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Bone tissue regeneration in orthopedic and maxillofacial surgery remains a common challenge. Trauma, tumors,

infectious diseases, biochemical disorders, congenital disorders or abnormal skeletal development are the cause of bone

defects, resulting in functional, esthetic and psychological defects in patients. Natural healing of skeletal structure is

relatively limited and requires assistance during pathological conditions such as severe injuries, osteoporosis,

osteosarcoma and infection.
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1. Introduction

Autogenous bone was identified as the gold standard for bone defects and retained perfect biocompatibility, but it could

not fully satisfy the requirements due to low yield, iatrogenic injury and risk . Other solutions such as allografts,

xenografts and bone substitute materials hold corresponding shortcomings in terms of, for example, immune response,

infectious risk and disease transmission . Therefore, a further sustainable and high-yielding strategy is required, which

leads us to tissue engineering methods. Numerous studies have recently introduced bioactive scaffolds and their

interaction with adjacent bony tissues, and hydrogels have received attention due to their excellent biocompatibility,

biodegradability and plasticity .

With their hydrophilic polymeric networks, hydrogels are considered the most promising polymer scaffold in bone tissue

engineering , and the modification of their permeability and stiffness enables substance exchanges and cell function 

. As the basis and guiding principle of bone regeneration, the degradation behavior of hydrogels is directly related to the

speed and quality of bone repair . Specifically, hydrogels in bone regeneration should be constructed by biocompatible

materials and hold enough stability for cell activity at an early stage . Along with cell growth and microstructural

remodeling, biodegradation of hydrogels is required to create appropriate space for the incoming inhabitants. Despite the

natural and synthetic polymers used in their preparation, the degradation solution of hydrogels mainly takes into account

temperature, pH, light irradiation, ultrasound and enzymes, among other aspects. . Among them, enzymatically

responsive hydrogels are well-recognized at present for their controlled and tunable degradation adapted to in vivo

circumstances .

Response and adaption under environmental variation are intrinsic properties of all biosystems, as well as biomaterials

. The transformation of spatial configurations, physical properties or structural stability under proper stimulation helps in

the degradation of bone fillers and the release of bioactive cargoes. Enzymes were valued as a promising trigger for novel

responsive polymers, considering their biological origin, efficiency and high selectivity . Leading-edge research

reported that clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzymes could be utilized to

cleave DNA cargoes in responsive hydrogels and for the delivery of genetic information . Remarkably, enzyme levels

vary with in vivo microenvironments and biological behaviors, and this variation was used in a novel strategy that

integrates enzymatic reaction and controlled release . For instance, a smart hydrogel constructed by glutathione-

modified collagen and MMP-cleavable peptide targeted myocardial infarction and ameliorating myocardium remodeling in

vivo in a “release on-demand” manner . Particularly, it was revealed that MMPs are involved in bone remolding. Thus,

the MMP-cleavable peptides-based hydrogels are promising candidates for bone tissue engineering.

The growing demand for MMP-cleavable peptides-based hydrogel as a platform for biomedical applications exhibits a

strong need for a timely review on a wide range of their fabrication and applications in bone repair. This review discusses

the latest advances in MMP-cleavable peptides-based hydrogels for biomedical applications in bone regeneration. The

MMP-cleavable peptides are introduced as crosslinkers for hydrogels. The three commonly used MMP-cleavable

peptides-based hydrogels, including Poly(ethylene glycol) (PEG)-, hyaluronic acid (HA)- and chitosan (CS)-based
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hydrogels, are then highlighted. The advantages and limitations of using these hydrogels along with their different

synthesis methods are summarized. Additionally, their most recent advances in the field of bone science, including

hydrogel-based 3D in vitro models and bone healing, are subsequently reviewed. Finally, the current challenges and

future perspectives of MMP-cleavable peptides-based hydrogels are briefly discussed.

2. General Materials for MMP-Cleavable Peptides-Based Hydrogels

Poly (ethylene glycol) (PEG) is a hydrophilic polymer that has the characteristics of biocompatibility and bioinertia, and it

can support cell growth after the addition of the appropriate protease-sensitive connectors and cell adhesion sites .

Therefore, PEG hydrogel is a promising synthetic hydrogel. PEG hydrogels have interconnected microporous networks

that provide continuous nutrient flow, cell growth and vascularization of engineering tissue ( Figure 1 ). Studies showed

that PEG hydrogel helps to maintain the phenotype of natural heart valve cells , optimize cell viability and morphology

, and promote the production of extracellular matrix . Dai et al. prepared a kind of stromal cell-derived factor-1-α-

loaded MMP degradable PEG hydrogel . The experimental data show that the hydrogel has good biocompatibility, can

promote the recruitment of mesenchymal stem cells, can promote the phenotypic polarization of M2 macrophages, and

has good tissue remodeling ability. The hydrogel can also improve the adhesion, activity and proliferation of bone marrow

mesenchymal stem cells (BMSCs) and promote the differentiation of BMSCs into valvular interstitial-like cells.

