Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 3234 word(s) 3234 2021-06-03 10:15:51 |
2 format correct + 10 word(s) 3244 2021-06-07 12:00:12 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Karpinski, T.M. Antifungal Essential Oils of Lamiaceae. Encyclopedia. Available online: https://encyclopedia.pub/entry/10528 (accessed on 29 March 2024).
Karpinski TM. Antifungal Essential Oils of Lamiaceae. Encyclopedia. Available at: https://encyclopedia.pub/entry/10528. Accessed March 29, 2024.
Karpinski, Tomasz M.. "Antifungal Essential Oils of Lamiaceae" Encyclopedia, https://encyclopedia.pub/entry/10528 (accessed March 29, 2024).
Karpinski, T.M. (2021, June 04). Antifungal Essential Oils of Lamiaceae. In Encyclopedia. https://encyclopedia.pub/entry/10528
Karpinski, Tomasz M.. "Antifungal Essential Oils of Lamiaceae." Encyclopedia. Web. 04 June, 2021.
Antifungal Essential Oils of Lamiaceae
Edit

The incidence of fungal infections has been steadily increasing in recent years. Systemic mycoses are characterized by the highest mortality. At the same time, the frequency of infections caused by drug-resistant strains and new pathogens e.g., Candida auris increases. An alternative to medicines may be essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are plants from the Lamiaceae family. 

Labiatae fungi Aspergillus Cryptococcus Penicillium dermatophytes β-caryophyllene sesquiterpene monoterpenes minimal inhibitory concentration (MIC)

1. Introduction

Fungal infections belong to the most often diseases of humans. It is estimated that about 1.7 billion people (25% of the population) have skin, nail, and hair fungal infections [1]. The development of most of these infections is affected by dermatophytes, namely Trichophyton spp., Microsporum spp., and Epidermophyton spp. [2]. Simultaneously, mucosal infections of the oral and genital tracts caused by Candida spp. are very common. About 0.13 billion of women suffer from vulvovaginal candidiasis. On the other hand, oral candidiases are common in babies and denture wearers. Fungi also cause life-threatening systemic infections, with mortality reaching >1.6 million, which is >3-fold more than malaria [3]. Among life-threatening fungal infections prevail cryptococcosis (Cryptococcus neoformans) with >1,000,000 cases and mortality rate 20–70%, candidiasis (Candida albicans) with >400,000 cases and mortality rate 46–75%, pneumocystosis (Pneumocystis jirovecii) with >400,000 cases and mortality rate 20–80%, and aspergillosis (Aspergillus fumigatus) with >200,000 cases and mortality rate 30–95% [1][4][5]. In Table 1 are presented diseases caused by some of the most often fungal pathogens among people.
Table 1. Fungal pathogens of humans and most often observed mycoses (based on [6][7]).
Superficial mycoses
  • Hortae werneckii (Tinea nigra)
  • Malassezia furfur (Pityriasis versicolor)
  • Piedraia hortae (Black piedra)
  • Trichosporon spp. (White piedra)
Cutaneous and subcutaneous mycoses
  • Aspergillus spp. (Onychomycosis, Keratitis)
  • Candida spp. (Tinea pedis, Tinea cruris, Onychomycosis, Keratitis)
  • Chaetomium spp. (Subcutaneous phaeohyphomycosis)
  • Curvularia spp. (Subcutaneous phaeohyphomycosis)
  • Epidermophyton spp. (Tinea pedis, Tinea cruris, Onychomycosis)
  • Exophiala spp. (Chromoblastomycosis, Subcutaneous phaeohyphomycosis)
  • Fonsecaea spp. (Chromoblastomycosis)
  • Fusarium spp. (Onychomycosis, Keratitis, Eumycotic mycetoma)
  • Geotrichum spp. (Onychomycosis)
  • Microsporum spp. (Tinea corporis, Tinea capitis)
  • Phaeoacremonium spp. (Eumycotic mycetoma)
  • Phialophora spp. (Chromoblastomycosis, Subcutaneous phaeohyphomycosis)
  • Scopulariopsis brevicaulis (Onychomycosis)
  • Sporothrix schenckii (Lymphocutaneous sporotrichosis)
  • Trichophyton spp. (Tinea pedis, Tinea corporis, Tinea cruris, Tinea capitis, Onychomycosis)
  • Trichosporon spp. (Onychomycosis)
Endemic mycoses
  • Blastomyces dermatitidis (Blastomycosis)
  • Histoplasma capsulatum (Histoplasmosis)
  • Coccidioides immitis/posadasii (Coccidioidomycosis)
  • Penicillium marneffei (Penicilliosis)
  • Paracoccidioides brasiliensis (Paracoccidioidomycosis)
Opportunistic mycoses
  • Acremonium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Alternaria spp. (Phaeohyphomycosis-subcutaneous, sinusitis, disseminated infection)
  • Aspergillus spp. (Allergic reactions, Aspergillosis-nasal, sinusitis, bronchial, pulmonary, systemic dissemination)
  • Bipolaris spp. (Phaeohyphomycosis-subcutaneous, sinusitis, brain abscess)
  • Candida spp. (Candidiasis-superficial mucosal, cutaneous, widespread hematogenous distribution involving target organs)
  • Cryptococcus spp. (Cryptococcosis-cutaneous, pulmonary, meningitis)
  • Curvularia spp. (Phaeohyphomycosis-subcutaneous, sinusitis, disseminated infection)
  • Fusarium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Lichtheimia spp. (Mucormycosis-cutaneous, invasive)
  • Mucor spp. (Mucormycosis-cutaneous, invasive)
  • Paecilomyces spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Pneumocystis jirovecii (Pneumocystosis-pneumonia, extrapulmonary manifestations)
  • Rhizomucor spp. (Mucormycosis-cutaneous, invasive)
  • Rhizopus spp. (Mucormycosis-cutaneous, invasive)
  • Scedosporium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Trichosporon spp. (Trichosporonosis-invasive disease)
  • Wangiella spp. (Phaeohyphomycosis-subcutaneous, sinusitis, brain abscess)
The big problem is growing drug-resistance amid fungi. Among Candida and Aspergillus species is observed resistance to azoles, e.g., to fluconazole, voriconazole, and posaconazole. Some Candida species, especially C. glabrata and C. parapsilosis, can be echinocandin- and multidrug-resistant [8][9]. Acquired resistance to echinocandins has also been reported for yeasts C. albicansC. tropicalisC. kruseiC. kefyrC. lusitaniae, and C. dubliniensis [10]. More than 3% of Aspergillus fumigatus isolates are resistant to one or more azoles [11]. Polyene resistance mainly concerns amphotericin B. Resistance to this drug is observed in Fusarium spp., Trichosporon spp., Aspergillus spp., and Sporothrix schenckii [12][13]. Resistance to amphotericin B has also been reported for C. albicansC. glabrata, and C. tropicalis [14][15][16]. Cultures of some Candida species and Cryptococcus neoformans are presented in Figure 1.
Figure 1. Cultures of selected yeast fungi on Sabouraud agar (Author of photos: Tomasz M. Karpiński).
The new epidemiological problem is C. auris, a multidrug-resistant organism first described in Japan in 2009 [17]. Recently, C. auris has been reported from 36 countries from six continents [18]. About 30% of isolates demonstrate reduced susceptibility to amphotericin B, and 5% can be resistant to the echinocandins [19][20]. The estimated mortality from C. auris fungemia range from 28% to 60% [21].
Fundamental issues are also the costs of treatment and hospitalization of patients with invasive fungal diseases. According to Drgona et al., all costs range from around €26,000 up to over €80,000 per patient [5].

2. Components of Essential Oils of Lamiaceae Family

The family Lamiaceae or Labiatae contains many valuable medicinal plants. In the family are 236 genera and between 6900 and 7200 species. To the most abundant genera belong Salvia (900 species), Scutellaria (360), Stachys (300), Plectranthus (300), Hyptis (280), Teucrium (250), Vitex (250), Thymus (220), and Nepeta (200). Lamiaceae plants rich in essential oils have great worth in natural medicine, pharmacology, cosmetology, and aromatherapy [22]. The essential oils are mostly present in leaves, however, they can be found in flowers, buds, fruits, seeds, rind, wood, or roots [23]. Essential oils are mixtures of volatile compounds, which are secondary plant metabolites. They play a role in the defense system of higher plants [24]. Essential oils may contain over 300 different compounds, mainly of molecular weight below 300 [25]. Some oils, e.g., obtained from LavandulaGeranium, or Rosmarinus, contain 450 to 500 chemicals [26]. Among the active compounds of essential oils are various chemical classes, e.g., alcohols, ethers, aldehydes, ketones, esters, phenols, terpenes (monoterpenes, sesquiterpenes), and coumarins [27][28].
To the chemical components most commonly found as the main ingredients in essential oils, among plants presented in Table 2, include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20) (Figure 2). Sesquiterpene β-caryophyllene seems particularly important antifungal component in the Lamiaceae family. Its activity and its derivatives, such as caryophyllene oxide is well known [29][30][31]. According to Bona et al. [32], essential oils containing high concentrations of phenolic monoterpenes (e.g., carvacrol, p-cymene, thymol) have great antifungal activities. Rich in these substances are, among others Origanum and Thymus plants. Important antifungal chemicals often presented in Lamiaceae are also other monoterpenes as alcohol linalool and cyclic 1,8-cineole, limonene, pinenes, and terpinenes [33][34][35][36][37][38][39][40][41]Table 1 shows that all of these antifungal substances are common in presented plants.
