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Aspergilli have been widely used in the production of organic acids, enzymes, and secondary metabolites for almost a

century. Today, several GRAS (generally recognized as safe) Aspergillus species hold a central role in the field of

industrial biotechnology with multiple profitable applications. Since the 1990s, research has focused on the use of

Aspergillus species in the development of cell factories for the production of recombinant proteins mainly due to their

natively high secretion capacity. Advances in the Aspergillus-specific molecular toolkit and combination of several

engineering strategies (e.g., protease-deficient strains and fusions to carrier proteins) resulted in strains able to generate

high titers of recombinant fungal proteins
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1. Introduction

Proteins are functionally versatile biomolecules (e.g., enzymes, structural proteins, and hormones) involved in multiple

biological processes in the cell. Despite their role in supporting biological systems, proteins have been extensively studied

for their potential in the formulation of commercial products. They often find applicability in the production of

pharmaceuticals, food, beverages, biofuels, cosmetics, detergents, etc. .

Market demand for industrially relevant proteins has guided research into exploring practices that can lead to large-scale

production levels . The development of recombinant DNA technology has opened up the possibility of producing

recombinant proteins in heterologous expression systems that can support high production yields. In that respect, any

gene can now be transferred into a production host able to generate large quantities of the corresponding protein of

interest, avoiding limitations related to the conventional extraction of the protein from its native host . Human insulin

produced in E. coli cells was the first recombinant protein that was actually approved by the FDA for clinical use. The

recombinant insulin Humulin , originally developed by Genentech, was eventually commercialized in 1982 . Since then,

a plethora of other proteins with pharmaceutical and industrial applications have successfully been synthesized in

heterologous expression systems and have made their way into the market .

Today, recombinant proteins can be synthesized using a wide range of production platforms, including bacteria, yeasts

and filamentous fungi, mammalian or insect cells, and transgenic plants, to name a few. Every heterologous production

system though comes with certain advantages and drawbacks (Table 1). In most cases, the structure and function of the

protein of interest determines which production system is the most appropriate to be used. For example, when it comes to

manufacturing therapeutic proteins of high quality, mammalian cell lines are predominantly used, as they can produce

complex, human-like glycosylated proteins that are safe for patients. In fact, almost 84% of the biopharmaceutical proteins

are currently produced by Chinese Hamster Ovarian (CHO) cell lines .

Table 1. Comparison of the most commonly used heterologous expression systems in the field of recombinant protein

production.
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Bacteria

(Escherichia
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Simple Fast High

Products can be
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(codon bias, no
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translation

modifications)

Can be
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Yeasts

(Saccharomyces
cerevisiae,

Pichia pastoris,

etc.)

Simple Fast

S.
cerevisiae
limited

P.
pastoris
higher

Hypermannosylation

of glycoproteins

often occurs

(shortens half-life of

the protein in vivo,

leads to

immunogenic

reactions)

Feasible Low Low

Filamentous
fungi

(Aspergillus
niger,
Trichoderma
reesei,
Neurospora
crassa)

Feasible Medium High

Less

hypermannosylation

compared to yeasts,

but still differences

from mammalian

glycosylation

patterns

Simple
Medium

(mycotoxins)
Low

Insect cells

(Spodoptera
frugiperda,

Drosophila
melanogaster)

Laborious Fast High
Not able to carry out

N-glycosylation
Feasible Very low High

Mammalian
cells

(CHO cells,

Human cell

lines)

Laborious Slow Low

High quality

therapeutic proteins,

human-like

glycosylation pattern

Simple
High (viruses

and prions)
High

Transgenic
animals

(goats,

chickens)

Laborious
Very

slow
High

High quality

therapeutic proteins
Simple

High (viruses

and prions)

High,

ethically

questionable

Transgenic
plants

(rice, bananas,

carrots,

potatoes)