Figure 1. Polymers for MMP-cleavable peptides-based hydrogels.

In addition, PEG hydrogels can be modified to meet the needs of specific applications in vitro and in vivo .

Metzger et al. cross-linked Streptavidin with PEG to prepare hydrogel, which can release immobilized growth factor (GF)

and does not depend on the degradation of hydrogel . Research data show that through the appropriate design of the

release system, GF can be released by PEG hydrogels in a soluble form that is more effective than the supplementary

cell culture medium for local delivery.

Moreover, PEG hydrogel is widely used in cell delivery and bone tissue engineering . Sridhar et al. developed a

peptide- and protein-functionalized PEG hydrogel. After being co-cultured with the hydrogel for 14 days, chondrocytes

significantly increased the deposition of glycosaminoglycans and collagen, maintained a high level of activity, and

produced a more widely distributed matrix. This shows that hydrogel can promote the production of cartilage matrix .

It was reported that PEG hydrogel can be used as a blank skeleton, in which multiple scaffolds with various functions can

be systematically introduced into the scaffold to allow integrin binding , proteolysis and degradation , and even

local isolation of growth factors . Therefore, PEG hydrogels with specific material compositions can be used to guide

mesenchymal stem cells to differentiate into specific types of chondrocytes . Nguyen et al. designed and synthesized a

three-layer composite hydrogel, based on PEG, that was doped with chondroitin sulfate, metalloproteinase-sensitive

peptides and HA . The results show that the hydrogel can not only induce MSCs to differentiate into chondrocytes, but

also customize the phenotype and matrix production pattern of differentiated cells according to the specific region of

articular cartilage by changing the material composition.

3. Synthesis of MMP-Cleavable Peptides-Based Hydrogels

The thiol groups of cysteine usually act as a crosslinker in MMP-cleavable peptides. Although some MMP-cleavable

peptides could be crosslinked with polymers by introducing chemical groups via the grafting of amino acids to peptides, tt

is easier to introduce some functional groups into the polymers to construct hydrogels with the amino acid sequences.

Several common methods of polymer modification are discussed below.
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Norbornene (NB) groups, which are also molecule linkers, have attracted increasing attention because their photo-

crosslink property and have been widely introduced into biomaterials for use as a bioink in bioprinting . It is well-

known that the photochemical reaction of the NB group holds a speedy reaction rate under physiological pH and

temperature, and that the reactions could occur at relatively low radical concentrations . These advantages

demonstrate that introducing the NB group into biomaterials might be a promising solution in biomedicine and tissue

engineering. Gelatin is a natural polymer, which exhibits cell-interactive properties, and could be easily modified due to its

diverse chemical groups, including -OH, -COOH and -NH2. Therefore, gelatin could employ an NB group using 5-

norbornene-2-carboxylic acid in the reaction of the carboxylic acid and the primary amines . The norbornene derivant

could also be utilized in NB group insertion; Guo et al. synthesized norbornene-collagen that was obtained from acidic

collagen after reacting with carbic anhydride .

In addition, PEG, which is identified as one of the most common synthesis polymers, also combines with the NB group

under the appropriate circumstances. Eight-arm PEG-hydroxyl, dissolved in dichloromethane (DCM) with pyridine and 4-

Dimethylaminopyridine (DMAP), could introduce NB groups via an overnight reaction with 5-norbornene-2-carboxylic acid

and N,N’-dicyclohexylcarbodiimide under nitrogen conditions . The hydrogel could be formed with MMP-cleavable

peptides under ultraviolet light (UV) with lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) and elevated alkaline

phosphatase (ALP) activity. As a result, it could be developed as a prospective biomaterial for bone regeneration.

The click chemistry reaction is inspired by nature and boasts mild reaction conditions, and also has high specificity, rich

yielding and a speedy reaction rate . In particular, it is biorthogonal and widely used in cell therapy with few side

reactions . Cysteine is commonly grafted into peptides since its thiol group and alkenes groups are rarely found in

nature. Such peptides are extensively used to crosslink the polymers possessed alkene groups (typically the norbornene

groups) to form hydrogels via the thiol-ene photo-click chemistry reaction between the thiol group and the alkene groups

with cytocompatible light initiation. The reaction, which is mediated by light, starts with radical initiation upon irradiation to

form a thiyl radical . Furthermore, the hydrogels are polymerized in a step-growth manner. As a result, the hydrogels

exhibit a spatiotemporally controlled gelation behavior and excellent cell encapsulation ability . MMP-sensitive PEG-

based hydrogels were identified, and they were found to be formed via the click reaction between 4-arm PEG-modified

with norbornene groups and MMP-cleavable crosslinker (KCGPQG↓IWGQCK) . Cells and growth factors were co-

encapsulated into the hydrogel and functioned well based on the biocompatibility of this polymer ( Figure 2 ).

Figure 2. Preparation and degradation of MMP-cleavable peptides-based hydrogels.
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