Figure 2. Chemical formulas of ten substances the most commonly found in essential oils of Lamiaceae plants presented in Table 1.

3. Antifungal Activity of Essential Oils of Lamiaceae Family

In Table 3 are shown the antifungal activities of selected Lamiaceae essential oils. More than half of the essential oils have good activity (<1000 µg/mL) against fungi. In some cases are observed significant discrepancies between different studies. An example could be the action of essential oils from Italian Calamintha nepeta against Candida albicans. In the work of Marongiu et al. [42], minimal inhibitory concentrations amounted to 1.25–2.5 µg/mL, while in Božović et al. [43] MICs were between 780 to 12,480 µg/mL. Differences may be related to the different biochemical composition of the examined essential oils. In results presented by Marongiu et al. [42] the main components of essential oils were pulegone (39.9–64.4%), piperitenone oxide (2.5–19.1%) and piperitenone (6.4–7.7%), while in Božović et al. [43] three main substances were pulegone (37.7–84.7%), crysanthenone (1.3–33.9%) and menthone (0.5–35.4%). Some authors have described that the content of active substances varies depending on the season. In studies of Gonçalves et al. [44] in Mentha cervina during the flowering phase in August amount of isomenthone and pulegone in essential oil amounted 8.7% and 75.1% respectively. Simultaneously, in the vegetative phase in February, the content of both components changed significantly and amounted to 77.0% for isomenthone and 12.9% for pulegone. Similarly, Al-Maskri et al. [45] presented essential changes in some compounds of Ocimum basilicum essential oil between winter and summer. In the summer essential oil, there is significantly more of linalool, p-allylanisole and β-farnesene, and at the same time much less content of limonene and 1,8-cineole. In this work, a seasonal variation of chemical composition is directly related to other antifungal activities. It is particularly evident in action against Aspergillus niger, which was lower in the summer season. Zone of growth inhibition (ZOI) for winter essential oil was 21 mm and MIC > 50 µg/mL, while for summer essential oil-ZOI was 13 mm and MIC > 100 µg/mL [45]. Influence on the content of chemical substances in essential oils also has a method of obtaining them. Ćavar et al. [43] compared the composition of oils obtained from Calamintha glandulosa using three methods: Hydrodistillation (HD), steam distillation (SD) and aqueous reflux extraction (ARE). For example, the level of menthone was 3.3% in ARE, 4.7% in HD, and 8.3% in SD method, while for shisofuran was only 0.1% in HD and SD, and even 9.7% in ARE [43]. Additionally, many other factors can affect antimicrobial activity, such as amount and concentration of inoculum, type of culture medium, pH of the medium and incubation time. All these factors can affect the value of MIC [40]. Differences are visible in Table 2. Generally, it can be assumed that the best activity (MICs < 100) have essential oils from Clinopodium spp. (excluding C. nepeta subsp. glandulosum and C. umbrosum), Lavandula spp., Mentha spp. (excluding M. piperita), Thymbra spp., and Thymus spp. (excluding T. migricus and T. vulgaris). The highest values of MICs are presented among others for Aeollanthus suaveolensAgastache rugosaLepechinia muticaMentha × piperita, and Salvia sclarea. Simultaneously, some essential oils have a very different activity, and MIC values differ depending on the region, chemical composition, research methodology, etc. Significant variations can be observed even in Ocimum basilicum (MICs 1–10,000), O. sanctum (MICs 0.1–500), Origanum majorana (MICs 0.5–14,400) or in Thymus vulgaris (MICs 0.08–3600).
Table 3. Minimal inhibitory concentrations (MICs) of essential oils against fungi.
Source of the Essential Oil Targeted Fungus MICs (µg/mL; µl/mL) Reference(s)
Aeollanthus suaveolens Mart. ex Spreng. = A. heliotropioides Oliv. Candida albicans 1200–5000 [46]
Candida glabrata 5000 [46]
Candida krusei 2500 [46]
Candida parapsilosis 2500 [46]
Candida tropicalis 1200 [46]
Cryptococcus neoformans 600–5000 [46]
Agastache rugosa (Fisch. and C.A.Mey.) Kuntze Aspergillus flavus 10,000 [47]
Aspergillus niger 5000 [47]
Blastoschizomyces capitatus 5000 [47]
Candida albicans 28–5000 [47][48]
Candida utilis 5000 [47]
Candida tropicalis 5000 [47]
Cryptococcus neoformans 10,000 [47]
Trichoderma viride 5000 [47]
Trichophyton erinacei 780 [47]
Trichophyton mentagrophytes 3120 [47]
Trichophyton rubrum 1560 [47]
Trichophyton schoenleinii 1560 [47]
Trichophyton soudanense 1560 [47]
Trichophyton tonsurans 10,000 [47]
Trichosporon mucoides 5000 [47]
Ballota nigra subsp. foetida (Vis.) Hayek Alternaria solani 750 [49]
Botrytis cinerea 600 [49]
Fusarium coeruleum 350 [49]
Fusarium culmorum 300 [49]
Fusarium oxysporum 300 [49]
Fusarium solani 350 [49]
Fusarium sporotrichioides 350 [49]
Fusarium tabacinum 350 [49]
Fusarium verticillioides 300 [49]
Clinopodium dalmaticum (Benth.) Bräuchler and Heubl = Micromeria dalmatica Benth. Aspergillus niger 0.4 [50]
Aspergillus ochraceus 0.4 [50]
Cladosporium cladosporioides 0.4 [50]
Fusarium tricinctum 0.4 [50]
Penicilium ochrochloron 0.4 [50]
Phomopsis helianthi 0.2 [50]
Trichoderma viride 0.4 [50]
Clinopodium nepeta subsp. glandulosum (Req.) Govaerts = Calamintha glandulosa (Req.) Bentham = Calamintha officinalis Moench Aspergillus niger 1250 [42]
Candida albicans 2500 [42]
Clinopodium nepeta (L.) Kuntze = Calamintha nepeta (L.) Savi Aspergillus flavus 1.25–10 [51]
Aspergillus fumigatus 0.64–5 [51]
Aspergillus niger 0.32–10 [51]
Candida albicans 1.25–12,480 [51][52]
Candida guillermondii 1.25–2.5 [51]
Candida krusei 1.25–2.5 [51]
Candida parapsilosis 1.25–2.5 [51]
Candida tropicalis 1.25–2.5 [51]
Cryptococcus neoformans 0.32–1.25 [51]
Epidermophyton floccosum 0.64–2.5 [51]
Microsporum canis 0.64–2.5 [51]
Microsporum gypseum 1.25–5 [51]
Trichophyton mentagrophytes 0.64–5 [51]
Trichophyton rubrum 0.64–5 [51]
Clinopodium thymifolium (Scop.) Kuntze = Micromeria thymifolia (Scop.) Fritsch Aspergillus niger 2 [50]
Aspergillus ochraceus 2 [50]
Cladosporium cladosporioides 2 [50]
Fusarium tricinctum 2 [50]
Penicillium ochrochloron 2 [50]
Phomopsis helianthi 0.4 [50]
Trichoderma viride 2 [50]
Clinopodium umbrosum (M.Bieb.) Kuntze = Calamintha umbrosa Benth. Alternaria solani 3000 [53]
Fusarium oxysporum 2000 [53]
Helminthosporium maydis 1500 [53]
Dracocephalum heterophyllum Benth. Alternaria solani 625 [54]
Candida albicans 625–1000 [55][54]
Epidermophyton floccosum 2500 [54]
Fusarium semitectum 313 [54]
Hymenocrater longiflorus Benth. Aspergillus niger 480 [56]
Candida albicans 240 [56]
Hyptis ovalifolia Benth. Microsporum canis 15.6–1000 [57][58]
Microsporum gypseum 7.8–1000 [57][58]
Trichophyton mentagrophytes 15.6–1000 [57][58]
Trichophyton rubrum 7.8–1000 [57][58]
Hyssopus officinalis L. Aspergillus niger 52,200 [59]
Aspergillus ochraceus 26,100 [59]
Aspergillus versicolor 10,440 [59]
Candida albicans 128–1000 [55][60]
Candida glabrata 512–1024 [60]
Candida krusei 128–256 [60]
Candida parapsilosis 256–512 [60]
Candida tropicalis 512–1024 [60]
Cladosporium cladosporioides 10,440 [59]
Cladosporium fulvum 26,100 [59]
Penicillium funiculosum 52,200 [59]
Penicillium ochrochloron 26,100 [59]
Trichoderma viride 10,440 [59]
Lavandula angustifolia Mill. Candida albicans 0.125–512 [61][62][63]
