 NanoFlorida International Conference expanded this vision to emphasize national and international participation, with a focus on advances made in translating nanotechnology. This review highlights notable research in the areas of engineering especially in optics, photonics and plasmonics and electronics; biomedical devices, nano-biotechnology, nanotherapeutics including both experimental nanotherapies and nanovaccines; nano-diagnostics and -theranostics; nano-enabled drug discovery platforms; tissue engineering, bioprinting, and environmental nanotechnology, as well as challenges and directions for future research.
Unfold
Topic review
Updated time: 11 Oct 2021
Submitted by: Mladenka Malenica
Definition: Advanced and optimised microscopy methods, including atomic force microscopy (AFM), are required to visualise and characterise morphology of extracellular vesicles (EVs), a heterogenous groups of nanoparticles regarded as highly promising source of diagnostic, prognostic, and therapeutic tools. EVs are nanosized phospholipid membranous structures ubiquitously found in human biofluids, secreted from almost every cell, and thus reflect both physiological and pathophysiological changes of their parental cells. The lipid membrane of an EV contains proteins (e.g., tetraspanins, receptors and other molecules) and diverse luminal content with bioactive cargo that includes nucleic acids (DNA, mRNA, miRNA and lncRNA), proteins, organelles, or infectious particles. AFM is a nanoscale tool for the determination of morphology, structure and composition, but also biomechanics and biophysical characteristics of nanometric structures. Briefly, AFM uses a micrometric cantilever with a nanometre-sized tip actuated by piezoelectric crystals. Upon receiving signals of a tip-sample interaction, a position-sensitive photodiode (PSPD) converts it to a voltage and sends it to a piezoelectric actuator (PA). The latter expands and contracts proportionally to the applied voltage to manipulate the sample and the probe position across three dimensions with high precision. The PA can be coupled to a cantilever or positioned under a sample holder. The whole system is controlled by suitable control electronics.
Unfold
Topic review
Updated time: 23 Jul 2021
Submitted by: Álvaro Somoza
Definition: Albumin is a versatile protein being used widely for developing carriers for drugs and nucleic acids. It provides biocompatibility, tumor specificity, the possibility for surface modification, and reduces toxicity.
Unfold
Topic review
Updated time: 24 Aug 2021
Submitted by: Arunas Ramanavicius
Definition: Amperometric biosensors and biofuel cells are mostly based on immobilized enzymes or living cells. Among the many oxidoreductases, glucose oxidase (GOx) is used mostly in biosensor design. The same GOx can be well applied for the development of biofuel cells and self-charging capacitors based on the operation of biofuel cells.
Unfold
Topic review
Updated time: 02 Mar 2021
Submitted by: Mosab Kaseem
Definition: This entry presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the applications of the formed composite ceramics as smart chloride traps in corrosive environments.
Unfold
Topic review
Updated time: 14 Jan 2021
Submitted by: Biao Ren
Definition: Caries is the most common and extensive oral chronic disease. Due to the lack of anti-caries properties, traditional caries filling materials can easily cause secondary caries and lead to treatment failure. Nanomaterials can interfere with the bacteria metabolism, inhibit the formation of biofilm, reduce demineralization, and promote remineralization, which is expected to be an effective strategy for caries management.
Unfold
Topic review
Updated time: 11 Aug 2021
Submitted by: Wei Wang
Definition: The construction of nanosized drug delivery systems possesses tremendous potential due to their ability to improve the solubility of poorly soluble drugs and to reduce metabolism by dissolving them in their hydrophobic or hydrophilic compartment. In addition, nanomedicine holds the advantages of passive targeting ability due to an enhanced permeability and retention (EPR) effect, a large surface-to-volume ratio for drug loading, a tunable size for modification, a prolonged plasma half-life and a different biodistribution profile compared to conventional chemotherapy. Typical nano-based delivery vehicles include liposome, micelle, dendrimer, inorganic vector, nanogel and nanoemulsion, while novel nanocarriers also contain biomimetic reconstituted high-density lipoprotein (rHDL), exosome and the hybrid nanoparticle, which come from the mixture of nanomaterials. Each of these nanotools displays its unique physiochemical properties and possesses the ability for further modification of active targeting ligands.
Unfold
  • Page
  • of
  • 36