Feasible Slow High

Some differences in

glycan structures

from human-like

pattern

Complex

and

expensive

downstream

processing

Very low Medium

For the production of non-medicinal proteins, a more economical approach is usually followed, using either bacterial or

fungal production hosts [1,6,7]. While bacteria are often suitable for smaller proteins that do not require complex

post-translational modifications, production of larger and more complex proteins is usually performed in yeast, e.g., Pichia
pastoris . However, yeasts have the tendency to hyperglycosylate secreted proteins, and thus reduce their in vivo half-

life and affect their efficacy . Additional limitations including low expression levels and plasmid instability have restricted

the use of some yeasts (e.g., S. cerevisiae) in the production of industrial enzymes . An alternative production platform

that can support low-cost synthesis of large proteins with complex modifications, but with a lesser degree of

hypermannosylation during glycosylation compared to yeast is filamentous fungi. In addition, due to their saprophytic

lifestyle, most filamentous fungi have already developed the ability to produce and secrete a vast amount of enzymes in

order to break down and feed on organic matter . Strains belonging to the genera Aspergillus, Trichoderma, and
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Neurospora are in fact widely used for production of recombinant proteins with industrial applications . Several

reviews have described the potentials of filamentous fungi in the production of pharmaceutical and other industrial

proteins, as well as the genetic engineering approaches followed to maximize production levels . In this review,

we specifically focus on the use of Aspergillus species in the manufacturing of recombinant proteins. Bottlenecks in

protein synthesis and secretion are discussed, while our comprehensive literature search provides a general overview of

the most important genetic engineering projects and bioprocessing strategies applied over the past 30 years to improve

recombinant protein yields in Aspergillus.

2. Industrial Application of Aspergilli

2.1. Traditional Uses of Aspergillus Species

The use of Aspergillus species in biotechnology begun approximately a century ago, when James Currie, a food chemist,

discovered that the filamentous mold A. niger was able to produce citric acid, a food and beverage additive that was

conventionally extracted from citrus fruits . Since then, production of citric acid, now performed in A. niger cultures that

grow on inexpensive sugar-based minimal media, has turned into a multibillion dollar business .

Nonetheless, industrial applications of Aspergilli are not limited to the production of citric acid. Several species have been

used as prolific producers of other organic acids (e.g., itaconic), secondary metabolites, and enzymes of biotechnological

significance . For example, A. niger produces several enzymes used in food and feed production such as

glucoamylases, proteases, and phytases . A. oryzae, traditionally used in Asian cuisine, has been exploited as a cell

factory for producing malate, which is used in the development of food and pharmaceutical products . A. terreus has

attracted interest due to its ability to produce a group of secondary metabolites called statins that are used in the

production of cholesterol-lowering drugs . In fact, AB Enzymes, BASF, Chr. Hansen, DuPont, and Novozymes are only

a few examples of companies that have been or are still using Aspergillus species in large-scale manufacturing of

commercial products such as organic acids, enzymes, proteins, and secondary metabolites .

2.2. The Use of Aspergillus Species in Heterologous Protein Production

Filamentous fungi are generally considered promising hosts for production of recombinant proteins, mainly due to their

secretory capacity and metabolic versatility. However, only a few species appear to be able to produce competitive

recombinant protein levels and even fewer have been developed into industrial production platforms. This can be

attributed mainly to our incomplete knowledge of fungal physiology. For example, the mechanisms behind protein

production and secretion in fungal cells are not yet fully understood for most of the species. In addition, the presence of

unwanted metabolites (e.g., mycotoxins) has excluded several fungi from industrial production .