Malassezia furfur >4 [64]
Trichophyton rubrum 1–512 [64][62]
Trichosporon beigelii 2 [64]
Lavandula multifida L. Aspergillus flavus 0.64 [65]
Aspergillus fumigatus 0.32 [65]
Aspergillus niger 0.32 [65]
Candida albicans 0.32 [65]
Candida guilliermondii 0.32 [65]
Candida krusei 0.64 [65]
Candida parapsilosis 0.32 [65]
Candida tropicalis 0.32 [65]
Cryptococcus neoformans 0.16 [65]
Epidermophyton floccosum 0.16 [65]
Microsporum canis 0.16 [65]
Microsporum gypseum 0.16 [65]
Trichophyton mentagrophytes 0.16 [65]
Trichophyton mentagrophytes var. interdigitale 0.16 [65]
Trichophyton rubrum 0.16 [65]
Trichophyton verrucosum 0.16 [65]
Lavandula pedunculata (Miller) Cav. Aspergillus flavus 5–10 [66]
Aspergillus fumigatus 2.5–5 [66]
Aspergillus niger 5 [66]
Candida albicans 2.5 [66]
Candida guillermondii 1.25 [66]
Candida krusei 1.25–2.5 [66]
Candida parapsilosis 2.5–5 [66]
Candida tropicalis 1.25–2.5 [66]
Cryptococcus neoformans 0.32–1.25 [66]
Epidermophyton floccosum 0.32–0.64 [66]
Microsporum canis 0.32–1.25 [66]
Microsporum gypseum 0.64–2.5 [66]
Trichophyton mentagrophytes 0.64–1.25 [66]
Trichophyton rubrum 0.32–1.25 [66]
Lavandula stoechas L. Aspergillus flavus 1.25–10 [67]
Aspergillus fumigatus 0.64–1.25 [67]
Aspergillus niger 0.32–1.25 [67]
Candida albicans 0.64–512 [62][67]
Candida guillermondii 1.25 [67]
Candida krusei 2.5 [67]
Candida parapsilosis 2.5 [67]
Candida tropicalis 2.5 [67]
Cryptococcus neoformans 0.64 [67]
Epidermophyton floccosum 0.16–0.32 [67]
Microsporum canis 0.16–0.64 [67]
Microsporum gypseum 0.32–0.64 [67]
Trichophyton mentagrophytes 0.32–0.64 [67]
Trichophyton mentagrophytes var. interdigitale 0.16–0.64 [67]
Trichophyton rubrum 0.16–256 [62][67]
Trichophyton verrucosum 0.32 [67]
Lavandula viridis L’Her. Aspergillus flavus 5 [68]
Aspergillus fumigatus 2.5 [68]
Aspergillus niger 2.5 [68]
Candida albicans 1.25–2.5 [68]
Candida guillermondii 0.64–1.25 [68]
Candida krusei 1.25–2.5 [68]
Candida parapsilosis 1.25 [68]
Candida tropicalis 1.25–2.5 [68]
Cryptococcus neoformans 0.64 [68]
Epidermophyton floccosum 0.32 [68]
Microsporum canis 0.32 [68]
Microsporum gypseum 0.64 [68]
Trichophyton mentagrophytes 0.32–0.64 [68]
Trichophyton mentagrophytes var. interdigitale 0.32–0.64 [68]
Trichophyton rubrum 0.32 [68]
Trichophyton verrucosum 0.32 [68]
Lepechinia mutica (Benth.) Epling Candida albicans >9000 [69]
Fusarium graminearum >9000 [69]
Microsporum canis 2200–4500 [69]
Pyricularia oryzae >9000 [69]
Trichophyton rubrum 2200–4500 [69]
Marrubium vulgare L. Aspergillus niger >1180 [70]
Botrytis cinerea >1100 [70]
Fusarium solani >1190 [70]
Penicillium digitatum >1120 [70]
Melissa officinalis L. Aspergillus niger 313 [71]
Candida albicans 30–313 [72][71]
Cryptococcus neoformans 78 [71]
Epidermophyton floccosum 30 [72]
Microsporum canis 30 [72]
Penicillium verrucosum 125 [73]
Trichophyton mentagrophytes var. mentagrophytes 15 [72]
Trichophyton rubrum 15 [72]
Trichophyton tonsurans 15 [72]
Mentha cervina L. Aspergillus flavus 2.5–5 [44]
Aspergillus fumigatus 1.25–2.5 [44]
Aspergillus niger 1.25–2.5 [44]
Candida albicans 1.25–2.5 [44]
Candida guillermondii 1.25–2.5 [44]
Candida krusei 1.25–2.5 [44]
Candida parapsilosis 1.25–2.5 [44]
Candida tropicalis 1.25–2.5 [44]
Cryptococcus neoformans 1.25 [44]
Epidermophyton floccosum 0.64–1.25 [44]
Microsporum canis 1.25 [44]
Microsporum gypseum 1.25–2.5 [44]
Trichophyton mentagrophytes 1.25–2.5 [44]
Trichophyton rubrum 1.25 [44]
Mentha × piperita L. Aspergillus flavus 1450–5000 [74][75]
Aspergillus niger 625–10,000 [75][71]
Aspergillus parasiticus 2500 [75]
Candida albicans 225–1125 [76][71][77]
Candida glabrata 225 [74]
Candida tropicalis 225–230 [74]
Cryptococcus neoformans 313 [71]
Fusarium oxysporum 125 [78]
Penicillium chrysogenum 1250 [75]
Penicillium minioluteum 2050–2200 [74]
Penicillium oxalicum 1300–2050 [74]
Penicillium verrucosum 2500 [79]
Mentha pulegium L. Aspergillus niger 0.25–1.25 [80][81]
Aspergillus flavus 1.25 [81]
Aspergillus fumigatus 1.25 [81]
Candida albicans 0.94–3.75 [80][82][81][83]
Candida bracarensis 3.75 [83]
Candida guillermondii 1.25 [81]
Candida krusei 0.94–1.25 [81][83]
Candida parapsilosis 1.25 [81]
Candida tropicalis 1.25 [81]
Cryptococcus neoformans 0.64 [81]
Epidermophyton floccosum 1.25 [81]
Microsporum canis 1.25 [81]
Microsporum gypseum 1.25–2.5 [81]
Saccharomyces cervisiae <0.3–0.94 [82][83]
Trichophyton mentagrophytes 1.25–2.5 [81]
Trichophyton mentagrophytes var. interdigitale 2.5 [81]
Trichophyton rubrum 1.25 [81]
Trichophyton verrucosum 1.25 [81]
Mentha requienii Bentham Alternaria spp. >40 [84]
Aspergillus fumigatus >60 [84]
Candida albicans 0.94–40 [84][83]
Candida bracarensis 3.75 [83]
Candida krusei 0.94 [83]
Fusarium spp. >40 [84]
Penicillum spp. >60 [84]
Rhodotorula spp. 45 [84]
Saccharomyces cerevisiae 0.94 [83]
Mentha spicata L. Aspergillus flavus 1.25 [81]
Aspergillus fumigatus 0.64 [81]
Aspergillus niger 0.64–313 [71][81]
Candida albicans 1.25–625 [62][71][81]
Candida guillermondii 1.25 [81]
Candida krusei 1.25 [81]
Candida parapsilosis 1.25 [81]
Candida tropicalis 1.25 [81]
Cryptococcus neoformans 0.32–313 [71][81]
Epidermophyton floccosum 0.64 [81]
Fusarium graminearum 2.5 [85]
Fusarium moniliforme 2.5 [85]
Malassezia furfur >4 [64]
Microsporum canis 0.64–2 [86][81]
Microsporum gypseum 0.64–3 [81]
Penicillium corylophilum 0.625 [87]
Penicillium expansum 2.5 [85]
Trichophyton erinacei 3 [86]
Trichophyton mentagrophytes 0.64–3 [86][81]
Trichophyton mentagrophytes var. interdigitale 0.64 [81]
Trichophyton rubrum 0.25–512 [64][62][81]
Trichophyton terrestre 3 [68]
Trichophyton verrucosum 0.32 [81]
Trichosporon beigelii 0.25 [64]
Mentha suaveolens Ehrh. Candida albicans 0.34–1250 [88][89][90]
Candida glabrata 0.69–2.77 [88]
Cryptococcus neoformans 300 [91]
Microsporum canis 1250 [91]
Microsporum gypseum 1250 [91]
Trichophyton mentagrophytes 600–1250 [91]
Trichophyton rubrum 5000 [91]
Trichophyton violaceum 600 [91]
Micromeria albanica (Griseb. ex K. Maly) Silic Aspergillus niger 0.2 [50]
Aspergillus ochraceus 0.2 [50]
Cladosporium cladosporioides 0.2 [50]
Fusarium tricinctum 0.4 [50]
Penicilium ochrochloron 0.2 [50]
Phomopsis helianthi 0.2 [50]
Trichoderma viride 0.4 [50]
Moluccella spinosa L. Aspergillus niger 50 [92]
Candida albicans 100 [92]
Fusarium oxysporum 100 [92]
Nepeta ciliaris Benth. = Nepeta leucophylla Benth. Alternaria solani 3000 [53]
Candida albicans 0.78 [93]
Fusarium oxysporum 1000 [53]
Trichophyton rubrum 0.19 [93]
Helminthosporium maydis 1500 [53]
Nepeta clarkei Hook. f. Alternaria solani 3000 [53]
Fusarium oxysporum 2000 [53]
Helminthosporium maydis 2000 [53]
Ocimum basilicum L. Aspergillus flavus 10,000 [64]
Aspergillus fumigatus >50 [45]
Aspergillus niger >50–10,000 [64,75,158]
Aspergillus parasiticus 5000 [64]
Candida albicans 30–625 [73,74,158]
Candida guilliermondii 3.125–6.25 [76]
Cryptococcus neoformans 313–1250 [158,169]
Debaryomyces hansenii 6.25 [76]
Epidermophyton floccosum 15 [74]
Microsporum canis 1–15.2 [68,74]
Microsporum gypseum 3 [68]
Penicillium chrysogenum 10,000 [64]
Penicillium italicum >50 [45]
Rhizopus stolonifer >50 [45]
Rhodotorula glutinis 86 [94]
Trichophyton erinacei 2.5 [68]
Trichophyton mentagrophytes 2.5–8.3 [68,74]
Trichophyton terrestre 3 [68]
Saccharomyces cerevisiae 28 [94]
Schizosaccharomyces pombe 86 [94]
Trichophyton rubrum 8.3 [74]
Trichophyton tonsurans 8 [74]
Yarrowia lypolytica 57 [73]
