Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 359 word(s) 359 2020-12-15 08:02:32

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Guo, L. NGF Gene. Encyclopedia. Available online: https://encyclopedia.pub/entry/4169 (accessed on 20 April 2024).
Guo L. NGF Gene. Encyclopedia. Available at: https://encyclopedia.pub/entry/4169. Accessed April 20, 2024.
Guo, Lily. "NGF Gene" Encyclopedia, https://encyclopedia.pub/entry/4169 (accessed April 20, 2024).
Guo, L. (2020, December 23). NGF Gene. In Encyclopedia. https://encyclopedia.pub/entry/4169
Guo, Lily. "NGF Gene." Encyclopedia. Web. 23 December, 2020.
NGF Gene
Edit

nerve growth factor

genes

1. Introduction

The NGF gene provides instructions for making a protein called nerve growth factor beta (NGFβ). This protein is important in the development and survival of nerve cells (neurons), especially those that transmit pain, temperature, and touch sensations (sensory neurons). The NGFβ protein functions by attaching (binding) to its receptors, which initiates signaling pathways inside the cell. The NGFβ protein can bind to two different receptors, the NTRK1 receptor or the p75NTR receptor. Both receptors are found on the surface of sensory neurons and other types of neurons. The binding of the NGFβ protein to the NTRK1 receptor signals these neurons to grow and to mature and take on specialized functions (differentiate). This binding also blocks signals that initiate the process of self-destruction (apoptosis). Additionally, NGFβ signaling through NTRK1 plays a role in pain sensation. It is less clear what binding with the p75NTR receptor signals. Studies suggest that p75NTR signaling can help sensory neurons grow and differentiate but can also trigger apoptosis.

2. Health Conditions Related to Genetic Changes

2.1. Hereditary sensory and autonomic neuropathy type V

At least one mutation in the NGF gene has been reported to cause hereditary sensory and autonomic neuropathy type V (HSAN5), a condition characterized by the inability to feel pain and sense hot and cold. This mutation changes a single protein building block (amino acid) in the NGFβ protein. The amino acid arginine is replaced with the amino acid tryptophan at position 100 (written as Arg100Trp or R100W). Studies show that the mutated NGFβ protein cannot bind to the p75NTR receptor and that it alters the signaling through the NTRK1 receptor. In addition, people with HSAN5 have a reduced number of sensory neurons. However, the mechanism by which mutation of the NGF gene leads to the inability to feel pain and temperature sensations is unclear. Although the NGFβ protein is important in many types of neurons, only sensory neurons appear to be affected in people with HSAN5.

3. Other Names for This Gene

  • beta-nerve growth factor

  • beta-nerve growth factor precursor

  • Beta-NGF

  • HSAN5

  • nerve growth factor (beta polypeptide)

  • nerve growth factor, beta subunit

  • NGF_HUMAN

  • NGFB

References

  1. Capsoni S, Covaceuszach S, Marinelli S, Ceci M, Bernardo A, Minghetti L,Ugolini G, Pavone F, Cattaneo A. Taking pain out of NGF: a "painless" NGF mutant,linked to hereditary sensory autonomic neuropathy type V, with full neurotrophic activity. PLoS One. 2011 Feb 28;6(2):e17321. doi: 10.1371/journal.pone.0017321.
  2. Einarsdottir E, Carlsson A, Minde J, Toolanen G, Svensson O, Solders G,Holmgren G, Holmberg D, Holmberg M. A mutation in the nerve growth factor betagene (NGFB) causes loss of pain perception. Hum Mol Genet. 2004 Apr15;13(8):799-805.
  3. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000 Jun;10(3):381-91. Review.
  4. Larsson E, Kuma R, Norberg A, Minde J, Holmberg M. Nerve growth factor R221Wresponsible for insensitivity to pain is defectively processed and accumulates asproNGF. Neurobiol Dis. 2009 Feb;33(2):221-8. doi: 10.1016/j.nbd.2008.10.012.
  5. Lewin GR, Mendell LM. Nerve growth factor and nociception. Trends Neurosci.1993 Sep;16(9):353-9. Review.
  6. Ritter AM, Lewin GR, Kremer NE, Mendell LM. Requirement for nerve growthfactor in the development of myelinated nociceptors in vivo. Nature. 1991 Apr11;350(6318):500-2.
  7. Verpoorten N, De Jonghe P, Timmerman V. Disease mechanisms in hereditarysensory and autonomic neuropathies. Neurobiol Dis. 2006 Feb;21(2):247-55.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 279
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 23 Dec 2020
1000/1000