
Asteraceae Paradox | Encyclopedia.pub

https://encyclopedia.pub/entry/967 1/7

Asteraceae Paradox
Subjects: Ecology

Contributor: Maryse Vanderplanck , Hélène Gilles , Denis Nonclercq , Pierre Duez , Pascal Gerbaux

Excessive pollen harvesting by bees can compromise the reproductive success of plants. Plants have therefore

evolved different morphological structures and floral cues to narrow the spectrum of pollen feeding visitors. Among

“filtering” mechanisms, the chemical and mechanical protection of pollen might shape bee-flower interactions and

restrict pollen exploitation to a specific suite of visitors such as observed in Asteraceae. Asteraceae pollen is

indeed only occasionally exploited by generalist bee species but plentifully foraged by specialist ones (i.e.,

Asteraceae paradox). During our bioassays, we observed that micro-colonies of generalist bumblebee (Bombus

terrestris L.) feeding on Taraxacum pollen (Asteraceae) reduced their pollen collection and offspring production.

Bees also experienced physiological effects of possible defenses in the form of digestive damage. Overall, our

results suggest the existence of an effective chemical defense in Asteraceae pollen, while the hypothesis of a

mechanical defense appeared more unlikely. Pre- and post-ingestive effects of such chemical defenses (i.e.,

nutrient deficit or presence of toxic compounds), as well as their role in the shaping of bee-flower interactions, are

discussed. Our results strongly suggest that pollen chemical traits may act as drivers of plant selection by bees and

partly explain why Asteraceae pollen is rare in generalist bee diets.
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1. Introduction

Through pollen collection, bees act concurrently as effective pollinators and herbivores, since both larvae and

adults feed exclusively on pollen and nectar . Like other herbivorous insects, bees display a high diversity of

interactions with their host plants, from strict specialization (i.e., oligolecty, where bees collect pollen from flowers

of a single genus, subfamily, or family) to broad generalization (i.e., polylecty, where bees exploit flowers of more

than one plant family) . Regardless of floral specialization, bees display numerous adaptations to discriminate

among plant species and to enhance floral resource foraging , which can compromise the reproductive

success of plants. For instance, bees can remove 95.5% of the pollen produced by flowers of Campanula

rapunculus (Campanulaceae)  and some solitary species require the entire content of more than 30 flowers, even

more than 1000 flowers, to feed a single larva . In response to excessive pollen harvesting, flowering plants have

drawn up complex defense mechanisms and adaptations. In fact, flowers have evolved several morphological traits

that can be viewed as adaptations preventing excessive pollen harvesting by bees, such as heteranthery, nototribic

flowers (i.e., dorsal anthers hidden in the upper lip of the flower, such as in Lamiaceae), keel flowers (i.e., ventral
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anthers hidden in a boat-shaped keel formed by the fusion of the two lower petals of the flower, such as in

Fabaceae), floral tubes, poricidal anthers and progressive pollen release (reviewed in ).

2. Asteraceae Paradox

Selection may also act on pollen traits to narrow the spectrum of pollen feeding visitors. For instance, although

Asteraceae are ubiquitous in most temperate habitats , they are only occasionally exploited by polylectic species

such as Bombus   and Colletes   (i.e., Asteraceae paradox ). This Asteraceae avoidance cannot be

explained by complex floral morphology, since compound inflorescences ensure an easy access to both pollen and

nectar over an extended time period . The failure of several unspecialized bee species to develop on Asteraceae

pollen rather suggests that it may possess unfavorable or protective properties so that bees might require

physiological adaptations to use it . Although Asteraceae pollens are known to have low protein

content, this is seemingly not the only reason for the inadequacy of their pollen . The pollen may actually lack

other essential nutrients, contain toxins, or display a low digestibility . Such pollen protections

probably shape bee–flower interactions to lead to a narrowing of the spectrum of pollen-feeding visitors in

Asteraceae. 

It is largely assumed that the synthesis of secondary metabolites constitutes a complex system of chemical

defenses in plants against herbivorous insect attacks . Although these chemical compounds are mainly

studied in vegetative parts, some obviously occur in nectar and pollen of flowering plants, with bee pollinators then

exposed to their biological activities . For instance, sesquiterpene lactones are

characteristic secondary metabolites in Asteraceae , with high chemotaxonomic specificity . Although they

probably have evolved as defense through their deterrence to herbivores , they also occur in pollen  and may

display insecticidal activities . Among chemical defenses, constraints could also act through nutrient availability.

Although proteins are often regarded as a reference in terms of nutritional quality, lipids are also important 

, including sterols, essential compounds in bee physiology (e.g., pupation, ovary development) that are

exclusively exogenous . The fact that ∂7-sterols often occur in Asteraceae pollen in higher proportions than

more common and usable sterols (i.e., 24-methylenecholesterol, ß-sitosterol, and ∂5-avenasterol) may indicate a

defense mechanism against excessive pollen harvesting . In addition to these variations of pollen primary and

secondary metabolites, pollen also varies in its wall resistance properties, which may result in incomplete digestion.

Transmission electron microscopy has revealed that Asteraceae pollen possesses a thick multilayer wall , which

might inhibit the extraction of nutrients and act as a mechanical defense . Despite these hypotheses, it is

unclear why Asteraceae pollen is unsuitable for most bee species and the Asteraceae paradox remains unsolved.

In the present study, bumblebee micro-colonies (Bombus terrestris L.) were forced to feed on different diets

(Figure. 1) to investigate the unfavorable properties of Taraxacum pollen. From the observed patterns in foraging

behavior, larval development, and digestive damages, we infer possible mechanical or chemical protective

properties of Asteraceae pollen.
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Figure 1. Experimental design and summary of diet treatments provided to B. terrestris. Each micro-colony

consisted of 5 workers fed for 35 days. Mortality, offspring production, and resource collection (i.e., pollen and

syrup) were monitored during or at the end of the bioassays.
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