Ocimum × africanum Lour. = Ocimum × citriodorum Candida guilliermondii 3.125 [76]
Debaryomyces hansenii 1.56 [76]
Ocimum campechianum Mill. = Ocimum micranthum Willd. Candida albicans 69 [94]
Rhodotorula glutinis 139 [94]
Saccharomyces cerevisiae 69 [94]
Schizosaccharomyces pombe 104 [94]
Yarrowia lypolytica 69 [94]
Ocimum forskolei Benth. Candida albicans 35.3–8600 [77,170]
Ocimum gratissimum L. Aspergillus fumigatus >1000 [78]
Candida albicans 350–1500 [78,171]
Candida krusei 750 [171]
Candida parapsilosis 380 [171]
Candida tropicalis 1500 [171]
Cryptococcus neoformans 250–300 [78,79]
Fusarium oxysporum f. sp. cubense 62.5 [95]
Fusarium oxysporum f. sp. lycopersici 31.25 [95]
Fusarium oxysporum f. sp. tracheiphilum 62.5 [95]
Fusarium solani 62.5 [95]
Macrophomina phaseolina 62.5–125 [95]
Malassezia pachydermatis 300 [78]
Microsporum canis 200–500 [78,172]
Microsporum gypseum 150–250 [78,172]
Rhizoctonia solani 31.25 [95]
Scopulariopsis brevicaulis 400 [78]
Trichophyton interdigitale 250 [78]
Trichophyton mentagrophytes 200–250 [78,172]
Trichophyton rubrum 150–250 [78,172]
Ocimum tenuiflorum L. = Ocimum sanctum L. Aspergillus flavus 300 [83]
Candida albicans 0.1–300 [81,82]
Candida glabrata 0.15–300 [81,82]
Candida krusei 0.35–450 [81,82]
Candida parapsilosis 0.25–500 [81,82]
Candida tropicalis 0.1–300 [81,82]
Origanum compactum Benth. Alternaria alternata 300 [96]
Bipolaris oryzae 300 [96]
Fusarium equiseti 300 [96]
Fusarium graminearum 300 [96]
Fusarium verticillioides 300 [96]
Origanum majorana L. Aspergillus flavus 450–650 [62]
Aspergillus niger 625 [158]
Botrytis cinerea 5000 [87]
Candida albicans 625 [158]
Cryptococcus neoformans 313 [158]
Fusarium delphinoides 1800–14,400 [85]
Fusarium incarnatum-equiseti 450–3600 [85]
Fusarium napiforme 3600–14,400 [85]
Fusarium oxysporum 900–3600 [85]
Fusarium solani 900–3600 [85]
Fusarium verticillioides 14,400 [85]
Microsporum canis 0.5 [68]
Microsporum gypseum 2 [68]
Penicillium expansum 10,000 [87]
Penicillium minioluteum 400–500 [62]
Penicillium oxalicum 350–400 [62]
Sporothrix brasiliensis ≤2250–9000 [86]
Sporothrix schenckii ≤2250–9000 [86]
Trichophyton erinacei 1 [68]
Trichophyton mentagrophytes 1.5 [68]
Trichophyton terrestre 2 [68]
Origanum vulgare L. Aspergillus flavus 0.64–2500 [64,89,91]
Aspergillus fumigatus 0.32–0.64 [89]
Aspergillus niger 0.32–623 [62,89,91,158]
Aspergillus ochraceus 470 [91]
Aspergillus parasiticus 2500 [64]
Candida albicans 0.32–700 [74,88,89,91,158]
Candida glabrata 350 [88]
Candida guillermondii 0.64–1.25 [89]
Candida krusei 0.64–700 [88,89]
Candida parapsilosis 0.64–170 [88,89]
Candida tropicalis 0.32–700 [88,89]
Cladosporium sp. 0.05–0.3 [173]
Cryptococcus neoformans 0.16–78 [89,158]
Epidermophyton floccosum 0.32–2 [74,89]
Fusarium sp. 0.1–0.5 [173]
Malassezia furfur 1–780 [49,174]
Microsporum canis 0.025–2 [68,74,89]
Microsporum gypseum 0.025–1.25 [68,89]
Penicillium sp. 0.1–0.5 [173]
Penicillium chrysogenum 625 [64]
Penicillium corylophilum 0.625 [165]
Penicillium funiculosum 610 [91]
Penicillium ochrochloron 710 [91]
Penicillium verrucosum 1.1719 [90,91]
Trichophyton mentagrophytes 0.32–1.25 [74,89]
Trichophyton rubrum 0.16–1.25 [49,74,89]
Trichophyton tonsurans 1 [74]
Trichosporon beigelii 0.25 [49]
Trichophyton erinacei 0.5 [68]
Trichophyton mentagrophytes 0.5 [68]
Trichophyton terrestre 0.25 [68]
Pogostemon cablin (Blanco) Benth. Aspergillus flavus >1500 [92]
Aspergillus niger 156 [158]
Aspergillus oryzae >1500 [92]
Candida albicans 32–625 [158,175]
Candida krusei 64–257 [175]
Candida tropicalis 32–257 [175]
Cryptococcus neoformans 20 [158]
Pogostemon heyneanus Benth. Candida albicans 6000 [176]
Candida glabrata 6000 [176]
Candida tropicalis 10,000 [176]
Premna microphylla Turcz. Aspergillus niger >500 [94]
Candida albicans >500 [94]
Fusarium oxysporum >500 [94]
Rosmarinus officinalis L. Aspergillus flavus 330 [91]
Aspergillus ochraceus 590 [91]
Aspergillus niger 380–10,000 [91,98,158]
Botrytis cinerea 2500 [87]
Candida albicans 30.2–1000 [51,91,96,98,158]
Cryptococcus neoformans 313 [158]
Epidermophyton floccosum 30 [96]
Microsporum canis 2.5–30.2 [68,96]
Microsporum gypseum 2.5 [68]
Penicillium expansum 5000 [87]
Penicillium ochrochloron 470 [91]
Penicillium funiculosum 570 [91]
Trichophyton erinacei 1.5 [68]
Trichophyton mentagrophytes 5–15.3 [68,96]
Trichophyton rubrum 15–256 [51,96]
Trichophyton terrestre 5 [68]
Trichophyton tonsurans 15.2 [96]
Salvia fruticosa Miller Candida albicans 512 [51]
Fusarium oxysporum f. sp. dianthi >2000 [97]
Fusarium proliferatum >2000 [97]
Fusarium solani f. sp. cucurbitae >2000 [97]
Malassezia furfur >4 [97]
Rhizoctonia solani >2000 [97]
Sclerotinia sclerotiorum >2000 [97]
Trichophyton rubrum 2–256 [49,99]
Trichosporon beigelii 4 [49]
Salvia mirzayanii Rech. f. and Esfand Candida albicans 0.5–2 [98]
Candida krusei 1 [98]
Candida dubliniensis 0.06–0.5 [98]
Candida glabrata 0.06–1 [98]
Candida parapsilosis 0.25–1 [98]
Candida tropicalis 0.25–2 [98]
Trichosporon sp. 1 [98]
Salvia officinalis L. Aspergillus flavus 5–10 [101]
Aspergillus fumigatus 2.5–5 [101]
Aspergillus niger 5–1250 [101,158]
Candida albicans 2.5–2780 [96,101,158,177]
Candida guillermondii 1.25–2.5 [101]
Candida krusei 2.5–5 [101]
Candida parapsilosis 5 [101]
Candida tropicalis 5 [101]
Cryptococcus neoformans 0.64–625 [101,158]
Epidermophyton floccosum 0.64–100 [96,101]
Microsporum canis 1.25–100.2 [96,101]
Microsporum gypseum 1.25–2.5 [101]
Trichophyton mentagrophytes 1.25–60 [96,101]
Trichophyton mentagrophytes var. interdigitale 1.25 [101]
Trichophyton rubrum 0.64–60 [96,101]
Trichophyton tonsurans 60 [96]
Trichophyton verrucosum 1.25–2.5 [101]
Salvia sclarea L. Aspergillus niger 1250 [158]
Candida albicans 1250 [158]
Cryptococcus neoformans 313 [158]
Fusarium delphinoides 1800–3600 [85]
Fusarium incarnatum-equiseti 1800–3600 [85]
Fusarium napiforme 1800–3600 [85]
Fusarium oxysporum 1800–3600 [85]
Fusarium solani 3600–7200 [85]
Fusarium verticillioides 1800 [85]
Satureja hortensis L. Alternaria alternata 62.5 [103]
Aspergillus flavus 31.25–500 [103,104,117]
Aspergillus niger 471 [99]
Aspergillus ochraceus 423 [99]
Aspergillus parasiticus 373 [99]
Aspergillus terreus 389 [99]
Aspergillus variecolor 125 [100]
Candida albicans 200–400 [103,178]
Fusarium culmorum 125 [100]
Fusarium oxysporum 250 [100]
Microsporum canis 62.5 [100]
Moniliania fructicola 31.25 [100]
Penicillium spp. 125 [100]
Rhizoctonia solani 125 [100]
Rhizopus spp. 250 [100]
Sclerotinia minor 250 [100]
Sclerotinia sclerotiorum 125 [100]
Trichophyton mentagrophytes 62.5 [100]
Trichophyton rubrum 31.25 [100]
Satureja montana L. Microsporum canis 0.5 [68]
Microsporum gypseum 2 [68]
Trichophyton erinacei 2 [68]
Trichophyton mentagrophytes 2 [68]
Trichophyton terrestre 3 [68]
Satureja thymbra L. Aspergillus flavus 25 [105]
Aspergillus fumigatus 1.25–25 [105,179]
Aspergillus niger 2.5–25 [105,179]
Aspergillus ochraceus 2.5–25 [105,179]
Aspergillus versicolor 1.25 [179]
Candida albicans 25–128 [51,105]
Penicillium funiculosum 2.5–25 [105,179]
Penicillium ochrochloron 1–1.25 [105,179]
Trichoderma viride 1.25–25 [105,179]
Trichophyton rubrum 128 [51]
Stachys cretica L. Candida albicans 625 [106]
Stachys officinalis (L.) Trevis Aspergillus niger 2500 [107]
Candida albicans 5000 [107]
Stachys pubescens Ten. Alternaria alternata 1 [101]
Aspergillus flavus 0–5 [101]
Fusarium oxysporum 1 [101]
Teucrium sauvagei Le Houerou Aspergillus fumigatus >1000 [102]