Aspergillus is a genus that has been studied extensively due to its value as a model organism in fungal research (A.
nidulans) and its industrial importance in citric acid and enzyme production (A. niger, A. oryzae) . Several molecular

tools (e.g., synthetic promoters and terminators, selection markers, RNA interference-RNAi, and CRISPR-Clusters of

Regularly Interspaced Short Palindromic Repeats-associated technologies), suitable for Aspergillus species, have also

been developed, facilitating efficient and targeted manipulation of their genomes . CRISPR/Cas, for example, a

system developed to create site-specific double strand DNA breaks, has been successfully applied in editing the genome

of A. niger , A. nidulans , A. oryzae , A. fumigatus , and other aspergilli . With a relatively well-

understood physiology (growth and development, gene expression, and secretion machinery) and several molecular tools

available, the GRAS A. niger has already been used in industrial production of recombinant proteins, such as calf

chymosin , human lactoferrin , and the plant-derived sweetener neoculin . Nevertheless, heterologous protein

production in Aspergillus species is not always efficient, leading to low production titers. In such cases, strategies that are

usually applied to improve titers involve genetic engineering of the production strains and establishing the appropriate

fermentation conditions.

3. Genetic Engineering Approaches for Aspergillus Strain Improvement

Due to their capacity to secrete large quantities of proteins into the culture medium, Aspergillus species, and especially A.
niger, are considered promising candidates for the development of large-scale heterologous protein production platforms.

However, production yields for heterologous proteins are usually much lower compared to the ones detected for the native

proteins. Failure to achieve the desired protein amounts in Aspergillus cultures can be attributed to limitations related to

transcription, translation, and the post-translation processing and modifications during protein production. Additionally,

bottlenecks in the fungal secretion machinery and the problem of extracellular degradation by fungal proteases further

hinder the efficient production of foreign proteins in Aspergillus species .
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4. Fermentation Conditions for Improved Heterologous Production in
Aspergillus

Development of most heterologous expression platforms begins with strain improvement, which hopefully results in

obtaining strains able to produce large quantities of a specific protein. Once strain improvement is complete, the

fermentation process for production of the desirable protein in large-scale has to be established . Designing and

setting up fungal fermentations is a complex process that has to be repeated every time a newly engineered strain is used

or a new protein is to be produced. This process requires several optimization steps, starting from finding the optimal

growth medium and fermentation parameters (temperature, pH, and oxygenation) to choosing the appropriate type of

fermentation and the fungal morphology that favors high production yields of the specific protein .

5. Conclusions and Future Perspectives

Filamentous fungi hold unlimited potential for industrial applications, from the development of meat-like products and

biomaterials, to bioremediation and biofuel production. One of their best qualities, largely exploited by the industry, is their

innate capacity for the secretion of enzymes, which facilitate downstream processing and product recovery. Moreover,

their ability to produce complex proteins with post-translational modifications and the fact that they can be cultivated on

inexpensive media makes them a promising alternative for production of eukaryotic proteins. Despite their undeniable

potential though, filamentous fungi have not yet been exploited to the fullest in the industrial production of recombinant

proteins.

Advances in the molecular toolkit available for genetic manipulation of several Aspergillus species opened up the path for

developing them into production systems for recombinant proteins. Nevertheless, due to a number of factors described in

the review, aspergilli have not yet met the expected production levels. Many studies that focused on engineering different

steps of protein synthesis and secretion, or generating protease-deficient strains, have resulted in a significant increase of

protein yields. Additionally, optimization of the fungal fermentation process has further improved protein production.

However, there are aspects of the fungal physiology that limit protein production and remain unclear. Continuous data

input from “omics” studies sheds light on the complex fungal mechanisms related to protein quality control and secretion

stress, as well as their impact on protein productivity. The knowledge generated from these studies combined with

advances in the field of synthetic biology will soon place Aspergillus, and possibly other filamentous fungi, in the race for

the most efficient recombinant protein production system. Its potential as a large-scale production platform not only for

recombinant proteins, but also for organic acids, bioactive compounds, enzymes, and peptides, as well as new

perspectives related to the use of Aspergillus in waste treatment and bioremediation processes, prove that this fungus can

provide sustainable solutions for multiple and diverse markets and industries.
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