Candida albicans >1000 [102]
Cryptococcus neoformans >1000 [102]
Epidermophyton floccosum 850 [102]
Microsporum canis 800 [102]
Microsporum gypseum 900 [102]
Scopulariopsis brevicaulis >1000 [102]
Scytalidium dimidiatum >1000 [102]
Trichophyton mentagrophytes var. interdigitale 950 [102]
Trichophyton mentagrophytes var. mentagrophytes 900 [102]
Trichophyton rubrum 800 [102]
Trichophyton soudanense 800 [102]
Teucrium yemense Deflers. Aspergillus niger 313 [103]
Botrytis cinerea 313 [103]
Candida albicans 1250 [103]
Thymbra capitata (L.) Cav. = Thymus capitatus (L.) Hoffmanns. and Link = Coridothymus capitatus (L.) Rchb.f. Solms Aspergillus flavus 0.32 [104]
Aspergillus fumigatus 0.16–0.32 [104]
Aspergillus niger 0.1–0.16 [104][105]
Aspergillus oryzae 0.2 [105]
Candida albicans 0.16–128 [62][106][104][107]
Candida glabrata 0.32 [104][107]
Candida guilliermondii 0.16–0.32 [104][107]
Candida krusei 0.32 [104]
Candida parapsilosis 0.32 [104][107]
Candida tropicalis 0.32 [104][107]
Epidermophyton floccosum 0.08 [104]
Fusarium solani 0.2 [105]
Microsporum canis 0.08 [104]
Microsporum gypseum 0.08 [104]
Penicillium digitatum 0.5 [180]
Trichophyton mentagrophytes 0.08 [104]
Trichophyton rubrum 0.16–64 [62][104]
Thymbra spicata L. Aspergillus fumigatus 0.3 [108]
Aspergillus niger 0.6 [108]
Aspergillus versicolor 0.3 [108]
Aspergillus ochraceus 0.6 [108]
Candida albicans 1.12–3750 [62][109][110]
Candida krusei 1.12 [110]
Candida parapsilosis 0.6–1.12 [110]
Penicillium funiculosum 0.3 [108]
Penicillium ochrochloron 0.3 [108]
Trichoderma viride 0.3 [108]
Trichophyton rubrum 64 [62]
Thymus bovei Benth. Candida albicans 250 [111]
Thymus daenensis Celak. Alternaria alternata >8 [101]
Aspergillus flavus 1 [101]
Fusarium oxysporum 4 [101]
Thymus kotschyanus Boiss. and Hohen. Alternaria alternata 1 [101]
Aspergillus flavus 0.5 [101]
Fusarium oxysporum 0–5 [101]
Thymus mastichina (L.) L. Candida albicans 1.25–2.5 [112]
Candida glabrata 1.25–1.5 [112]
Candida guilliermondii 1.25 [112]
Candida krusei 1.25–2.5 [112]
Candida parapsilosis 2.5–5 [112]
Candida tropicalis 2.5–10 [112]
Thymus migricus Klokov et Des.-Shost. Aspergillus flavus 452 [99]
Aspergillus niger 460 [99]
Aspergillus ochraceus 430 [99]
Aspergillus parasiticus 581 [99]
Aspergillus terreus 447 [99]
Thymus pulegioides L. Aspergillus flavus 0.32 [113]
Aspergillus fumigatus 0.16 [113]
Aspergillus niger 0.32 [113]
Candida albicans 0.32–0.64 [113]
Candida glabrata 0.32–0.64 [113]
Candida guilliermondii 0.32 [113]
Candida krusei 0.32–0.64 [113]
Candida parapsilosis 0.64 [113]
Candida tropicalis 0.32–0.64 [113]
Epidermophyton floccosum 0.16 [113]
Microsporum canis 0.16 [113]
Microsporum gypseum 0.16 [113]
Trichophyton mentagrophytes 0.16 [113]
Trichophyton rubrum 0.32 [113]
Thymus schimperi Ronninger Aspergillus minutus 0.512–2 [114]
Aspergillus niger 0.16 [115]
Aspergillus tubingensis 1–4 [114]
Beauveria bassiana 0.128–1 [114]
Candida albicans 0.16 [115]
Microsporum spp. 0.08 [115]
Microsporum gypseum 0.128–1 [114]
Penicillium chrysogenum 0.512–2 [114]
Rhodotorula spp. 0.08 [115]
Tricophyton spp. 0.08–0.31 [115]
Verticillium sp. 0.512–2 [114]
Thymus serpyllum L. Aspergillus carbonarius 1.25 [116]
Aspergillus ochraceus 0.625 [116]
Aspergillus niger 2.5 [116]
Microsporum canis 0.025 [86]
Microsporum gypseum 0.25 [86]
Trichophyton erinacei 0.1 [86]
Trichophyton mentagrophytes 0.2 [86]
Trichophyton terrestre 0.1 [86]
Thymus striatus Vahl. Alternaria alternata 1 [117]
Aspergillus flavus 1.5 [117]
Aspergillus niger 1 [117]
Aspergillus ochraceus 1 [117]
Aspergillus terreus 1 [117]
Aspergillus versicolor 1 [117]
Cladosporium cladosporioides 0.5 [117]
Epidermophyton floccosum 1 [117]
Microsporum canis 1.5 [117]
Penicillium funiculosum 2 [117]
Penicillium ochrochloron 2 [117]
Phomopsis helianthi 0.5 [117]
Trichoderma viride 2 [117]
Trichophyton mentagrophytes 1 [117]
Thymus vulgaris L. Absidia spp. 7 ± 4 [118]
Alternaria spp. 9.4 ± 4.5 [118]
Alternaria alternata 4.7–500 [118][119]
Aspergillus spp. 3.2 [118]
Aspergillus flavus 9.35–1500 [64,104,122,125,184]
Aspergillus fumigatus 144–1000 [124,184]
Aspergillus niger 9.35–1250 [64,122,158,184]
Aspergillus ochraceus 2.5–750 [85][120]
Aspergillus parasiticus 1250 [75]
Aspergillus sulphureus 10.88 ± 3.1 [118]
Aspergillus versicolor 9.6 ± 9.25 [118]
Botrytis cinerea 312 [87]
Candida albicans 0.16–313 [94][121][112][71]
Candida glabrata 0.16–0.32 [112]
Candida krusei 0.08–0.16 [112]
Candida guillermondii 0.16 [112]
Candida parapsilosis 0.16–0.32 [112]
Candida tropicalis 0.16–0.32 [112]
Chaetomium globosum 1.6 [118]
Cladosporium spp. 12.8 [118]
Cladosporium sphaerospermum 19.6 [118]
Cryptococcus neoformans 78 [71]
Epidermophyton floccosum 4 [121]
Fusarium spp. 62.5 [122]
Fusarium delphinoides 900–1800 [123]
Fusarium incarnatum-equiseti 450–3600 [123]
Fusarium napiforme 900 [123]
Fusarium oxysporum 5–900 [123][124]
Fusarium solani 1800–3600 [123]
Fusarium verticillioides 900 [123]
Malassezia furfur 920 [125]
Microsporum canis 2.2 [121]
Mortierella spp. 250 [122]
Mucor spp. 50.2 ± 8.4 [118]
Penicilium spp. 18.95–500 [118][122]
Penicilium brevicompactum 19.6 [118]
Penicillium chrysogenum 312.5–1750 [75][120]
Penicilium chrysogenum 19.6 [118]
Penicillium citrinum 1250 [120]
Penicillium expansum 625 [126]
Penicillium griseofulvum 19.6 [118]
Rhizopus spp. 12.6 [118]
Rhodotorula glutinis 72 [94]
Rhizopus oryzae 256–512 [127]
Saccharomyces cerevisiae 72 [94]
Schizosaccharomyces pombe 36 [94]
Stachybotrys chartarum 6.2 [118]
Trichoderma spp. 16.8 [118]
Trichophyton mentagrophytes 2.2 [121]
Trichophyton rubrum 2–72 [121][128]
Trichophyton tonsurans 2.2 [121]
Ulocladium spp. 5.45 ± 1.5 [118]
Yarrowia lypolytica 36 [94]
Thymus zygis L. Candida albicans 0.16–0.32 [112]
Candida glabrata 0.32 [112]
Candida krusei 0.16–0.32 [112]
Candida guillermondii 0.16 [112]
Candida parapsilosis 0.32 [112]
Candida tropicalis 0.16–0.32 [112]
Penicillium corylophilum 0.3125–0.625 [87]
Vitex agnus-castus L. Candida albicans 0.53–512 [62][129]
Candida dubliniensis 0.27 [129]
Candida famata 2.13 [129]
Candida glabrata 0.27 [129]
Candida krusei 0.27 [129]
Candida lusitaniae 2.13 [129]
Candida parapsilosis 1.06 [129]
Candida tropicalis 0.13 [129]
Epidermophyton floccosum 0.64–2.5 [130]
Microsporum canis 0.64–5 [130]
Microsporum gypseum 1.25–10 [130]
Trichophyton mentagrophytes 1.25–10 [130]
Trichophyton rubrum 0.64–512 [62][130]
Zataria multiflora Boiss. Aspergillus flavus 358 [99]
Aspergillus niger 358 [99]
Aspergillus ochraceus 341 [99]
Aspergillus parasiticus 367 [99]
Aspergillus terreus 447 [99]
Microsporum canis 0.125–0.25 [131]
Microsporum gypseum 0.03–0.06 [131]
Trichophyton mentagrophytes 0.03 [131]
Trichophyton rubrum 0.03–0.06 [131]
Trichophyton schoenleinii 0.125–0.6 [131]
Ziziphora clinopodioides Lam. Aspergillus flavus 48.82 [120][132]
Aspergillus fumigatus 1750 [120]
Aspergillus niger 3000 [120]
Aspergillus ochraceus 1500 [120]
Aspergillus parasiticus 48.82 [132]
Penicillium chrysogenum 3000 [120]
Penicillium citrinum 1750 [120]
Ziziphora tenuior L. Aspergillus flavus 1.25 [133]
Aspergillus fumigatus 0.64 [133]
Aspergillus niger 0.64 [133]
Candida albicans 1.25 [133]
Candida guillermondii 1.25 [133]
Candida krusei 1.25 [133]
Candida parapsilosis 1.25 [133]
Candida tropicalis 1.25 [133]
Cryptococcus neoformans 0.16 [133]
Epidermophyton floccosum 0.64 [133]
Microsporum canis 0.64–1.25 [133]
Microsporum gypseum 1.25 [133]
Trichophyton mentagrophytes 1.25 [133]
Trichophyton mentagrophytes var. interdigitale 1.254 [133]
Trichophyton rubrum 0.64 [133]
Trichophyton verrucosum 0.64 [133]
The mode of action of essential oils is multidirectional. Essential oils lead to disruption of the cell wall and cell membrane through a permeabilization process. The lipophilic compounds of essential oils can pass through the cell wall and damage polysaccharides, fatty acids, and phospholipids, eventually making them permeable [41][134]. Change of the permeability for H+ and K+ cations affects cellular pH and damage of cellular organelles [135][136]. Additionally, essential oils inhibit the synthesis of fungal DNA, RNA, proteins, and polysaccharides [137]. Essential oils can also disintegrate mitochondrial membrane [138][139]. It has also been shown that essential oil from Thymus vulgaris inhibits the production of aflatoxins by Aspergillus flavus and leads to the reduction of ergosterol production [127].

References

  1. Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4.
  2. White, T.C.; Findley, K.; Dawson, T.L., Jr.; Scheynius, A.; Boekhout, T.; Cuomo, C.A.; Xu, J.; Saunders, C.W. Fungi on the skin: Dermatophytes and Malassezia. Cold Spring Harb. Perspect. Med. 2014, 4.
  3. Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi 2017, 3, 57.
  4. Park, B.J.; Wannemuehler, K.A.; Marston, B.J.; Govender, N.; Pappas, P.G.; Chiller, T.M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009, 23, 525–530.
  5. Drgona, L.; Khachatryan, A.; Stephens, J.; Charbonneau, C.; Kantecki, M.; Haider, S.; Barnes, R. Clinical and economic burden of invasive fungal diseases in Europe: Focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 7–21.
  6. Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Section 6. Mycology. In Medical Microbiology, 7th ed.; Saunders: Philadelphia, PA, USA, 2013; pp. 605–711.
  7. Reddy, K.R. Fungal infections (Mycoses): Dermatophytoses (Tinea, Ringworm). J. Gandaki Med. Coll. Nepal 2017, 10.
  8. Lortholary, O.; Desnos-Ollivier, M.; Sitbon, K.; Fontanet, A.; Bretagne, S.; Dromer, F. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: A prospective multicenter study involving 2,441 patients. Antimicrob. Agents Chemother. 2011, 55, 532–538.
  9. Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732.
  10. Arendrup, M.C.; Perlin, D.S. Echinocandin resistance: An emerging clinical problem? Curr. Opin. Infect. Dis. 2014, 27, 484–492.
  11. Van der Linden, J.W.; Arendrup, M.C.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.M.; Chryssanthou, E.; Mellado, E.; Kidd, S.E.; Tortorano, A.M.; et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041–1044.
  12. Pfaller, M.A.; Diekema, D.J. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004, 42, 4419–4431.
  13. Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392.
  14. Krcmery, V., Jr.; Spanik, S.; Kunova, A.; Trupl, J. Breakthrough fungemia appearing during empiric therapy with amphotericin B. Chemotherapy 1997, 43, 367–370.
  15. Hull, C.M.; Bader, O.; Parker, J.E.; Weig, M.; Gross, U.; Warrilow, A.G.; Kelly, D.E.; Kelly, S.L. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob. Agents Chemother. 2012, 56, 6417–6421.
  16. Woods, R.A.; Bard, M.; Jackson, I.E.; Drutz, D.J. Resistance to polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with an amphotericin B-resistant funguria. J. Infect. Dis. 1974, 129, 53–58.
  17. Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov, a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2009, 53, 41–44.
  18. Tracking Candida Auris. Case Count Updated as of July 31; 2019; CDC. Available online: https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html (accessed on 9 September 2019).
  19. Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017, 64, 134–140.
  20. Friedman, D.Z.P.; Schwartz, I.S. Emerging fungal infections: New patients, new patterns, and new pathogens. J. Fungi 2019, 5, 67.
  21. Hata, D.J.; Humphries, R.; Lockhart, S.R.; College of American Pathologists Microbiology Committee. Candida auris: An emerging yeast pathogen posing distinct challenges for laboratory diagnostics, treatment, and infection prevention. Arch. Pathol. Lab. Med. 2019.
  22. Ramasubramania Raja, R. Medicinally potential plants of Labiatae (Lamiaceae) family: An overview. Res. J. Med. Plant. 2012, 6, 203–213.
  23. Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390.
  24. Radulović, N.S.; Blagojević, P.D.; Stojanović-Radić, Z.Z.; Stojanowić, N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem. 2013, 20, 932–952.
  25. Vainstein, A.; Lewinsohn, E.; Pichersky, E.; Weiss, D. Floral fragrance. New inroads into an old commodity. Plant Physiol. 2001, 127, 1383–1389.
  26. De Groot, A.C.; Schmidt, E. Essential oils, Part III: Chemical composition. Dermatitis 2016, 27, 161–619.
  27. Piątkowska, E.; Rusiecka-Ziółkowska, J. Influence of essential oils on infectious agents. Adv. Clin. Exp. Med. 2016, 25, 989–995.
  28. Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25.
  29. Yang, D.; Michel, L.; Chaumont, J.P.; Millet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 1999, 148, 79–82.
  30. Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829.
  31. Selestino Neta, M.C.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm. Biol. 2017, 55, 190–197.
  32. Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? J. Appl. Microbiol. 2016, 121, 1530–1545.
  33. Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008, 99, 8788–8795.
  34. Marei, G.I.K.; Abdel Rasoul, M.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochem. Physiol. 2012, 103, 56–61.
  35. Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Med. 2014, 24, e51–e56.
  36. Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida activity of Bursera morelensis Ramirez essential oil and two compounds, α-pinene and γ-terpinene—an in vitro study. Molecules 2017, 22, 95.
  37. de Oliveira Lima, M.I.; Araújo de Medeiros, A.C.; Souza Silva, K.V.; Cardoso, G.N.; de Oliveira Lima, E.; de Oliveira Pereira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017, 27, 195–202.
  38. de Macêdo Andrade, A.C.; Rosalen, P.L.; Freires, I.A.; Scotti, L.; Scotti, M.T.; Aquino, S.G.; de Castro, R.D. Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Curr. Top. Med. Chem. 2018, 18, 2481–2490.
  39. Wang, K.; Jiang, S.; Pu, T.; Fan, L.; Su, F.; Ye, M. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat. Prod. Res. 2019, 33, 1423–1430.
  40. Shi, Y.; Si, H.; Wang, P.; Chen, S.; Shang, S.; Song, Z.; Wang, Z.; Liao, S. Derivatization of natural compound β-pinene enhances its in vitro antifungal activity against plant pathogens. Molecules 2019, 24, 3144.
  41. Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural monoterpenes: Much more than only a scent. Chem. Biodiv. 2019, 16, e19004.
  42. Monforte, M.T.; Tzakou, O.; Nostro, A.; Zimbalatti, V.; Galati, E.M. Chemical composition and biological activities of Calamintha officinalis Moench essential oil. J. Med. Food 2011, 14, 297–303.
  43. Ćavar, S.; Vidic, D.; Maksimović, M. Volatile constituents, phenolic compounds, and antioxidant activity of Calamintha glandulosa (Req.) Bentham. J. Sci. Food Agric. 2013, 93, 1758–1764.
  44. Gonçalves, M.J.; Vicente, A.M.; Cavaleiro, C.; Salgueiro, L. Composition and antifungal activity of the essential oil of Mentha cervina from Portugal. Nat. Prod. Res. 2007, 21, 867–871.
  45. Al-Maskri, A.Y.; Hanif, M.A.; Al-Maskari, M.Y.; Abraham, A.S.; Al-sabahi, J.N.; Al-Mantheri, O. Essential oil from Ocimum basilicum (Omani Basil): A desert crop. Nat. Prod. Commun. 2011, 6, 1487–1490.
  46. Ngo Mback, M.N.; Agnaniet, H.; Nguimatsia, F.; Jazet Dongmo, P.M.; Hzounda Fokou, J.B.; Bakarnga-Via, I.; Fekam Boyom, F.; Menut, C. Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay. J. Mycol. Med. 2016, 26, 233–243.
  47. Shin, S.; Kang, C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 2003, 36, 111–115.
  48. Gong, H.; Li, S.; He, L.; Kasimu, R. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China. BMC Complement Altern. Med. 2017, 17, 95.
  49. Fraternale, D.; Ricci, D. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp foetida collected at flowering and fruiting times. Nat. Prod. Commun. 2014, 9, 1015–1018.
  50. Marinković, B.; Marin, P.D.; Knezević-Vukcević, J.; Soković, M.D.; Brkić, D. Activity of essential oils of three Micromeria species (Lamiaceae) against micromycetes and bacteria. Phytother. Res. 2002, 16, 336–339.
  51. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical composition and biological assays of essential oils of Calamintha nepeta (L.) Savi subsp. nepeta (Lamiaceae). Nat. Prod. Res. 2010, 24, 1734–1742.
  52. Božović, M.; Garzoli, S.; Sabatino, M.; Pepi, F.; Baldisserotto, A.; Andreotti, E.; Romagnoli, C.; Mai, A.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Calamintha nepeta (L.) Savi subsp. landulosa (Req.) Ball—New approaches. Molecules 2017, 22, 203.
  53. Kumar, V.; Mathela, C.S.; Tewari, A.K.; Bisht, K.S. In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi. Pestic. Biochem. Physiol. 2014, 114, 67–71.
  54. Zhang, C.; Li, H.; Yun, T.; Fu, Y.; Liu, C.; Gong, B.; Neng, B. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Tibetan herbal medicine Dracocephalum heterophyllum Benth. Nat. Prod. Res. 2008, 22, 1–11.
  55. Stappen, I.; Wanner, J.; Tabanca, N.; Wedge, D.E.; Ali, A.; Kaul, V.K.; Lal, B.; Jaitak, V.; Gochev, V.K.; Schmidt, E.; et al. Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya. Nat. Prod. Commun. 2015, 10, 133–138.
  56. Ahmadi, F.; Sadeghi, S.; Modarresi, M.; Abiri, R.; Mikaeli, A. Chemical composition, in vitro anti-microbial, antifungal an d antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem. Toxicol. 2010, 48, 1137–1144.
  57. De Oliveira, C.M.A.; Silva, M.R.R.; Kato, L.; da Silva, C.C.; Ferreira, H.D.; Souza, L.K.H. Chemical composition and antifungal activity of the essential oil of Hyptis ovalifolia Benth. (Lamiaceae). J. Braz. Chem. Soc. 2004, 15, 756–759.
  58. Souza, L.K.; de Oliveira, C.M.; Ferri, P.H.; de Oliveira Júnior, J.G.; de Souza Júnior, A.H.; Fernandes Ode, F.; Silva Mdo, R. Antimicrobial activity of Hyptis ovalifolia towards dermatophytes. Memórias do Instituto Oswaldo Cruz 2003, 98, 963–965.
  59. Džamić, A.M.; Soković, M.D.; Novaković, M.; Jadranin, M.; Ristić, M.S.; Tešević, V.; Marin, P.D. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Ind. Crops Prod. 2013, 51, 401–407.
  60. Hristova, Y.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.; Gochev, V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol. Biotechnol. Equip. 2015, 29, 592–601.
  61. D’Auria, F.D.; Tecca, M.; Strippoli, V.; Salvatore, G.; Battinelli, L.; Mazzanti, G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med. Mycol. 2005, 43, 391–396.
  62. Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. Evid. Based Compl. Altern. Med. 2016, 2016.
  63. Dolatabadi, S.; Salari, Z.; Mahboubi, M. Antifungal effects of Ziziphora tenuior, Lavandula angustifolia, Cuminum cyminum essential oils against clinical isolates of Candida albicans from women suffering from vulvovaginal candidiasis. Infect 2019, 23, 222–226.
  64. Adam, K.; Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998, 46, 1739–1745.
  65. Zuzarte, M.; Vale-Silva, L.; Gonçalves, M.J.; Cavaleiro, C.; Vaz, S.; Canhoto, J.; Pinto, E.; Salgueiro, L. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1359–1366.
  66. Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Dinis, A.M.; Canhoto, J.M.; Salgueiro, L.R. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav. Chem. Biodivers. 2009, 6, 1283–1292.
  67. Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem. 2012, 135, 1505–1510.
  68. Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Canhoto, J.; Vale-Silva, L.; Silva, M.J.; Pinto, E.; Salgueiro, L. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Her. J. Med. Microbiol. 2011, 60, 612–618.
  69. Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.L.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant Lepechinia mutica Benth (Lamiaceae). Chem. Biodivers. 2017, 14, e1700292.
  70. Zarai, Z.; Kadri, A.; Ben Chobba, I.; Ben Mansour, R.; Bekir, A.; Mejdoub, H.; Gharsallah, N. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 2011, 10, 161.
  71. Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549.
  72. Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489.
  73. Ozcakmak, S.; Dervisoglu, M.; Yilmaz, A. Antifungal activity of lemon balm and sage essential oils on the growth of ochratoxigenic Penicillium verrucosum. Afr. J. Microbiol. Res. 2012, 6, 3079–3084.
  74. Camiletti, B.X.; Asensio, C.M.; Pecci Mde, L.; Lucini, E.I. Natural control of corn postharvest fungi Aspergillus flavus and Penicillium sp. using essential oils from plants grown in Argentina. J. Food Sci. 2014, 79, M2499–M2506.
  75. Hossain, F.; Follett, P.; Dang Vu, K.; Harich, M.; Salmieri, S.; Lacroix, M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 2016, 53, 24–30.
  76. Samber, N.; Khan, A.; Varma, A.; Manzoor, N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol. 2015, 53, 1496–1504.
  77. Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement Altern. Med. 2010, 10, 65.
  78. Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313.
  79. Jeršek, B.; Poklar Ulrih, N.; Skrt, M.; Gavarić, N.; Božin, B.; Smole Možina, S. Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum. Arhiv Higijenu i Toksikologiju 2014, 65, 199–208.
  80. Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008, 119, 325–327.
  81. Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia island (Italy). Nat. Prod. Res. 2019.
  82. Abdelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind. Crops Prod. 2016, 94, 197–205.
  83. Fancello, F.; Zara, S.; Petretto, G.L.; Chessa, M.; Addis, R.; Rourke, J.P.; Pintore, G. Essential oils from three species of Mentha harvested in Sardinia: Chemical characterization and evaluation of their biological activity. Int. J. Food Prop. 2017, 20, 1751–1761.
  84. Chessa, M.; Sias, A.; Piana, A.; Mangano, G.S.; Petretto, G.L.; Masia, M.D.; Tirillini, B.; Pintore, G. Chemical composition and antibacterial activity of the essential oil from Mentha requienii Bentham. Nat. Prod. Res. 2013, 27, 93–99.
  85. Houicher, A.; Hechachna, H.; Teldji, H.; Ozogul, F. In vitro study of the antifungal activity of essential oils obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat. Food Nutr. Agric. 2016, 8, 99–106.
  86. Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat. Prod. Commun. 2015, 10, 1473–1478.
  87. Ji, H.; Kim, H.; Beuchat, L.R.; Ryu, J.H. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. Int. J. Food Microbiol. 2019, 291, 104–110.
  88. Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002, 16, 727–731.
  89. Garzoli, S.; Pirolli, A.; Vavala, E.; Di Sotto, A.; Sartorelli, G.; Božović, M.; Angiolella, L.; Mazzanti, G.; Pepi, F.; Ragno, R. Multidisciplinary approach to determine the optimal time and period for extracting the essential oil from Mentha suaveolens Ehrh. Molecules 2015, 20, 9640–9655.
  90. Pietrella, D.; Angiolella, L.; Vavala, E.; Rachini, A.; Mondello, F.; Ragno, R.; Bistoni, F.; Vecchiarelli, A. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement Altern. Med. 2011, 11, 18.
  91. Angiolella, L.; Vavala, E.; Sivric, S.; D’Auria, F.D.; Ragno, R. In vitro activity of Mentha suaveolens essential oil against Cryptococcus neoformans and dermatophytes. Int. J. Essent. Oil Ther. 2010, 4, 35–36.
  92. Casiglia, S.; Jemia, M.B.; Riccobono, L.; Bruno, M.; Scandolera, E.; Senatore, F. Chemical composition of the essential oil of Moluccella spinosa L. (Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles. Nat. Prod. Res. 2015, 29, 1201–1206.
  93. Bisht, D.S.; Padalia, R.C.; Singh, L.; Pande, V.; Lal, P.; Mathela, C.S. Constituents and antimicrobial activity of the essential oils of six Himalayan Nepeta species. J. Serb. Chem. Soc. 2010, 75, 739–747.
  94. Sacchetti, G.; Medici, A.; Maietti, S.; Radice, M.; Muzzoli, M.; Manfredini, S.; Braccioli, E.; Bruni, R. Composition and functional properties of the essential oil of amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J. Agric. Food Chem. 2004, 52, 3486–3491.
  95. Mohr, F.B.; Lermen, C.; Gazim, Z.C.; Gonçalves, J.E.; Alberton, O. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil. Genet. Mol. Res. 2017, 16.
  96. Santamarina, M.P.; Roselló, J.; Sempere, F.; Giménez, S.; Blázquez, M.A. Commercial Origanum compactum Benth. and Cinnamomum zeylanicum Blume essential oils against natural mycoflora in Valencia rice. Nat. Prod. Res. 2015, 29, 2215–2258.
  97. Pitarokili, D.; Tzakou, O.; Loukis, A.; Harvala, C. Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J. Agric. Food Chem. 2003, 51, 3294–3301.
  98. Zomorodian, K.; Moein, M.; Pakshir, K.; Karami, F.; Sabahi, Z. Chemical composition and antimicrobial activities of the essential oil from Salvia mirzayanii leaves. J. Evid. Based Complementary Altern. Med. 2017, 22, 770–776.
  99. Alizadeh, A.; Zamani, E.; Sharaifi, R.; Javan-Nikkhah, M.; Nazari, S. Antifungal activity of some essential oils against toxigenic Aspergillus species. Commun. Agric. Appl. Biol. Sci. 2010, 75, 761–767.
  100. Güllüce, M.; Sökmen, M.; Daferera, D.; Ağar, G.; Ozkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Sahin, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965.
  101. Mohammadi, A.; Nazari, H.; Imani, S.; Amrollahi, H. Antifungal activities and chemical composition of some medicinal plants. J. Mycol. Med. 2014, 24, e1–e8.
  102. Salah, K.B.; Mahjoub, M.A.; Chaumont, J.P.; Michel, L.; Millet-Clerc, J.; Chraeif, I.; Ammar, S.; Mighri, Z.; Aouni, M. Chemical composition and in vitro antifungal and antioxidant activity of the essential oil and methanolic extract of Teucrium sauvagei Le Houerou. Nat. Prod. Res. 2006, 20, 1089–1097.
  103. Ali, N.A.A.; Chhetri, B.K.; Dosoky, N.S.; Shari, K.; Al-Fahad, A.J.A.; Wessjohann, L.; Setzer, W.N. Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines 2017, 4, 17.
  104. Salgueiro, L.R.; Pinto, E.; Gonçalves, M.J.; Pina-Vaz, C.; Cavaleiro, C.; Rodrigues, A.G.; Palmeira, A.; Tavares, C.; Costa-de-Oliveira, S.; Martinez-de-Oliveira, J. Chemical composition and antifungal activity of the essential oil of Thymbra capitata. Planta Med. 2004, 70, 572–575.
  105. Tabti, L.; Dib Mel, A.; Gaouar, N.; Samira, B.; Tabti, B. Antioxidant and antifungal activity of extracts of the aerial parts of Thymus capitatus (L.) Hoffmanns against four phytopathogenic fungi of Citrus sinensis. Jundishapur J. Nat. Pharm. Prod. 2014, 9, 49–54.
  106. Goren, A.C.; Bilsel, G.; Bilsel, M.; Demir, H.; Kocabaş, E.E. Analysis of essential oil of Coridothymus capitatus (L.) and its antibacterial and antifungal activity. Zeitschrift für Naturforschung C 2003, 58, 687–690.
  107. Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J.A.; Rodrigues, A.G. The anti-Candida activity of Thymbra capitata essential oil: Effect upon pre-formed biofilm. J. Ethnopharmacol. 2012, 140, 379–383.
  108. Marković, T.; Chatzopoulou, P.; Šiljegović, J.; Nikolić, M.; Glamočlija, J.; Ćirić, A.; Soković, M. Chemical analysis and antimicrobial activities of the essential oils of Satureja thymbra L. and Thymbra spicata L. and their main components. Arch. Biol. Sci. Belgrade 2011, 63, 457–464.
  109. Kiliç, T. Analysis of essential oil composition of Thymbra spicata var. spicata: Antifungal, antibacterial and antimycobacterial activities. Z. Naturforsch. C 2006, 61, 324–328.
  110. Unlü, M.; Vardar-Unlü, G.; Vural, N.; Dönmez, E.; Ozbaş, Z.Y. Chemical composition, antibacterial and antifungal activity of the essential oil of Thymbra spicata L. from Turkey. Nat. Prod. Res. 2009, 23, 572–579.
  111. Jaradat, N.; Adwan, L.; Kaibni, S.; Shraim, N.; Zaid, A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement Altern. Med. 2016, 16, 418.
  112. Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad Dermatol. Venereol. 2004, 18, 73–78.
  113. Pinto, E.; Pina-Vaz, C.; Salgueiro, L.; Gonçalves, M.J.; Costa-de-Oliveira, S.; Cavaleiro, C.; Palmeira, A.; Rodrigues, A.; Martinez-de-Oliveira, J. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2006, 55, 1367–1373.
  114. Pagiotti, R.; Angelini, P.; Rubini, A.; Tirillini, B.; Granetti, B.; Venanzoni, R. Identification and characterisation of human pathogenic filamentous fungi and susceptibility to Thymus schimperi essential oil. Mycoses 2011, 54, e364–e376.
  115. Nasir, M.; Tafess, K.; Abate, D. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complement Altern. Med. 2015, 15, 260.
  116. Sokolić-Mihalak, D.; Frece, J.; Slavica, A.; Delaš, F.; Pavlović, H.; Markov, K. The effects of wild thyme (Thymus serpyllum L.) essential oil components against ochratoxin-producing Aspergilli. Arhiv za Higijenu i Toksikologiju 2012, 63, 457–462.
  117. Couladis, M.; Tzakou, O.; Kujundzic, S.; Sokovic, M.; Mimica-Dukic, N. Chemical analysis and antifungal activity of Thymus striatus. Phytother. Res. 2004, 18, 40–42.
  118. Segvić Klarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42.
  119. Perina, F.J.; Amaral, D.C.; Fernandes, R.S.; Labory, C.R.; Teixeira, G.A.; Alves, E. Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: Effects on growth, viability, early infection and cellular mode of action. Pest Manag. Sci. 2015, 71, 1371–1378.
  120. Sharifzadeh, A.; Javan, A.J.; Shokri, H.; Abbaszadeh, S.; Keykhosravy, K. Evaluation of antioxidant and antifungal properties of the traditional plants against foodborne fungal pathogens. J. Mycol. Med. 2016, 26, e11–e17.
  121. Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828.
  122. Liu, J.; Sui, G.; He, Y.; Liu, D.; Yan, J.; Liu, S.; Qin, W. Prolonging storage time of baby ginger by using a sand-based storage medium and essential oil treatment. J. Food Sci. 2014, 79, M593–M599.
  123. Homa, M.; Fekete, I.P.; Böszörményi, A.; Singh, Y.R.; Selvam, K.P.; Shobana, C.S.; Manikandan, P.; Kredics, L.; Vágvölgyi, C.; Galgóczy, L. Antifungal effect of essential oils against Fusarium keratitis isolates. Planta Med. 2015, 81, 1277–1284.
  124. Divband, K.; Shokri, H.; Khosravi, A.R. Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strains. Microb. Pathog. 2017, 104, 1–5
  125. Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giusiano, G.; Angiolella, L. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res. 2018, 33, 3273–3277.
  126. Nikkhah, M.; Hashemi, M.; Habibi Najafi, M.B.; Farhoosh, R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int. J. Food Microbiol. 2017, 257, 285–294.
  127. De Lira Mota, K.S.; de Oliveira Pereira, F.; de Oliveira, W.A.; Lima, I.O.; de Oliveira Lima, E. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules 2012, 17, 14418–14433.
  128. Khan, M.S.; Ahmad, I.; Cameotra, S.S. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp. Braz. J. Microbiol. 2014, 45, 523–531.
  129. Asdadi, A.; Hamdouch, A.; Oukacha, A.; Moutaj, R.; Gharby, S.; Harhar, H.; El Hadek, M.; Chebli, B.; Idrissi Hassani, L.M. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. J. Mycol. Med. 2015, 25, e118–e127.
  130. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Goncalves, M.J.; Salgueiro, L.; Maxia, A.; Lai, R. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2. Nat. Prod. Res. 2010, 24, 569–579.
  131. Mahboubi, M.; Heidary Tabar, R.; Mahdizadeh, E. The anti-dermatophyte activity of Zataria multiflora essential oils. J. Mycol. Med. 2017, 27, 232–237.
  132. Moghadam, H.D.; Sani, A.M.; Sangatash, M.M. Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain. Toxicol. Ind. Health 2016, 32, 493–499.
  133. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Paoli, M.; Tomi, F.; Efferth, T.; Salgueiro, L. Ziziphora tenuior L. essential oil from Dana Biosphere Reserve (Southern Jordan); Chemical characterization and assessment of biological activities. J. Ethnopharmacol. 2016, 194, 963–970.
  134. Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253.
  135. Helal, G.A.; Sarhan, M.M.; Abu Shahla, A.N.K.; Abou El-Khair, E.K. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain. J. Basic Microbiol. 2006, 46, 456–469.
  136. Rammanee, K.; Hongpattarakere, T. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technol. 2011, 4, 1050–1059.
  137. Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–24.
  138. Basak, S.; Guha, P. A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. J. Food Sci. Technol. 2018, 55, 4701–4710.
  139. Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134.
More
Information
Subjects: Biology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 608
Revisions: 2 times (View History)
Update Date: 10 Jun 2021
1000/1000